An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery
<p>Visual representation of the framework decomposed into its four principal components.</p> "> Figure 2
<p>Schematic representation of the edge pipeline that handles data collection, pre-processing, and cloud upload.</p> "> Figure 3
<p>Schematic diagram displaying the data pipeline, which runs on the cloud to ingest and process the IoT data arriving from vessels as streams or batches.</p> "> Figure 4
<p>Illustration of the medallion architecture and its three layers.</p> "> Figure 5
<p>Diagram of the GAT-based DL architecture for fault detection.</p> "> Figure 6
<p>Depiction of how the proposed PA%K-L protocol can recreate the original point-adjustment strategy (<b>left</b>) and the PA%K protocol (<b>middle</b>) while also allowing for control of the number of adjusted points (<b>right</b>).</p> "> Figure 7
<p>Graphs depicting the model’s scores for the evaluation data points (<b>top</b>), the corresponding predicted anomalies with and without PA (<b>middle</b>), and the ground truth based on the dataset’s labels (<b>bottom</b>).</p> "> Figure 8
<p>Example of reconstruction and forecasting of the <math display="inline"><semantics> <msub> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">c</mi> </msub> </semantics></math> variable before, during, and after the fifth event, compared to the actual measured values.</p> "> Figure 9
<p>Aggregated variable-wise scores for all features across all timestamps, with bins of width <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>250</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Aggregated variable-wise scores for all features across all timestamps, with bins of width <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>250</mn> </mrow> </semantics></math>; time-normalized.</p> "> Figure 11
<p>Aggregated variable-wise scores for all features across all timestamps, with bins of width <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>t</mi> <mo>=</mo> <mn>250</mn> </mrow> </semantics></math>; score-normalized.</p> "> Figure 12
<p>Histogram depicting the delay of event identification (measured in timestamps) for all data files in the CWRU dataset.</p> "> Figure 13
<p>Evaluation results in terms of the <math display="inline"><semantics> <mi mathvariant="script">F</mi> </semantics></math> metric for the four model instances trained on the CWRU dataset’s baseline data. Each row corresponds to a different category, while each column corresponds to an RPM class, i.e., a unique trained model instance.</p> "> Figure 14
<p>Paired bar chart of <math display="inline"><semantics> <mi mathvariant="script">F</mi> </semantics></math> for DE (48 kHz) data before (light blue) and after (dark blue) aggregation to reduce the effective sampling frequency.</p> "> Figure 15
<p>Horizontal bar plot showing the <math display="inline"><semantics> <mi mathvariant="script">F</mi> </semantics></math>-scores for each data file in the SKAB dataset.</p> ">
Abstract
:1. Introduction
- The introduction of a scalable edge server architecture that enables the collection and pre-processing of shipboard machinery data from sensors using the MQTT protocol.
- The construction of a cost-effective cloud pipeline that periodically ingests the collected data and performs computationally intensive operations, including model training.
- The development of a DL architecture based on Graph Attention Networks, along with the methodology to deploy multiple instances as ready-for-inference API endpoints.
- The introduction of a novel evaluation metric specifically designed to be applicable in real-world fault detection tasks.
2. Proposed Framework
2.1. Edge Computing
2.2. Cloud Pipeline
2.3. Deep Learning Architecture
2.4. Evaluation and MLOps
3. Experiments
3.1. Showcasing Performance and Explainability: EFDC Dataset
3.2. Benchmarks on Real Machinery Data: CWRU Dataset
3.3. Inter-Domain Generalizability: SKAB Dataset
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Conference on Trade and Development. Review of Maritime Transport 2023: Towards a Green and Just Transition. 2023. Available online: https://unctad.org/publication/review-maritime-transport-2023 (accessed on 10 August 2024).
- IMO. 2023 IMO Strategy on Reduction of GHG Emissions from Ships. 2023. Available online: https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx (accessed on 10 August 2024).
- European Union. Climate Strategies & Targets: 2030 Climate Targets. 2023. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-targets_en (accessed on 10 August 2024).
