Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Are innate immune signaling pathways in plants and animals conserved?

Abstract

Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extracellular and intracellular PRRs in plants and animals.
Figure 2: Signaling pathways downstream of PRRs in mammals, insects, nematodes and plants.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C., Jr. Innate immunity. N. Engl. J. Med. 343, 338–344 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov, R. & Janeway, C.A., Jr. An ancient system of host defense. Curr. Opin. Immunol. 10, 12–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Gravato-Nobre, M.J. & Hodgkin, J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7, 741–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, D.H. & Ausubel, F.M. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kurz, C.L. & Ewbank, J.J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4, 380–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Millet, A.C. & Ewbank, J.J. Immunity in Caenorhabditis elegans. Curr. Opin. Immunol. 16, 4–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Schulenburg, H., Kurz, C.L. & Ewbank, J.J. Evolution of the innate immune system: the worm perspective. Immunol. Rev. 198, 36–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Beutler, B. & Rehli, M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr. Top. Microbiol. Immunol. 270, 1–21 (2002).

    CAS  PubMed  Google Scholar 

  9. Brennan, C.A. & Anderson, K.V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457–483 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hoffmann, J.A. & Reichhart, J.M. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3, 121–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov, R. & Janeway, C., Jr. The Toll receptor family and microbial recognition. Trends Microbiol. 8, 452–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Royet, J. Infectious non-self recognition in invertebrates: lessons from Drosophila and other insect models. Mol. Immunol. 41, 1063–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Anderson, K.V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Belvin, M.P. & Anderson, K.V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Gay, N.J. & Keith, F.J. Drosophila Toll and IL-1 receptor. Nature 351, 355–356 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Sun, S.C., Lindstrom, I., Lee, J.Y. & Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196, 247–254 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Steiner, H. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198, 83–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann, J.A. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Athman, R. & Philpott, D. Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol. 7, 25–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Girardin, S.E. & Philpott, D.J. Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol. 34, 1777–1782 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Philpott, D.J. & Girardin, S.E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099–1108 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Viala, J., Sansonetti, P. & Philpott, D.J. Nods and 'intracellular' innate immunity. C. R. Biol. 327, 551–555 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ting, J.P. & Davis, B.K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387–414 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell. Microbiol. 5, 581–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 14, 1929–1934 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Nurnberger, T., Brunner, F., Kemmerling, B. & Piater, L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198, 249–266 (2004).

    Article  PubMed  Google Scholar 

  38. Asai, T. et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Felix, G., Duran, J.D., Volko, S. & Boller, T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Gomez-Gomez, L. & Boller, T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J. 18, 277–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Meindl, T., Boller, T. & Felix, G. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12, 1783–1794 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Gomez-Gomez, L. & Boller, T. Flagellin perception: a paradigm for innate immunity. Trends Plant Sci. 7, 251–256 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Shiu, S.H. & Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98, 10763–10768 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Shiu, S.H. & Bleecker, A.B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Donnelly, M.A. & Steiner, T.S. Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5. J. Biol. Chem. 277, 40456–40461 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Holt, B.F., III, Hubert, D.A. & Dangl, J.L. Resistance gene signaling in plants–complex similarities to animal innate immunity. Curr. Opin. Immunol. 15, 20–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Nimchuk, Z., Eulgem, T., Holt, B.F., III & Dangl, J.L. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Meyers, B.C., Kozik, A., Griego, A., Kuang, H. & Michelmore, R.W. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, T. et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol. Genet. Genomics 271, 402–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bais, H.P., Prithiviraj, B., Jha, A.K., Ausubel, F.M. & Vivanco, J.M. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434, 217–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Hauck, P., Thilmony, R. & He, S.Y. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100, 8577–8582 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. He, P. et al. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J. 37, 589–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hotson, A., Chosed, R., Shu, H., Orth, K. & Mudgett, M.B. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Kim, M.G. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, Y. et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J. 36, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809–821 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Mallo, G.V. et al. Inducible antibacterial defense system in C. elegans. Curr. Biol. 12, 1209–1214 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kim, D.H. et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297, 623–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, D.H. et al. Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proc. Natl. Acad. Sci. USA 101, 10990–10994 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Liberati, N.T. et al. Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc. Natl. Acad. Sci. USA 101, 6593–6598 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Matsuzawa, A. et al. ROS-dependent activation of the TRAF6–ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 6, 587–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Mochida, Y. et al. ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6–TAK1 interaction. J. Biol. Chem. 275, 32747–32752 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Glazebrook, J. Genes controlling expression of defense responses in Arabidopsis–2001 status. Curr. Opin. Plant Biol. 4, 301–308 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Chern, M., Canlas, P.E., Fitzgerald, H.A. & Ronald, P.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J. 43, 335–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Durrant, W.E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Pieterse, C.M. & Van Loon, L.C. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7, 456–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Keller, T. et al. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10, 255–266 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Torres, M.A. et al. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 14, 365–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Torres, M.A., Dangl, J.L. & Jones, J.D. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99, 517–522 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Song, W.Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Burdman, S., Shen, Y., Lee, S.W., Xue, Q. & Ronald, P. RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol. Plant Microbe Interact. 17, 602–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. da Silva, F.G. et al. Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol. Plant Microbe Interact. 17, 593–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Shen, Y., Sharma, P., da Silva, F.G. & Ronald, P. The Xanthomonas oryzae pv. lozengeoryzae raxP and raxQ genes encode an ATP sulphurylase and adenosine-5′-phosphosulphate kinase that are required for AvrXa21 avirulence activity. Mol. Microbiol. 44, 37–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Dangl, J.L. & Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Axtell, M.J. & Staskawicz, B.J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. & Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Mackey, D., Holt, B.F., Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Friedman, R. & Hughes, A.L. Molecular evolution of the NF-κB signaling system. Immunogenetics 53, 964–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51, 92–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Nurnberger, T. & Volker, L. Non-host resistance in plants: new insights into an old phenomenon. Mol. Plant Pathol. 6, 335–345 (2005).

    Article  PubMed  Google Scholar 

  86. Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet. 33, 55–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Wright, E.K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol. 13, 27–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Pan, H. et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434, 767–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank C. Dardick, W. Dietrich, J. Dangl, J. Ewbank, J. Jones, T. Nurnberger, P. Ronald, P. Schulze-Lefert and J. Sheen for comments.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ausubel, F. Are innate immune signaling pathways in plants and animals conserved?. Nat Immunol 6, 973–979 (2005). https://doi.org/10.1038/ni1253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing