Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study
<p>Schematic diagram of the gas sensor performance test.</p> "> Figure 2
<p>Single-cell structure of (<b>a</b>) ZnO and (<b>b</b>) In<sub>2</sub>O<sub>3</sub>.</p> "> Figure 3
<p>(<b>a</b>) XRD patterns and (<b>b</b>) high-resolution XRD patterns of 1–3 mol% Rb ZnO/In<sub>2</sub>O<sub>3</sub> and ZnO/In<sub>2</sub>O<sub>3</sub>.</p> "> Figure 4
<p>SEM images of (<b>a</b>) ZnO/In<sub>2</sub>O<sub>3</sub> and (<b>b</b>) 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub>.</p> "> Figure 5
<p>(<b>a</b>)TEM images of 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub>, (<b>b</b>,<b>c</b>) HR-TEM images of a 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> lattice, (<b>d</b>) corresponding EDS elemental mapping analysis of Zn (green), O (red), In (blue), and Rb (yellow), and (<b>e</b>) EDS counterpart of 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> estimated elemental content.</p> "> Figure 6
<p>(<b>a</b>) Comparison of ZnO, ZnO/In<sub>2</sub>O<sub>3,</sub> and 1–3 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor response values to 1–20 ppm NO<sub>2</sub>; (<b>b</b>) selectivity test of ZnO/In<sub>2</sub>O<sub>3</sub> and 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor.</p> "> Figure 7
<p>(<b>a</b>) Dynamic response–recovery curve versus different NO<sub>2</sub> concentrations (1–20 ppm) of ZnO at 140 °C, (<b>b</b>) response–recovery time of the ZnO sensor to 1 ppm of NO2 at 140 °C, (<b>c</b>) dynamic response–recovery curve versus different NO<sub>2</sub> concentrations (1–20 ppm) of ZnO/In<sub>2</sub>O<sub>3</sub> at RT, (<b>d</b>) response–recovery time of the ZnO/In<sub>2</sub>O<sub>3</sub> sensor to 1 ppm of NO<sub>2</sub> at RT, (<b>e</b>) dynamic response–recovery curve versus different NO<sub>2</sub> concentrations (1–20 ppm) of 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> at RT, and (<b>f</b>) response–recovery time of the 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor to 1 ppm of NO<sub>2</sub> at RT.</p> "> Figure 8
<p>(<b>a</b>) Linear fit curve of the 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor to 1–20 ppm of NO<sub>2</sub>, (<b>b</b>) repeatability test of the 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor to 10 ppm of NO<sub>2</sub>, (<b>c</b>) long-term stability of the 2 mol% Rb-ZnO/In<sub>2</sub>O<sub>3</sub> sensor to 1 ppm of NO<sub>2</sub>.</p> "> Figure 9
<p>Schematic energy band structure of Rb-ZnO/In<sub>2</sub>O<sub>3</sub> in (<b>a</b>) air and (<b>b</b>) NO<sub>2</sub>, where E<sub>c</sub> is the conduction band, E<sub>f</sub> is the Fermi level, E<sub>v</sub> is the valence band, and E<sub>g</sub> is the band gap.</p> "> Figure 10
<p>(<b>a</b>) Front and top views of the constructed ZnO/In<sub>2</sub>O<sub>3</sub> heterostructure with three possible Rb adsorption sites; (<b>b</b>) front and top views of the structural model after adsorption of Rb atoms.</p> "> Figure 11
<p>(<b>a</b>) Optimal configurations of the NO<sub>2</sub> molecules adsorbed by (<b>a</b>) ZnO/In<sub>2</sub>O<sub>3</sub> and (<b>b</b>) Rb-ZnO/In<sub>2</sub>O<sub>3</sub>.</p> "> Figure 12
<p>Differential charge density configurations of (<b>a</b>) NO<sub>2</sub> adsorbed on ZnO/In<sub>2</sub>O<sub>3</sub> and (<b>b</b>) Rb-ZnO/In<sub>2</sub>O<sub>3</sub> (yellow areas represent electron accumulation, and blue areas represent electron depletion).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO and In2O3 Heterojunctions
2.2. Preparation of Rb-Loaded ZnO/In2O3 Heterojunctions
2.3. Material Characterization
2.4. Fabrication of Sensors and Measurement
2.5. Periodic DFT Calculation Details
3. Results and Discussion
3.1. Characterization of the Samples
3.2. Gas-Sensing Performance