- Jović, M.; Tijan, E.; Brčić, D.; Pucihar, A. Digitalization in Maritime Transport and Seaports: Bibliometric, Content and Thematic Analysis. J. Mar. Sci. Eng. 2022, 10, 486. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Garro, E.M.; Romero, A.; Burgos, M.A.; Cassera, A.; Papas, G.; Dias, P.; Michaelides, M. IoT for the Maritime Industry: Challenges and Emerging Applications. In Proceedings of the Annals of Computer Science and Information Systems, Warsaw, Poland, 17–20 September 2023; pp. 855–858. [Google Scholar] [CrossRef]
- Li, Y.; Cui, J.; Zhang, X.; Yang, X. A Ship Route Planning Method under the Sailing Time Constraint. J. Mar. Sci. Eng. 2023, 11, 1242. [Google Scholar] [CrossRef]
- Moradi, M.H.; Brutsche, M.; Wenig, M.; Wagner, U.; Koch, T. Marine route optimization using reinforcement learning approach to reduce fuel consumption and consequently minimize CO2 emissions. Ocean Eng. 2022, 259, 111882. [Google Scholar] [CrossRef]
- Hu, Z.; Jin, Y.; Hu, Q.; Sen, S.; Zhou, T.; Osman, M.T. Prediction of Fuel Consumption for Enroute Ship Based on Machine Learning. IEEE Access 2019, 7, 119497–119505. [Google Scholar] [CrossRef]
- Zhang, M.; Tsoulakos, N.; Kujala, P.; Hirdaris, S. A deep learning method for the prediction of ship fuel consumption in real operational conditions. Eng. Appl. Artif. Intell. 2024, 130, 107425. [Google Scholar] [CrossRef]
- Ribeiro da Silva, J.N.; Santos, T.A.; Teixeira, A.P. Methodology for Predicting Maritime Traffic Ship Emissions Using Automatic Identification System Data. J. Mar. Sci. Eng. 2024, 12, 320. [Google Scholar] [CrossRef]
- Allianz. Safety and Shipping Review 2023. 2023. Available online: https://commercial.allianz.com/content/dam/onemarketing/commercial/commercial/reports/AGCS-Safety-Shipping-Review-2023.pdf (accessed on 12 April 2024).
- Park, J.; Oh, J. A machine learning based predictive maintenance algorithm for ship generator engines using engine simulations and collected ship data. Energy 2023, 285, 129269. [Google Scholar] [CrossRef]
- Gupta, P.; Rasheed, A.; Steen, S. Ship performance monitoring using machine-learning. Ocean Eng. 2022, 254, 111094. [Google Scholar] [CrossRef]
- Laurie, A.; Anderlini, E.; Dietz, J.; Thomas, G. Machine learning for shaft power prediction and analysis of fouling related performance deterioration. Ocean Eng. 2021, 234, 108886. [Google Scholar] [CrossRef]
- Spandonidis, C.; Paraskevopoulos, D. Evaluation of a Deep Learning-Based Index for Prognosis of a Vessel’s Propeller-Hull Degradation. Sensors 2023, 23, 8956. [Google Scholar] [CrossRef]
- Theodoropoulos, P.; Spandonidis, C.C.; Fassois, S. Use of Convolutional Neural Networks for vessel performance optimization and safety enhancement. Ocean Eng. 2022, 248, 110771. [Google Scholar] [CrossRef]
- Senemmar, S.; Zhang, J. Deep Learning-based Fault Detection, Classification, and Locating in Shipboard Power Systems. In Proceedings of the 2021 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 3–6 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Makridis, G.; Kyriazis, D.; Plitsos, S. Predictive maintenance leveraging machine learning for time-series forecasting in the maritime industry. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Xu, G.; Liu, M.; Jiang, Z.; Shen, W.; Huang, C. Online Fault Diagnosis Method Based on Transfer Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2020, 69, 509–520. [Google Scholar] [CrossRef]
- Theodoropoulos, P.; Spandonidis, C.C.; Giannopoulos, F.; Fassois, S. A Deep Learning-Based Fault Detection Model for Optimization of Shipping Operations and Enhancement of Maritime Safety. Sensors 2021, 21, 5658. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Zhang, H. An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components. IEEE Access 2019, 7, 16101–16109. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Cheng, X.; Holmeset, F.T.; Æsøy, V.; Zhang, H.; Ushakov, S. Automatic Fault Detection for Marine Diesel Engine Degradation in Autonomous Ferry Crossing Operation. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 2195–2200. [Google Scholar] [CrossRef]
- Listou Ellefsen, A.; Han, P.; Cheng, X.; Holmeset, F.T.; Æsøy, V.; Zhang, H. Online Fault Detection in Autonomous Ferries: Using Fault-Type Independent Spectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2020, 69, 8216–8225. [Google Scholar] [CrossRef]
- Deng, F.; Guo, S.; Deng, Y.; Chu, H.; Zhu, Q.; Sun, F. Vessel track information mining using AIS data. In Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), Beijing, China, 28–29 September 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Spandonidis, C.C.; Theodoropoulos, P.; Giordamlis, C. Combined multi-layered big data and responsible AI techniques for enhanced decision support in Shipping. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020; pp. 669–673. [Google Scholar] [CrossRef]
