Smart Technologies for Water Resource Management: An Overview
Abstract
:1. Introduction
2. Research Background
2.1. Internet of Things (IoT)
2.2. Smart Building
3. Overview of Technologies for Smart Water Management
3.1. Water Level
3.2. Water Consumption
3.3. Leakage Detection
4. Smart Water Harvesting Systems
5. Discussion, Current Challenges, and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Getu, B.N.; Attia, H.A. Automatic water level sensor and controller system. Int. Conf. Electron. Devices Syst. Appl. 2017, 1–4. [Google Scholar] [CrossRef]
- Oberascher, M.; Rauch, W.; Sitzenfrei, R. Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustain. Cities Soc. 2022, 76, 103442. [Google Scholar] [CrossRef]
- Keshavarzi, G.; Yildirim, Y.; Arefi, M. Does scale matter? An overview of the “smart cities” literature. Sustain. Cities Soc. 2021, 74, 103151. [Google Scholar] [CrossRef]
- Pellicer, S.; Santa, G.; Bleda, A.L.; Maestre, R.; Jara, A.J.; Skarmeta, A.G. A global perspective of smart cities: A survey. In Proceedings of the 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS 2013, Taichung, Taiwan, 3–5 July 2013; IEEE: New York, NY, USA, 2013; pp. 439–444. [Google Scholar] [CrossRef]
- Omar, O. Intelligent systems for functional improvement of buildings. Int. J. Environ. Sci. Dev. 2020, 11, 244–250. [Google Scholar] [CrossRef]
- Maiolo, M.; Carini, M.; Capano, G.; Pantusa, D.; Iusi, M. Trends in metering potable water. Water Pract. Technol. 2019, 14, 1–9. [Google Scholar] [CrossRef]
- Boyle, T.; Giurco, D.; Mukheibir, P.; Liu, A.; Moy, C.; White, S.; Stewart, R. Intelligent metering for urban water: A review. Water 2013, 5, 1052–1081. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Düştegör, D. Iot based smart water quality monitoring: Recent techniques, trends and challenges for domestic applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2016, 2, 1–19. [Google Scholar] [CrossRef]
- Singh, M.; Ahmed, S. IoT based smart water management systems: A systematic review. Mater. Today Proc. 2020, 46, 5211–5218. [Google Scholar] [CrossRef]
- Saad, A.; Benyamina, A.E.H.; Gamatie, A. Water Management in Agriculture: A Survey on Current Challenges and Technological Solutions. IEEE Access 2020, 8, 38082–38097. [Google Scholar] [CrossRef]
- Ismail, S.; Dawoud, D.W.; Ismail, N.; Marsh, R.; Alshami, A.S. IoT-Based Water Management Systems: Survey and Future Research Direction. IEEE Access 2022, 10, 35942–35952. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Saeed, S.; Iqbal, S.Z.; Ahmed, R. IoT-Based Solutions to Monitor Water Level, Leakage, and Motor Control for Smart Water Tanks. Water 2022, 14, 309. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Rose, A.L.; Arvindan, S.; Revathy, J.; Amuthadevi, C. Automation systems in smart buildings: A review. J. Ambient Intell. Humaniz. Comput. 2020, 1–13. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Towards Achieving a Reliable Leakage Detection and Localization Algorithm for Application in Water Piping Networks: An Overview. IEEE Access 2017, 5, 20272–20285. [Google Scholar] [CrossRef]
- Colombo, A.F.; Lee, P.; Karney, B.W. A selective literature review of transient-based leak detection methods. J. Hydro-Environ. Res. 2009, 2, 212–227. [Google Scholar] [CrossRef]
- Mohd Ismail, M.I.; Dziyauddin, R.A.; Salleh, N.A.A.; Muhammad-Sukki, F.; Bani, N.A.; Izhar, M.A.M.; Latiff, L.A. A review of vibration detection methods using accelerometer sensors for water pipeline leakage. IEEE Access 2019, 7, 51965–51981. [Google Scholar] [CrossRef]
- Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview Understanding the Issues and Challenges of a More Connected World. Internet Soc. 2015, 80, 1–50. [Google Scholar]
- Kranenburg, V. Moscow Futurodesign Lab Co-Create Urban Intelligence: Designing Smart Interfaces between People and City. 2013. Available online: http://www.theinternetofthings.eu/content/moscow-futurodesign-laboratory-workshop-co-createurban-intelligence-designing-smart-interfa (accessed on 10 February 2022).