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shishiyanu, S.T.; Shishiyanu, T.S.; Lupan, O.I. Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators B Chem. 2005, 107, 379–386. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc oxide nanostructures for NO2 gas–sensor applications: A review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Y.; Li, D.; Yu, H.; Dong, X.; Wang, T. First polyoxometalate-modified SnS2 composite nanostructure gas sensor toward enhanced sensitivity and high selectivity for NO2 detection. Sens. Actuators B Chem. 2024, 409, 135641. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 2014, 66, 112–255. [Google Scholar]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Waitz, T.; Wagner, T.; Sauerwald, T.; Kohl, C.D.; Tiemann, M. Ordered mesoporous In2O3: Synthesis by structure replication and application as a methane gas sensor. Adv. Funct. Mater. 2009, 19, 653–661. [Google Scholar] [CrossRef]
- Shendage, S.; Patil, V.; Vanalakar, S.; Patil, S.; Harale, N.; Bhosale, J.; Kim, J.; Patil, P. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B Chem. 2017, 240, 426–433. [Google Scholar] [CrossRef]
- Zhang, K.; Qin, S.; Tang, P.; Feng, Y.; Li, D. Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. 2020, 391, 122191. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Yang, F.; Zhu, H.-M.; Meng, F.-L.; Ibrahim, M. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 2023, 42, 198–209. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, J.; Du, L.; Zhang, M. Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature. Sens. Actuators B Chem. 2021, 329, 129230. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Z.; Zhao, C.; Cairang, L.; Bai, J.; Zhang, Y.; Mu, X.; Du, J.; Wang, H.; Pan, X. Enhanced Gas-Sensing performance of ZnO@ In2O3 core@ shell nanofibers prepared by coaxial electrospinning. Sens. Actuators B Chem. 2018, 255, 2248–2257. [Google Scholar] [CrossRef]
- Hou, X.; Ma, C.; Ji, H.; Yi, S.; Zhang, L.; Zhang, Z.; Wang, Y.; Yuan, L.; Chen, D.; Zhou, Y. Loading regulation of gold nanoparticles on self-assembled 3D MoO3 hierarchical structure for high triethylamine sensing. Sens. Actuators B Chem. 2023, 393, 134241. [Google Scholar] [CrossRef]
- Rossi, A.; Fabbri, B.; Spagnoli, E.; Gaiardo, A.; Valt, M.; Ferroni, M.; Ardit, M.; Krik, S.; Pedrielli, A.; Vanzetti, L. Functionalization of indium oxide for empowered detection of CO2 over an extra-wide range of concentrations. ACS Appl. Mater. Interfaces 2023, 15, 33732–33743. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.J.; Kim, J.H.; Park, J.; Kang, Y.C.; Song, M.; Lee, H.W.; Kim, H.S.; Choi, J.W. Multimodal Gas Sensor Detecting Hydroxyl Groups with Phase Transition Based on Eco-Friendly Lead-Free Metal Halides. Adv. Funct. Mater. 2022, 32, 2202207. [Google Scholar] [CrossRef]
- Liang, Q.; Qu, X.; Bai, N.; Chen, H.; Zou, X.; Li, G.-D. Alkali metal-incorporated spinel oxide nanofibers enable high performance detection of formaldehyde at ppb level. J. Hazard. Mater. 2020, 400, 123301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions. J. Hazard. Mater. 2021, 413, 125352. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jin, H.T.; Zheng, Z.Q.; Zhou, Y.H.; Gao, C. Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuators B Chem. 2017, 244, 344–356. [Google Scholar] [CrossRef]
- Guo, L.; Chen, F.; Xie, N.; Kou, X.; Wang, C.; Sun, Y.; Liu, F.; Liang, X.; Gao, Y.; Yan, X. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem. 2018, 272, 185–194. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Y.; Fan, C.; Wang, Q.; Li, M.; Yang, Z.; Gao, L. Enhanced Acetone Sensing Properties Based on Au-Pd Decorated ZnO Nanorod Gas Sensor. Sensors 2024, 24, 2110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wen, G.; Luo, D.; Ren, B.; Zhu, Y.; Gao, R.; Dou, H.; Sun, G.; Feng, M.; Bai, Z. “Two ships in a bottle” design for Zn–Ag–O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864. [Google Scholar] [CrossRef] [PubMed]