- Park, S.; Yang, C.S.; Kim, J. Design of Vessel Data Lakehouse with Big Data and AI Analysis Technology for Vessel Monitoring System. Electronics 2023, 12, 1943. [Google Scholar] [CrossRef]
- Mauro, F.; Kana, A. Digital twin for ship life-cycle: A critical systematic review. Ocean Eng. 2023, 269, 113479. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, B.k.; Gao, D. A Predictive Maintenance Solution for Bearing Production Line Based on Edge-Cloud Cooperation. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 5885–5889. [Google Scholar] [CrossRef]
- De Leon, V.; Alcazar, Y.; Villa, J.L. Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors. In Proceedings of the Applied Computer Sciences in Engineering, Santa Marta, Colombia, 16–18 October 2019; pp. 523–533. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Dillon, T.; Rahayu, W. Edge Computing-Assisted IoT Framework With an Autoencoder for Fault Detection in Manufacturing Predictive Maintenance. IEEE Trans. Ind. Inform. 2023, 19, 5701–5710. [Google Scholar] [CrossRef]
- Velasco-Gallego, C.; Navas De Maya, B.; Matutano Molina, C.; Lazakis, I.; Cubo Mateo, N. Recent advancements in data-driven methodologies for the fault diagnosis and prognosis of marine systems: A systematic review. Ocean Eng. 2023, 284, 115277. [Google Scholar] [CrossRef]
- Themelis, N.; Spandonidis, C.; Giordamlis, C. Data acquisition and processing techniques for a novel performance monitoring system based on KPIs. In Proceedings of the 17th International Congress of the International Maritime Association of the Mediterranean 2019, Varna, Bulgaria, 9–11 September 2019; pp. 306–315. [Google Scholar]
- Zymaris, A.; Alnes, Ø.; Knutsen, K.E.; Kakalis, N. Towards a model-based condition assessment of complex marine machinery systems using systems engineering. In Proceedings of the European Conference of the PHM Society 2016, Bilbao, Spain, 5–8 July 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Light, R.A. Mosquitto: Server and client implementation of the MQTT protocol. J. Open Source Softw. 2017, 2, 265. [Google Scholar] [CrossRef]
- Bender, M.; Kirdan, E.; Pahl, M.O.; Carle, G. Open-Source MQTT Evaluation. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Apache Kafka. 2011. Available online: https://kafka.apache.org/ (accessed on 12 May 2024).
- Eclipse Paho. 2011. Available online: https://eclipse.dev/paho/ (accessed on 12 May 2024).
- InfluxData: Telegraf. 2015. Available online: https://www.influxdata.com/time-series-platform/telegraf/ (accessed on 12 May 2024).
- TimescaleDB: SQL Made Scalable for Time-Series Data. 2017. Available online: https://api.semanticscholar.org/CorpusID:34446750 (accessed on 19 April 2024).
- Aggoune, A.; Benratem, Z. ECG Data Visualization: Combining the power of Grafana and InfluxDB. In Proceedings of the 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), Blida, Algeria, 6–7 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56. [Google Scholar] [CrossRef]
- Rocklin, M. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015; pp. 130–136. [Google Scholar]
- Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al. Apache Spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [Google Scholar] [CrossRef]
- Databricks. 2013. Available online: https://www.databricks.com/ (accessed on 19 April 2024).
- Armbrust, M.; Das, T.; Sun, L.; Yavuz, B.; Zhu, S.; Murthy, M.; Torres, J.; van Hovell, H.; Ionescu, A.; Łuszczak, A.; et al. Delta lake: High-performance ACID table storage over cloud object stores. Proc. VLDB Endow. 2020, 13, 3411–3424. [Google Scholar] [CrossRef]
- Apache Parquet. 2013. Available online: https://delta.io/sharing/ (accessed on 12 May 2024).
- Armbrust, M.; Das, T.; Torres, J.; Yavuz, B.; Zhu, S.; Xin, R.; Ghodsi, A.; Stoica, I.; Zaharia, M. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proceedings of the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 601–613. [Google Scholar] [CrossRef]
- Delta Sharing. 2021. Available online: https://parquet.apache.org/ (accessed on 12 May 2024).
- Wald, R.; Khoshgoftaar, T.; Sloan, J.C. Fourier transforms for vibration analysis: A review and case study. In Proceedings of the 2011 IEEE International Conference on Information Reuse & Integration, Las Vegas, NV, USA, 3–5 August 2011; pp. 366–371. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Y.; Duan, J.; Huang, C.; Cao, D.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; Zhang, Q. Multivariate Time-Series Anomaly Detection via Graph Attention Network. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 841–850. [Google Scholar] [CrossRef]
- Kvaale, W.; Harstad, A.O. ML4ITS/mtad-gat-pytorch. 2021. Available online: https://github.com/ML4ITS/mtad-gat-pytorch (accessed on 10 August 2024).
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Brody, S.; Alon, U.; Yahav, E. How Attentive are Graph Attention Networks? In Proceedings of the International Conference on Learning Representations, Virtually, 25–29 April 2022.