- Marry, W. Disruptive Civil Technologies Six Technologies with Potential Impacts on Us Interests Out to 2025; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2013. [Google Scholar]
- Kopetz, H. Internet of Things; In Real-Time Systems; Real-Time Systems Series; Springer: Boston, MA, USA, 2011; pp. 307–323. [Google Scholar] [CrossRef]
- Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Cui, X. The Internet of Things. In Ethical Ripples of Creativity and Innovation; Palgrave Macmillan: London, UK, 2016; pp. 61–68. [Google Scholar] [CrossRef]
- Weber, R.H.; Weber, R. Internet of Things: Legal Perspectives; Springer: Berlin/Heidelberg, Germany, 2010; 135p. [Google Scholar] [CrossRef]
- Fielding, R.T.; Software, D.; Taylor, R.N. Principled Design of the Modern Web Architecture. ACM Trans. Internet Technol. 2000, 2, 115–150. [Google Scholar] [CrossRef]
- Guinard, D.; Trifa, V.; Spiess, P.; Savio, D. Interacting with the SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of Web Services. IEEE Trans. Serv. Comput. 2010, 3, 223–235. [Google Scholar] [CrossRef]
- Xu, L.D. Information architecture for supply chain quality management. Int. J. Prod. Res. 2011, 49, 183–198. [Google Scholar] [CrossRef]
- Jiang, L.; Da Xu, L.; Cai, H.; Jiang, Z.; Bu, F.; Xu, B. An IoT-Oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inform. 2014, 10, 1443–1451. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Tao, F.; Zhang, X.; Luo, Y.; Zhang, Y. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products. Enterp. Inf. Syst. 2012, 6, 267–290. [Google Scholar] [CrossRef]
- Tao, F.; Zuo, Y.; Da, X.L.; Zhang, L. IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing. IEEE Trans. Ind. Inform. 2014, 10, 1547–1557. [Google Scholar] [CrossRef]
- Wang, C.; Bi, Z.; Xu, L. Da IoT and cloud computing in automation of assembly modeling systems. IEEE Trans. Ind. Inform. 2014, 10, 1426–1434. [Google Scholar] [CrossRef]
- Van Kranenburg, R.; Anzelmo, E.; Bassi, A.; Caprio, D.; Dodson, S.; Ratto, M. The Internet of Things. In Proceedings of the 1st Berlin Symposium on Internet and society, Berlin, Germany, 25–27 October 2011. [Google Scholar]
- Malatras, A.; Asgari, A.; Baugé, T. Web enabled wireless sensor networks for facilities management. IEEE Syst. J. 2008, 2, 500–512. [Google Scholar] [CrossRef]
- Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research challenges. Ad. Hoc. Netw. 2012, 10, 1497–1516. [Google Scholar] [CrossRef]
- Yasin, H.M.; Zeebaree, S.R.M.; Sadeeq, M.A.M.; Ameen, S.Y.; Ibrahim, I.M.; Zebari, R.R.; Ibrahim, R.K.; Sallow, A.B. IoT and ICT based Smart Water Management, Monitoring and Controlling System: A Review. Asian J. Res. Comput. Sci. 2021, 8, 42–56. [Google Scholar] [CrossRef]
- Ageed, Z.; Mahmood, M.R.; Sadeeq, M.M.A.; Abdulrazzaq, M.B.; Dino, H. Cloud Computing Resources Impacts on Heavy-Load Parallel Processing Cloud Computing Resources Impacts on Heavy-Load Parallel Processing Approaches. IOSR J. Comput. Eng. 2020, 22, 30–41. [Google Scholar] [CrossRef]
- Robles, T.; Alcarria, R.; Martín, D.; Navarro, M.; Calero, R.; Iglesias, S.; López, M. An iot based reference architecture for smart water management processes. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2015, 6, 4–23. [Google Scholar]
- Omar, O. Intelligent building, definitions, factors and evaluation criteria of selection. Alex. Eng. J. 2018, 57, 2903–2910. [Google Scholar] [CrossRef]
- Advanced Technologies for Industry; European Commission: Brussels, Belgium, 2021. Available online: https://op.europa.eu/en/publication-detail/-/publication/faa033c0-9294-11eb-b85c-01aa75ed71a1/language-en/format-PDF/source-213456174 (accessed on 10 February 2022).
- Wigginton, M.; Harris, J. Intelligent Skins; Butterworth-Heinemann: Oxford, UK, 2002. [Google Scholar]
- Smart Building Report. 2021. Available online: https://www.energystrategy.it/osservatorio-di-ricerca/intelligent-building/ (accessed on 1 February 2022).