- Gaiardo, A.; Fabbri, B.; Giberti, A.; Valt, M.; Gherardi, S.; Guidi, V.; Malagù, C.; Bellutti, P.; Pepponi, G.; Casotti, D. Tunable formation of nanostructured SiC/SiOC core-shell for selective detection of SO2. Sens. Actuators B Chem. 2020, 305, 127485. [Google Scholar] [CrossRef]
- Rossi, A.; Spagnoli, E.; Visonà, A.; Ahmed, D.; Marzocchi, M.; Guidi, V.; Fabbri, B. SO2 Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors. Chemosensors 2024, 12, 111. [Google Scholar] [CrossRef]
- Brophy, R.E.; Junker, B.; Fakhri, E.A.; Árnason, H.Ö.; Svavarsson, H.G.; Weimar, U.; Bârsan, N.; Manolescu, A. Ultra Responsive NO2 silicon nanowires gas sensor. Sens. Actuators B Chem. 2024, 410, 135648. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, L.; Zheng, S.; Chen, J.; Liang, M.; Tian, Y.; Yang, D. Cr doped WO3 nanofibers enriched with surface oxygen vacancies for highly sensitive detection of the 3-hydroxy-2-butanone biomarker. J. Mater. Chem. A 2018, 6, 21419–21427. [Google Scholar] [CrossRef]
- Ding, M.; Xie, N.; Wang, C.; Kou, X.; Zhang, H.; Guo, L.; Sun, Y.; Chuai, X.; Gao, Y.; Liu, F. Enhanced NO2 gas sensing properties by Ag-doped hollow urchin-like In2O3 hierarchical nanostructures. Sens. Actuators B Chem. 2017, 252, 418–427. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.; Liu, J.; Liu, J.; Gao, Y.; Sun, P.; Zheng, J.; Zhang, T.; Wang, Y.; Lu, G. Enhanced sensing response towards NO2 based on ordered mesoporous Zr-doped In2O3 with low operating temperature. Sens. Actuators B Chem. 2017, 241, 806–813. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, C.; De, Q.; Gu, F.; Han, D. One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature. ACS Sens. 2018, 3, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Xiao, S.; Tang, X.; Hu, T. High-performance inverted planar perovskite solar cells based on solution-processed rubidium-doped nickel oxide hole-transporting layer. Org. Electron. 2019, 69, 34–41. [Google Scholar] [CrossRef]
- Morozov, I.G.; Belousova, O.; Ortega, D.; Mafina, M.-K.; Kuznetcov, M. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloys Compd. 2015, 633, 237–245. [Google Scholar] [CrossRef]
- Sui, N.; Zhang, P.; Zhou, T.; Zhang, T. Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure. Sens. Actuators B Chem. 2021, 336, 129612. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Xu, L.; Wu, W.; Lin, W.; Zheng, C.; Feng, Y.; Gao, X. Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature. Sens. Actuators B Chem. 2021, 332, 129497. [Google Scholar] [CrossRef]
- Cai, Z.; Kim, K.-K.; Park, S. Room temperature detection of NO2 gas under UV irradiation based on Au nanoparticle-decorated porous ZnO nanowires. J. Mater. Res. Technol. 2020, 9, 16289–16302. [Google Scholar] [CrossRef]
- Chen, X.; Shen, Y.; Zhou, P.; Zhao, S.; Zhong, X.; Li, T.; Han, C.; Wei, D.; Meng, D. NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sens. Actuators B Chem. 2019, 280, 151–161. [Google Scholar] [CrossRef]
- Liu, W.; Gu, D.; Li, X. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl. Mater. Interfaces 2019, 11, 29029–29040. [Google Scholar] [CrossRef]
- Kang, J.-Y.; Koo, W.-T.; Jang, J.-S.; Kim, D.-H.; Jeong, Y.J.; Kim, R.; Ahn, J.; Choi, S.-J.; Kim, I.-D. 2D layer assembly of Pt-ZnO nanoparticles on reduced graphene oxide for flexible NO2 sensors. Sens. Actuators B Chem. 2021, 331, 129371. [Google Scholar] [CrossRef]
- Han, C.; Li, X.; Liu, Y.; Li, X.; Shao, C.; Ri, J.; Ma, J.; Liu, Y. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. J. Hazard. Mater. 2021, 403, 124093. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuators B Chem. 2017, 241, 828–839. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Dankwort, T.; Mishra, Y.K.; Kienle, L. Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J. Mater. Chem. A 2018, 6, 10718–10730. [Google Scholar] [CrossRef]
- Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sens. Actuators B Chem. 2012, 171, 25–42. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Ma, L.; Fan, H.; Tian, H.; Fang, J.; Qian, X. The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens. Actuators B Chem. 2016, 222, 508–516. [Google Scholar] [CrossRef]
- Han, L.; Wang, D.; Lu, Y.; Jiang, T.; Chen, L.; Xie, T.; Lin, Y. Influence of annealing temperature on the photoelectric gas sensing of Fe-doped ZnO under visible light irradiation. Sens. Actuators B Chem. 2013, 177, 34–40. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Xu, N.; Yang, G. Field emission of one-dimensional micro-and nanostructures of zinc oxide. Appl. Phys. Lett. 2006, 89, 043108. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Sun, X.; Ji, H.; Liu, W.; Cai, Z. Construction of Z-scheme Ag/AgVO3/carbon-rich g-C3N4 heterojunction for enhanced photocatalytic degradation of sulfamethiadiazole: DFT calculation and mechanism study. Chem. Eng. J. 2022, 433, 133604. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, S.; Sun, S.; Cui, J.; Luo, Z.; Lei, Z.; Hou, Y. Design of a SnO2/Zeolite Gas Sensor to Enhance Formaldehyde Sensing Properties: From the Strategy of the Band Gap-Tunable Zeolite. ACS Appl. Mater. Interfaces 2023, 15, 53714–53724. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Z.; Sun, S.; Wang, C.; Li, Z.; Du, H. Room-temperature efficient NO2 sensors based on Cr-modified ZnO@ graphene-like UC composites. J. Alloys Compd. 2023, 945, 169306. [Google Scholar] [CrossRef]
- Sun, Y.; Hou, T.; Sun, S.; Du, H.; Fu, S.; Wang, J. Synergistic effects of zeolite and oxygen vacancies in SnO2 for formaldehyde sensing: Molecular simulation insights & experimental verification. Appl. Surf. Sci. 2022, 604, 154511. [Google Scholar]
Sensing Materials | Working Temperature | Concentration (ppm) | Response (Rg/Ra or Ra/Rg) | Response–Recovery Time | Reference |
---|---|---|---|---|---|
Au-porous ZnO nanowires | RT | 1 | 2.3 | Not present | [37] |
Pd-ZnO nanowires | 100 °C | 1 | 13.5 | 141/177 s | [38] |
ZnSe/ZnO | 200 °C | 8 | 10.42 | 98/141 s | [39] |
Pt-ZnO/PrGO | RT | 5 | 1.76 | 528/702 s | [40] |
In2O3/ZnO nanofibers | RT | 1 | 6.0 | 36/68 s | [41] |
ZnO/In2O3 | RT | 5 | 2.21 | 78/610 s | [42] |
ZnO/In2O3 | RT | 10 | 29.1 | 61/39 s | [12] |
2 mol% Rb-ZnO/In2O3 | RT | 1 | 24.2 | 55/21 s | This work |
Structure Configurations | Adsorption Sites | Eb (eV) |
---|---|---|
Rb-ZnO/In2O3 | Zntop | −0.094 |
Rb-ZnO/In2O3 | Otop | −0.325 |
Rb-ZnO/In2O3 | M | −0.386 |
Structure Configurations | Gas | Eads (eV) | Q (|e|) | d (Å) |
---|---|---|---|---|
ZnO/In2O3 | NO2 | −1.176 | 0.031 | 1.462 |
ZnO/In2O3 | C2H5OH | −0.186 | 0.001 | 3.122 |
ZnO/In2O3 | CH3COCH3 | −0.319 | 0.026 | 2.523 |
Rb-ZnO/In2O3 | NO2 | −0.642 | 0.480 | 2.339 |
Rb-ZnO/In2O3 | C2H5OH | −0.115 | 0.008 | 2.823 |
Rb-ZnO/In2O3 | CH3COCH3 | −0.278 | 0.005 | 2.837 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Cui, J.; Luo, Z.; Luo, Z.; Sun, Y. Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study. Sensors 2024, 24, 5311. https://doi.org/10.3390/s24165311
Yang Y, Cui J, Luo Z, Luo Z, Sun Y. Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study. Sensors. 2024; 24(16):5311. https://doi.org/10.3390/s24165311
Chicago/Turabian StyleYang, Yaning, Jiawen Cui, Zhihua Luo, Zhixin Luo, and Yanhui Sun. 2024. "Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study" Sensors 24, no. 16: 5311. https://doi.org/10.3390/s24165311
APA StyleYang, Y., Cui, J., Luo, Z., Luo, Z., & Sun, Y. (2024). Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study. Sensors, 24(16), 5311. https://doi.org/10.3390/s24165311