- Xu, Z.; Yang, Y.; Gao, X.; Hu, M. DCFF-MTAD: A Multivariate Time-Series Anomaly Detection Model Based on Dual-Channel Feature Fusion. Sensors 2023, 23, 3910. [Google Scholar] [CrossRef]
- Hundman, K.; Constantinou, V.; Laporte, C.; Colwell, I.; Soderstrom, T. Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 387–395. [Google Scholar] [CrossRef]
- Garg, A.; Zhang, W.; Samaran, J.; Savitha, R.; Foo, C.S. An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time Series. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 2508–2517. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao, Y.; Pei, D.; Feng, Y.; et al. Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications. In Proceedings of the 2018 World Wide Web Conference, Lyon, France, 23–27 April 2018; pp. 187–196. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K.; Choi, H.S.; Lee, B.; Yoon, S. Towards a Rigorous Evaluation of Time-series Anomaly Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2021. [Google Scholar] [CrossRef]
- Liu, J.; Gu, W.; Chen, Z.; Li, Y.; Su, Y.; Lyu, M.R. MTAD: Tools and Benchmarks for Multivariate Time Series Anomaly Detection. arXiv 2024, arXiv:2401.06175. [Google Scholar]
- Sørbø, S.; Ruocco, M. Navigating the metric maze: A taxonomy of evaluation metrics for anomaly detection in time series. Data Min. Knowl. Discov. 2023, 38, 1027–1068. [Google Scholar] [CrossRef]
- Zaharia, M.A.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Murching, S.; Nykodym, T.; Ogilvie, P.; Parkhe, M.; et al. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 2018, 41, 39–45. [Google Scholar]
- Chen, A.; Chow, A.; Davidson, A.; DCunha, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Mewald, C.; Murching, S.; Nykodym, T.; et al. Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle. In Proceedings of the Fourth International Workshop on Data Management for End-to-End Machine Learning, Portland, OR, USA, 14 June 2020. [Google Scholar] [CrossRef]
- Wu, R.; Keogh, E.J. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Trans. Knowl. Data Eng. 2023, 35, 2421–2429. [Google Scholar] [CrossRef]
- Prakash, E.S. Electrical Fault Detection and Classification. 2021. Available online: https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-classification (accessed on 4 March 2024).
- Jovicic, E.; Primorac, D.; Cupic, M.; Jovic, A. Publicly Available Datasets for Predictive Maintenance in the Energy Sector: A Review. IEEE Access 2023, 11, 73505–73520. [Google Scholar] [CrossRef]
- Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [Google Scholar] [CrossRef]
- Case Western Reserve University. Bearing Data Center Seeded Fault Test Data. Available online: https://engineering.case.edu/bearingdatacenter (accessed on 6 March 2024).
- Katser, I.D.; Kozitsin, V.O. Skoltech Anomaly Benchmark (SKAB). 2020. Available online: https://www.kaggle.com/dsv/1693952 (accessed on 14 March 2024).
- Microsoft. Azure AI Anomaly Detector Pricing. Available online: https://azure.microsoft.com/en-us/pricing/details/cognitive-services/anomaly-detector/ (accessed on 26 April 2024).
- Coraddu, A.; Oneto, L.; Baldi, F.; Anguita, D. Vessels fuel consumption forecast and trim optimisation: A data analytics perspective. Ocean Eng. 2017, 130, 351–370. [Google Scholar] [CrossRef]
RPM | Training | Evaluation |
---|---|---|
1730 | 242,821 | 9,493,230 |
1750 | 242,531 | 9,495,364 |
1772 | 241,951 | 9,378,347 |
1797 | 121,969 | 5,459,054 |
RPM | d | |||||
---|---|---|---|---|---|---|
1730 | 9 | 200 | 3 | 3 | 250 | 250 |
1750 | 7 | 250 | 3 | 4 | 350 | 200 |
1772 | 9 | 200 | 3 | 4 | 250 | 250 |
1797 | 7 | 200 | 3 | 3 | 300 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigas, S.; Tzouveli, P.; Kollias, S. An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery. Sensors 2024, 24, 5310. https://doi.org/10.3390/s24165310
Rigas S, Tzouveli P, Kollias S. An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery. Sensors. 2024; 24(16):5310. https://doi.org/10.3390/s24165310
Chicago/Turabian StyleRigas, Spyros, Paraskevi Tzouveli, and Stefanos Kollias. 2024. "An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery" Sensors 24, no. 16: 5310. https://doi.org/10.3390/s24165310
APA StyleRigas, S., Tzouveli, P., & Kollias, S. (2024). An End-to-End Deep Learning Framework for Fault Detection in Marine Machinery. Sensors, 24(16), 5310. https://doi.org/10.3390/s24165310