- King, J.; Perry, C. Smart Buildings: Using Smart Technology to Save Energy in Existing Buildings; Amercian Council for an Energy-Efficient Economy: Washington, DC, USA, 2017. [Google Scholar]
- Lê, Q.; Nguyen, H.B.; Barnett, T. Smart Homes for Older People: Positive Aging in a Digital World. Future Internet 2012, 4, 607–617. [Google Scholar] [CrossRef]
- Mezzera, L.; Carminati, M.; Di Mauro, M.; Turolla, A.; Tizzoni, M.; Antonelli, M. A 7-Parameter Platform for Smart and Wireless Networks Monitoring On-Line Water Quality. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 9–12 December 2018; IEEE: Bordeaux, France, 2018; pp. 709–712. [Google Scholar] [CrossRef]
- Gonçalves, R.; Soares, J.J.M.; Lima, R.M.F. An IoT-Based Framework for Smart Water Supply Systems Management. Futur. Internet 2020, 12, 114. [Google Scholar] [CrossRef]
- Kodali, R.K.; Sarjerao, B.S. A low cost smart irrigation system using MQTT protocol. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Quadar, N.; Chehri, A.; Jeon, G.; Ahmad, A. Smart Water Distribution System Based on IoT Networks, a Critical Review. Smart Innov. Syst. Technol. 2021, 189, 293–303. [Google Scholar] [CrossRef]
- Zekri, S.; Jabeur, N.; Gharrad, H. Smart water management using intelligent digital twins. Comput. Informatics 2022, 41, 135–153. [Google Scholar] [CrossRef]
- Kawarkhe, M.B.; Agrawal, S. Smart Water Monitoring System Using IOT at Home. IOSR J. Comput. Eng. 2019, 21, 14–19. [Google Scholar] [CrossRef]
- Min-Allah, N.; Farooqui, M.; Alwashmi, A.; Almahasheer, S.; Alsufayyan, M.; Altulaihan, N. Smart monitoring of water tanks in KSA. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 1044–1047. [Google Scholar] [CrossRef]
- Sivaiah, N.; Sowmya, K.P.S.; Susmitha, K.; Sai, N.A.; Suma, N. Internet of things (Iot) enabled water monitoring system. Iconic Res. Eng. J. 2018, 1, 40–43. [Google Scholar]
- Perumal, T.; Sulaiman, M.N.; Leong, C.Y. Internet of Things (IoT) enabled water monitoring system. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 86–87. [Google Scholar] [CrossRef]
- Dutta, J.; Roy, S. IoT-fog-cloud based architecture for smart city: Prototype of a smart building. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida, India, 12–13 January 2017; pp. 237–242. [Google Scholar] [CrossRef]
- Shah, P.P.; Patil, A.A.; Ingleshwar, S.S. IoT based smart water tank with Android application. In Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 600–603. [Google Scholar] [CrossRef]
- Praveen, A.; Radhika, R.; Sidharth, D.; Ambat, S.; Anjali, T. Smart water level monitoring and management system using IoT. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, India, 8–10 July 2021; pp. 482–487. [Google Scholar] [CrossRef]
- Khan, F.Q.; Ahmad, I.; Fawzi Khairullah, E.; Bajaber, O.; Ullah, A.; Jan, S. Real-time consumer aware and alert system based on smart water tank. Mater. Today Proc. 2022, 63, 790–797. [Google Scholar] [CrossRef]
- Gaikwad, K. IoT based Water Management System using MQTT protocol. In Proceedings of the 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 408–414. [Google Scholar] [CrossRef]
- Veselinovic, A.; Popic, S.; Lukac, Z. Smart home system solution with the goal of minimizing water consumption. In Proceedings of the 2020 International Symposium on Industrial Electronics and Applications (INDEL), Banja Luka, Bosnia and Herzegovina, 4–6 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Mantoro, T.; Istiono, W. Saving water with water level detection in a smart home bathtub using ultrasonic sensor and Fuzzy logic. In Proceedings of the 2017 Second International Conference on Informatics and Computing (ICIC), Jayapura, Indonesia, 1–3 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Khan, N.; Kumar, P.; Sadistap, S. IoT enabled embedded ultrasonic sensor based water tank level system with pump switching control. AIP Conf. Proc. 2021, 2335, 060004. [Google Scholar] [CrossRef]
- Olisa, S.C.; Asiegbu, C.N.; Olisa, J.E.; Ekengwu, B.O.; Shittu, A.A.; Eze, M.C. Smart two-tank water quality and level detection system via IoT. Heliyon 2021, 7, e07651. [Google Scholar] [CrossRef]
- Santos, L.; Bautista, J.C.; Estanque, M.W.; Paloa, C.J.; Villaran, A.B. Development of an IoT-based water and power monitoring system for residential building. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 744. [Google Scholar] [CrossRef]
- Ray, A.; Goswami, S. IoT and Cloud Computing based Smart Water Metering System. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 28–29 February 2020; pp. 308–313. [Google Scholar] [CrossRef]
- Vrsalovic, A.; Perkovic, T.; Andric, I.; Cuvic, M.A.; Solic, P. IoT deployment for smart building: Water consumption analysis. In Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech 2021), Bol and Split, Croatia, 8–11 September 2021. [Google Scholar] [CrossRef]
- Suresh, M.; Muthukumar, U.; Chandapillai, J. A novel smart water-meter based on IoT and smartphone app for city distribution management. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017. [Google Scholar] [CrossRef]
- Tamilselvan, G.M.; Ashishkumar, V.; Prasath, S.J.; Yusuff, S.M. IoT Based Automated Water Distribution System with Water Theft Control and Water Purchasing System. Int. J. Recent Technol. Eng. 2018, 7, 2277–3878. [Google Scholar]
- Yang, S.H.; Chen, X.; Chen, X.; Yang, L.; Chao, B.; Cao, J. A case study of internet of things: A wireless household water consumption monitoring system. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 681–686. [Google Scholar] [CrossRef]
- De Paula, H.T.L.; Gomes, J.B.A.; Affonso, L.F.T.; Rabelo, R.A.L.; Rodrigues, J.J.P.C. An IoT-Based water monitoring system for smart buildings. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; p. 6. [Google Scholar] [CrossRef]
- Pereira, L.; Aguiar, V.; Vasconcelos, F. FIKWater: A water consumption dataset from three restaurant kitchens in Portugal. Data 2021, 6, 26. [Google Scholar] [CrossRef]
- Mudumbe, M.J.; Abu-Mahfouz, A.M. Smart water meter system for user-centric consumption measurement. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 993–998. [Google Scholar] [CrossRef]
- Ji, Y.; Yong, L.; Jingfeng, Y.; Ke, K.; Yuehua, H.; Wenguang, Q. Analysis of urban residential water consumption based on smart meters and fuzzy clustering. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 1295–1301. [Google Scholar] [CrossRef]
- Savić, D.; Vamvakeridou-Lyroudia, L.; Kapelan, Z. Smart meters, smart water, smart societies: The iWIDGET project. Procedia Eng. 2014, 89, 1105–1112. [Google Scholar] [CrossRef]
- Sodkomkham, T.; Ratanatamskul, C.; Chandrachai, A. An Integrated Lean Management, IoT and MFCA Systems for Water Management of Industrial Manufacturing in Thailand. E3S Web Conf. 2021, 241, 01006. [Google Scholar] [CrossRef]
- Covelli, C.; Cimorelli, L.; Cozzolino, L.; Morte, R.D.; Pianese, D. Reduction in water losses in water distribution systems using pressure reduction valves. Water Sci. Technol. Water Supply 2016, 16, 1033–1045. [Google Scholar] [CrossRef]
- Hunaidi, O.; Chu, W.; Wang, A.; Guan, W. A Detecting leaks in plastic pipes Commercial leak-noise correlators were generally able to locate leaks in plastic pipe, but modifications could increase their effectiveness. J. Am. Water Work. Assoc. 2000, 92, 82–94. [Google Scholar] [CrossRef]
- Zhang, J. Designing a Cost Effective and Reliable Pipeline Leak Detection System. Pipes Pipelines Int. 1997, 42, 20–26. [Google Scholar]
- Ghazali, M.F.; Beck, S.B.M.; Shucksmith, J.D.; Boxall, J.B.; Staszewski, W.J. Comparative study of instantaneous frequency based methods for leak detection in pipeline networks. Mech. Syst. Signal Processing 2011, 29, 187–200. [Google Scholar] [CrossRef]
- Ghazali, M.F.; Staszewski, W.W.J.; Shucksmith, J.D.; Boxall, J.B.; Beck, S.B.M. Instantaneous phase and frequency for the detection of leaks and features in a pipeline system. Struct. Health Monit. 2010, 10, 351–360. [Google Scholar] [CrossRef]
- Jönsson, L. Interaction of a Hydraulic Transient with a Leak in a Pipe Flow. In Proceedings of the 14th Australasian Fluid Mechanics Conference, Adelaide, SA, Australia, 10–14 December 2001; pp. 909–912. [Google Scholar]
- Duan, H.F.; Lee, P.J.; Ghidaoui, M.S.; Tung, Y.K. Leak detection in complex series pipelines by using the system frequency response method. J. Hydraul. Res. 2011, 49, 213–221. [Google Scholar] [CrossRef]
- Wang, X.-J.; Lambert, M.F.; Simpson, A.R.; Liggett, J.A.; Vı´tkovský, J.P. Leak Detection in Pipelines using the Damping of Fluid Transients. J. Hydraul. Eng. 2002, 128, 697–711. [Google Scholar] [CrossRef]
- Liggett, A.; Liggett, L.; Chen, C. Inverse transient analysis in pipe net- works for leakage detection, quantification and roughness calibration. J. Hydraul. Eng 1994, 120, 934–955. [Google Scholar] [CrossRef]
- Vítkovský, J.P.; Simpson, A.R.; Lambert, M.F. Leak Detection and Calibration Using Transients and Genetic Algorithms. J. Water Resour. Plan. Manag. 2000, 126, 262–265. [Google Scholar] [CrossRef]
- Lee, P.J.; Lambert, M.F.; Simpson, A.R.; Vítkovský, J.P.; Liggett, J. Experimental verification of the frequency response method for pipeline leak detection. J. Hydraul. Res. 2006, 44, 693–707. [Google Scholar] [CrossRef]
- Silva, R.A.; Buiatti, C.M.; Cruz, S.L.; Pereira, J.A.F.R. Pressure wave behaviour and leak detection in pipelines. Comput. Chem. Eng. 1996, 20, S491–S496. [Google Scholar] [CrossRef]
- Misiunas, D.; Vítkovský, J.; Olsson, G.; Simpson, A.; Lambert, M. Pipeline Break Detection Using Pressure Transient Monitoring. J. Water Resour. Plan. Manag. 2005, 131, 316–325. [Google Scholar] [CrossRef]
- Whaley, R.S.; Nicholas, R.E.; Van Reet, J.D. Tutorial on Software Based Leak Detection Techniques. Technical Report. 1992. Available online: https://www.appliedcontrol.com/asset/5540566 (accessed on 1 March 2022).
- Zhang, J.; Twomey, M. Statistical Pipeline Leak Detection Techniques for All Operating Conditions. In Proceedings of the 26th Environmental Symposium & Exhibition, Long Beach, CA, USA, 27–30 March 2000; pp. 285–290. [Google Scholar]
- Salam, A.E.U.; Tola, M.; Selintung, M.; Maricar, F. On-line monitoring system of water leakage detection in pipe networks with artificial intelligence. ARPN J. Eng. Appl. Sci. 2014, 9, 1817–1822. [Google Scholar]
- Chamran, M.K.; Shafie, S. Non-invasive application for domestic pipeline monitoring and corrosion detection. In Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2013. [Google Scholar] [CrossRef]
- Dewi, P.; Aziz, A.; Fauzan, M.; Anuar, M.; Mohamad, N.; Ismifaizul, M.; Ismail, M. A study on vibration sensors for water pipeline leakage application. Sci. Int. 2017, 29, 1065–1069. [Google Scholar]
- Martini, A.; Troncossi, M.; Rivola, A. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements. Shock Vib. 2015, 2015, 165304. [Google Scholar] [CrossRef]
- Nwalozie Gerald, C.; Azubogu, A.C. Design and Implementation of Pipeline Monitoring System Using Acceleration-Based Wireless Sensor Network. Int. J. Eng. Sci. 2014, 3, 49–58. [Google Scholar]
- Ismifaizul, M.; Ismail, M.; Dziyauddin, R.A.; Ahmad, N.A.; Ahmad, N. Vibration Detection in Water Pipelines Leakage Using Wireless Three-Axis Accelerometer Sensor. Int. J. Adv. Sci. Technol. 2018, 112, 137–150. [Google Scholar] [CrossRef]
- Martini, A.; Troncossi, M.; Rivola, A. Vibration monitoring as a tool for leak detection in water distribution networks. In Proceedings of the International Conference Surveillance, Chartres, France, 29–30 October 2013; pp. 1–9. [Google Scholar]
- Ismail, M.; Dziyauddin, R.A.; Salleh, N.A.A. Performance evaluation of wireless accelerometer sensor for water pipeline leakage. In Proceedings of the 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Langkawi, Malaysia, 18–20 October 2015; pp. 120–125. [Google Scholar] [CrossRef]
- Pal, M.; Dixon, N.; Flint, J. Detecting & locating leaks in water distribution polyethylene pipes. In Proceedings of the World Congress on Engineering 2010, London, UK, 30 June–2 July 2010; Volume 2, pp. 889–894. [Google Scholar]
- El-Zahab, S.; Zayed, T. In Leak detection model for pressurized pipelines using support vector machines. In Proceedings of the 6th CSCE-CRC International Construction Specialty Conference 2017—Held as Part of the Canadian Society for Civil Engineering Annual Conference and General Meeting 2017, Vancouver, BC, Canada, 31 May–3 June 2017; Volume 2, pp. 975–984. [Google Scholar]
- Shinozuka, M.; Chou, P.H.; Kim, S.; Kim, H.R.; Yoon, E.; Mustafa, H.; Karmakar, D.; Pul, S. Nondestructive Monitoring of a Pipe Network using a MEMS-Based Wireless Network. SPIE 2010, 7649, 160–171. [Google Scholar]
- Almeida, F.; Brennan, M.; Joseph, P.; Whitfield, S.; Dray, S.; Paschoalini, A. On the Acoustic Filtering of the Pipe and Sensor in a Buried Plastic Water Pipe and its Effect on Leak Detection: An Experimental Investigation. Sensors 2014, 14, 5595–5610. [Google Scholar] [CrossRef] [PubMed]
- Liou, C.P. Pipeline leak detection by impulse response extraction. J. Fluids Eng. Trans. ASME 1998, 120, 833–838. [Google Scholar] [CrossRef]
- Dziyauddin, R.; Usman, S.; Abdullah, H.; Mohd Ismail, M.I. TRIZ Inventive Solution in Solving Water Pipeline Leakage Using Accelerometer Sensor. J. Telecommun. Electron. Comput. Eng. 2018, 10, 173–177. [Google Scholar]
- Chamran, M.K.; Shafie, S. A Non-Invasive Air-Coupled V-Type Ultrasonic Leak Detection System. J. Purity Util. React. Environ. 2015, 4, 99–107. [Google Scholar]
- Hester, J.; King, T.; Propst, A.; Piratla, K.; Sorber, J. Enabling Sustainable Sensing in Adverse Environments. In Proceedings of the 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), New Orleans, LA, USA, 24–27 June 2013. [Google Scholar]
- Hunaidi, O.; Giamou, P. Ground-penetrating radar for detection of leaks in buried plastic water distribution pipes. In Proceedings of the 7th International Conference on Ground Penetrating Radar (GPR’98), Lawrence, Kansas, 27–28 May 1998; pp. 783–786. [Google Scholar]
- Brennan, M.J.; Gao, Y.; Joseph, P.F. On the relationship between time and frequency domain methods in time delay estimation for leak detection in water distribution pipes. J. Sound Vib. 2007, 1–2, 213–223. [Google Scholar] [CrossRef]
- Sadeghioon, A.M.; Metje, N.; Chapman, D.N.; Anthony, C.J. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines. J. Sens. Actuator Netw. 2014, 3, 64–78. [Google Scholar] [CrossRef]
- Daadoo, M.; Daraghmi, Y.-A. Smart Water Leakage Detection Using Wireless Sensor Networks (SWLD). Int. J. Netw. Commun. 2017, 7, 1–16. [Google Scholar] [CrossRef]
- Almazyad, A.S.; Seddiq, Y.M.; Alotaibi, A.M.; Al-Nasheri, A.Y.; BenSaleh, M.S.; Obeid, A.M.; Qasim, S.M. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System. Sensors 2014, 14, 3557. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.I.M.; Dziyauddin, R.A.; Samad, N.A.A. Water pipeline monitoring system using vibration sensor. In Proceedings of the 2014 IEEE Conference on Wireless Sensors (ICWiSE), Subang, Malaysia, 26–28 October 2014; pp. 79–84. [Google Scholar] [CrossRef]
- Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 2013, 54, 166–176. [Google Scholar] [CrossRef]
- Del Giudice, G.; Padulano, R. Sensitivity Analysis and Calibration of a Rainfall-runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophys. 2016, 64, 1755–1778. [Google Scholar] [CrossRef]
- Hager, W.H.; Gisonni, C. Supercritical flow in sewer manholes. J. Hydraul. Res. 2005, 43, 660–667. [Google Scholar] [CrossRef]
- Haddadin, M.J. Water Scarcity Impacts and Potential Conflicts in the MENA Region. Water Int. 2001, 26, 460–470. [Google Scholar] [CrossRef]
- Palermo, S.A.; Cataldo Talarico, V.; Pirouz, B. Optimizing Rainwater Harvesting Systems for Non-potable Water Uses and Surface Runoff Mitigation. In NUMTA 2019: Numerical Computations: Theory and Algorithms; Lecture Notes in Computer Science; Sergeyev, Y., Kvasov, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 11973, pp. 570–582. [Google Scholar] [CrossRef]
- Raimondi, A.; Becciu, G.; Sanfilippo, U.; Mambretti, S. Green roof performance in sustainable cities. WIT Trans. Ecol. Environ. 2020, 243, 111–122. [Google Scholar] [CrossRef]
- Dada, A.; Urich, C.; Berteni, F.; Pezzagno, M.; Piro, P.; Grossi, G. Water sensitive cities: An integrated approach to enhance urban flood resilience in Parma (Northern Italy). Climate 2021, 9, 152. [Google Scholar] [CrossRef]
- Pirouz, B.; Palermo, S.A.; Maiolo, M.; Arcuri, N.; Piro, P. Decreasing water footprint of electricity and heat by extensive green roofs: Case of southern italy. Sustainability 2020, 12, 10178. [Google Scholar] [CrossRef]
- Pirouz, B.; Palermo, S.A.; Turco, M.; Piro, P. New Mathematical Optimization Approaches for LID Systems. In NUMTA 2019: Numerical Computations: Theory and Algorithms; Lecture Notes in Computer Science; Sergeyev, Y., Kvasov, D., Eds.; Springer: Cham, Switzerland, 2020; Volume 11973, pp. 583–595. [Google Scholar] [CrossRef]
- Palermo, S.A.; Zischg, J.; Sitzenfrei, R.; Rauch, W.; Piro, P. Parameter Sensitivity of a Microscale Hydrodynamic Model. In New Trends in Urban Drainage Modelling. UDM 2018; Green Energy and Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; pp. 982–987. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Altobelli, M.; Maglionico, M. Decentralized Water Management: Rainwater Harvesting, Greywater Reuse and Green Roofs within the GST4Water Project. Proceedings 2018, 2, 673. [Google Scholar] [CrossRef]
- Li, Z.; Boyle, F.; Reynolds, A. Rainwater Harvesting and Greywater Treatment Systems for Domestic Application in Ireland. Desalination 2010, 260, 1–8. [Google Scholar] [CrossRef]
- Maer, E.D.; Pop, A.A.; Popa, D.C.; Gros, I.C. Hybrid water collecting and management system using Smart Home Technologies. In Proceedings of the 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED), Moscow, Russia, 27–29 January 2021. [Google Scholar] [CrossRef]
- Oberascher, M.; Zischg, J.; Palermo, S.A.; Kinzel, C.; Rauch, W.; Sitzenfrei, R. Smart Rain Barrels: Advanced LID Management Through Measurement and Control. In New Trends in Urban Drainage Modelling. UDM 2018; Green Energy and Technology; Mannina, G., Ed.; Springer: Cham, Switzerland, 2019; pp. 777–782. [Google Scholar] [CrossRef]
- Behzadian, K.; Kapelan, Z.; Mousavi, S.J.; Alani, A. Can smart rainwater harvesting schemes result in the improved performance of integrated urban water systems? Environ. Sci. Pollut. Res. 2017, 25, 19271–19282. [Google Scholar] [CrossRef] [PubMed]
- El-Zahab, S.; Mohammed Abdelkader, E.; Zayed, T. An accelerometer-based leak detection system. Mech. Syst. Signal Process. 2018, 108, 58–72. [Google Scholar] [CrossRef]
- Deshmukh, A.D.; Shinde, U.B. A Low Cost Environment Monitoring System Using Raspberry Pi and Arduino with Zigbee. In Proceedings of the 2016 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–27 August 2016; Volume 3. [Google Scholar]
- Nayyar, A.; Puri, V. A Review of Arduino Board’s, Lilypad’s & Arduino Shields. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016. [Google Scholar]
- Islam, N.; Rashid, M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Khanh, Q.V.; Hoai, N.V.; Manh, L.D.; Le, A.N.; Jeon, G. Wireless Communication Technologies for IoT in 5G: Vision, Applications, and Challenges. Wirel. Commun. Mob. Comput. 2022, 2022, 3229294. [Google Scholar] [CrossRef]
- Hullamani, R.M.; N, K.T. ZigBee Wireless Communication Technology. JNNCE J. Eng. Manag. 2021, 5, 31. [Google Scholar] [CrossRef]
- Yousry, H.; Sayed, E.; Al-Kady, M. Management of Smart Water Treatment Plant using IoT Cloud Services. In Proceedings of the 2019 International Conference on Smart Applications, Communications and Networking (SmartNets), Sharm El Sheikh, Egypt, 17–19 December 2019. [Google Scholar]
- Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [Google Scholar] [CrossRef]
- Merlino, G.; Bruneo, D.; Distefano, S.; Longo, F.; Puliafito, A.; Al-Anbuky, A. A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure. Sensors 2015, 15, 16314–16335. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Nwulu, N.I.; Clinton, A. IoT-Based Smart Water Network Management: Challenges and Future Trend. In Proceedings of the 2019 IEEE AFRICON, Accra, Ghana, 25–27 September 2019; 2019. [Google Scholar]
Ref. | Hardware Components | Software Components, Communication Technologies, Cloud Platforms, Decision Making |
---|---|---|
[49] | Ultrasonic sensor; microcontroller | Arduino IDE; GSM modem |
[50] | Ultrasonic sensor; Arduino; ESP8266 Wi-Fi module | Firebase; Android Application |
[51] | Ultrasonic sensor; Raspberry Pi | Wireless LAN and Bluetooth |
[52] | Ultrasonic sensor; ATmega328P | IEEE802.11 communication standards; wireless gateway |
[53] | Ultrasonic sensor HC SR 04; pump; Arduino Uno/Pro Mini (microcontroller board based on the ATmega328); Wi-Fi module-ESP8266; Relay | Bluetooth module-HC 05; fog gateway server; cloud platform |
[54] | Ultrasonic sensor; ESP 8266 as microcontroller | Firebase cloud; Android application |
[55] | Ultrasonic sensor HCSR04; motor; ESP8266 Wi-Fi module | Arduino IDE with C as the programming language; web application; Adaftruit |
[56] | Ultrasonic sensor; water flow sensor; Arduino | Wi-Fi; website |
[57] | Ultrasonic sensor HCSR04; YFS-201 flow sensor; 12V DC solenoid valve; Node MCU ESP8266 | Arduino IDE; SQLite database; MQTT mosquito broker; Android application |
[58] | Ultrasonic sensor HC-SR04; water overflow sensor; tank flush sensor; ATMega 328 microcontroller | Future idea: add a Wi-Fi module and implement wireless communication between the device and user application. |
[59] | Ultrasonic sensor HC-SRF04; Arduino Uno | Fuzzy logic method or making decision; database |
[60] | Ultrasonic sensor AG222VXCM0800US1; flow sensor (Hall-effect-based); motor; pump; Arduino Mega 2560 microcontroller; ESP8266 Wi-Fi module; relay | Wi-Fi; mobile application |
[61] | Pulse-echo ultrasonic technique; ultrasonic sensor HCSR04; actuator and electric water pump; ESP32 Wi-Fi module and Bluetooth module | Firebase; Android mobile application; wireless communication |
Ref. | Hardware Components | Software Components, Communication Technologies, Cloud Platforms, Decision Making |
---|---|---|
[62] | Water meters; wattmeter | Wi-Fi; Android Application |
[63] | YF-S201 water flow sensor; NodeMCU | ThingSpeak Cloud platform; Machine Learning Tools |
[64] | Axioma Qalcosonic water metering device (with ultrasonic technology) | Semtech SX1301/1257 LoRaWAN technology; Things Network (TTN) cloud infrastructure |
[65] | Water-meter Hall-effect-based sensor; electronic interface module—EIM (designed around an Arduino SBC board with Ethernet stack and additional flash memory) | TCP/IP network or Wi-Fi or Bluetooth or GSM/3G/4G router or Optic-fiber; smartphone App |
[66] | YF-S201 water flow hall effect sensor; solenoid valves; relay circuit; Arduino Ethernet SHIELD V1 | Mobile phone application |
[67] | Water flow rate/temperature sensor | Local wireless monitoring unit (wireless data collectors, Wi-Fi router and Wi-Fi gateway); remote central server; home Wi-Fi network and Internet; remote server software (Visual Studio 2012 and Microsoft SQL server 2014) |
[68] | YF-S403 water flow hall effect sensor; Seeed Studio water pressure sensor; solenoid valve; two microcontroller units—MCUs (MSP430G2553 and TI CC2650); universal asynchronous receiver/transmitter (UART) protocol | Standard IEEE 802.15.4; border router; In.IoT middleware; wireless communication; MQTT protocol |
[69] | TUF2000M ultrasonic flow meter; Raspberry Pi; transducers; 3S battery | Modbus protocol; gateway; standard HTTPS protocol; online database (JSON); shared folder (CSV) |
[70] | Wireless meter interface sensor node; digital water meter; analogue Reed switch; Dizic module (STM32W108 processor with an integrated 2.4 GHz transceiver); Rasberry Pi; serial flash (AT25DF321); MCP73871 microcontroller (for charging system); buck-boost converter (TPS63001) | IEEE 802.15.4; ZigBee supporting network; Contiki OS; firmware; LibCOAP; 6LowPAN (IPv6 over Low Power Wireless Area Network); 802.11 and 802.15.4 communication interface; wireless communication; Pandora Flexible Monitoring Software (FMS) agent; database; visualization engine; web interface |
Ref. | Hardware Components | Software Components, Communication Technology Cloud Platforms, Decision Making |
---|---|---|
[90] | Acoustic sensors; ultrasonic transmitter transducer; ultrasonic receiver transducer; Arduino microcontroller | Wi-Fi; LabVIEW software |
[100] | Hydrophones 8103 by Bruel and Kjaer, geophones SM-24 by Ion; accelerometers 4383 and 4384 by Bruel and Kjaer; Charge Amplifiers 2635 by Bruel and Kjaer | DATS (Acquisition System by Prosig) |
[102] | Vibration Sensor MPU6050; pressure meter | iMote; GPRS/ZigBee wireless; decision support system; Mobile |
[103] | V-type air coupled ultrasonic transducer—MA40S4R; | LCD; wireless |
[104] | 2 Arduino Uno; Minisense 100 piezo sensor; ADXL335 accelerometer | 10-port ethernet switch; fiber jumper; standard desktop computer with Ethernet connection as a data collection server |
[91] | Vibration sensors MMA7361 k; Arduino controller board | Wireless XBee Pro Module transmitter; Wireless XBee Pro Module receiver; X-CTU software; decision support system; mobile phone |
[93] | Accelerometer (MMA7361 Model: 1156); Liquid flow sensor; PIC18F2620 microcontroller; KYL-500S Transceiver; 9V battery terminal for mobile operation; LM7805CV voltage regulator; RS232 serial port connector for connection to PC COM port | Operating system software (firmware); Scalable Interdomain Routing Addressing Scheme (SIRAS); KYL500S radio; wireless |
[108] | Water sensors; ultrasonic sensor; Arduino Mega 2560 microcontroller; water pump; solenoid valve; relay 12v | Arduino IDE; GSM modem; wireless; Android mobile application |
[109] | Mobile wireless sensor node with pressure sensor (Intersema MS5541C); low-energy microcontroller (LPC1102 Cortex-M0); | RFID reader (Tagsense ZR-232 Active Tag Reader); RFID tag (Tagsense ZT-50 Active RFID Tag); Wireless technology |
[110] | Accelerometer sensor MPU6050 with water pressure and a flow rate meter; Arduino controller board | Wireless ZigBee Pro module (transceiver module); decision support system; mobile phone. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palermo, S.A.; Maiolo, M.; Brusco, A.C.; Turco, M.; Pirouz, B.; Greco, E.; Spezzano, G.; Piro, P. Smart Technologies for Water Resource Management: An Overview. Sensors 2022, 22, 6225. https://doi.org/10.3390/s22166225
Palermo SA, Maiolo M, Brusco AC, Turco M, Pirouz B, Greco E, Spezzano G, Piro P. Smart Technologies for Water Resource Management: An Overview. Sensors. 2022; 22(16):6225. https://doi.org/10.3390/s22166225
Chicago/Turabian StylePalermo, Stefania Anna, Mario Maiolo, Anna Chiara Brusco, Michele Turco, Behrouz Pirouz, Emilio Greco, Giandomenico Spezzano, and Patrizia Piro. 2022. "Smart Technologies for Water Resource Management: An Overview" Sensors 22, no. 16: 6225. https://doi.org/10.3390/s22166225
APA StylePalermo, S. A., Maiolo, M., Brusco, A. C., Turco, M., Pirouz, B., Greco, E., Spezzano, G., & Piro, P. (2022). Smart Technologies for Water Resource Management: An Overview. Sensors, 22(16), 6225. https://doi.org/10.3390/s22166225