Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source
<p>Conceptual diagram of the electric field imaging system.</p> "> Figure 2
<p>Polarization-imaging system based on the proposed method.</p> "> Figure 3
<p>(<b>a</b>) Chip photograph. (<b>b</b>) Block diagram. (<b>c</b>) Pixel layout. (<b>d</b>) Cross-sectional view of pixel layout.</p> "> Figure 4
<p>(<b>a</b>) Signal, noise, and SNR of the pixel. (<b>b</b>) Extinction ratio spectra of the dual-layer grating structure.</p> "> Figure 5
<p>Circuit diagram of the differential amplifier.</p> "> Figure 6
<p>EO signal spectrum obtained from the differential amplifier and pixel output difference of (<b>a</b>) high incident light intensity (29.4 mW) and (<b>b</b>) low incident light intensity (1.2 mW).</p> "> Figure 7
<p>Optical spectra obtained from optical LO signal source of (<b>a</b>) 28-GHz DSB modulation and (<b>b</b>) 14-GHz DSB-SC modulation.</p> "> Figure 8
<p>(<b>a</b>) Photograph of the imaging target. (<b>b</b>) Optical image of DUT. EO imaging results with (<b>c</b>) 28-GHz DSB modulation and (<b>d</b>) 14-GHz DSB-SC modulation.</p> "> Figure 9
<p>Profiles along the black dotted lines for 28-GHz DSB modulation in <a href="#sensors-24-04138-f008" class="html-fig">Figure 8</a>c and 14-GHz DSB-SC modulation in <a href="#sensors-24-04138-f008" class="html-fig">Figure 8</a>d.</p> "> Figure 10
<p>(<b>a</b>) Optical image of 30 GHz patch antenna. (<b>b</b>) EO imaging results of intensity distribution and phase distribution calculated from 360 frames. EO imaging results calculated from (<b>c</b>) 3600, (<b>d</b>) 720, (<b>e</b>) 180, and (<b>f</b>) 80 frames.</p> "> Figure 11
<p>Sequential electric field distribution image on the patch antenna from 0 to 15 s.</p> "> Figure 12
<p>Normalized electrooptic signal intensity at points 1–4 indicated in <a href="#sensors-24-04138-f011" class="html-fig">Figure 11</a>.</p> ">
Abstract
:1. Introduction
2. Electric Field Imaging System
2.1. Measurement Principle
2.2. Setup of Electric Field Imaging System
3. Polarization Image Sensor with Differential Amplifiers
3.1. Specifications
3.2. Pixel Characteristics
3.2.1. Signal-to-Noise Ratio
3.2.2. Extinction Ratio of On-Pixel Polarizers
3.3. Differential Amplifier Performance
4. Demonstration of 28 GHz Microstrip Line Electric Field Imaging
4.1. Optical LO Signal Source
4.2. Imaging Target and Imaging Setup
4.3. Imaging Performance Comparison between DSB-SC Modulation and DSB Modulation
5. Demonstration of 30-GHz Patch Antenna Sequential Electric Field Imaging
5.1. Imaging Target, Setup, and Evaluation of Electric Field Imaging Speed
5.2. Sequential Electric Field Imaging Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyson, J. Measurement of near fields of antennas and scatterers. IEEE Trans. Antennas Propag. 1973, 21, 446–460. [Google Scholar] [CrossRef]
- Diebold, A.V.; Imani, M.F.; Fromenteze, T.; Marks, D.L.; Smith, D.R. Passive microwave spectral imaging with dynamic metasurface apertures. Optica 2020, 7, 527–536. [Google Scholar] [CrossRef]
- Klein, N.; Lahl, P.; Poppe, U.; Kadlec, F.; Kužel, P. A metal-dielectric antenna for terahertz near-field imaging. J. Appl. Phys. 2005, 98, 014910. [Google Scholar] [CrossRef]
- Tice, T.; Richmond, J. Probes for microwave near-field measurements. IRE Trans. Microw. Theory Tech. 1955, 3, 32–34. [Google Scholar] [CrossRef]
- Kanazawa, Y.; Ambalathankandy, P.; Ikebe, M. Pixel Variation Characteristics of a Global Shutter THz Imager and its Calibration Technique. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2023, 106, 832–839. [Google Scholar] [CrossRef]
- Kenneth, K.O.; Choi, W.; Han, R. Perspective on active submillimeter electromagnetic wave imaging using CMOS integrated circuits technologies. J. Appl. Phys. 2023, 133, 150903. [Google Scholar]
- Sasaki, K.; Li, K.; Wake, K.; Watanabe, S.; Higashiyama, J.; Onishi, T. Accuracy of Incident Power Density Measured Using Reconstructing Algorithm for Compliance Assessment of Devices in Near-Field at Millimeterwave Frequencies. In Proceedings of the 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), Sapporo, Japan, 3–7 June 2019; pp. 43–46. [Google Scholar]
- Lundgren, J.; Helander, J.; Gustafsson, M.; Sjöberg, D.; Xu, B.; Colombi, D. Near-field measurement and calibration technique for RF EMF exposure assessment of mm-wave 5G devices. IEEE Antennas Propag. Mag. 2019, 63, 77–88. [Google Scholar] [CrossRef]
- He, W.; Xu, B.; Scialacqua, L.; Ying, Z.; Scannavini, A.; Foged, L.J.; Zhao, K.; Di Paola, C.; Zhang, S.; He, S. Fast Power Density Assessment of 5G Mobile Handset Using Equivalent Currents Method. IEEE Trans. Antennas Propag. 2021, 69, 6857–6869. [Google Scholar] [CrossRef]
- Nesterova, M.; Nicol, S.; Nesterova, Y. Evaluating Power Density for 5G Applications. In Proceedings of the 2018 IEEE 5G World Forum (5GWF), Santa Clara, CA, USA, 9–11 July 2018; pp. 347–350. [Google Scholar]
- Valdmanis, J.; Mourou, G.; Gabel, C. Picosecond electro-optic sampling system. Appl. Phys. Lett. 1982, 41, 211–212. [Google Scholar] [CrossRef]
- Lu, Z.; Campbell, P.; Zhang, X.C. Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser. Appl. Phys. Lett. 1997, 71, 593–595. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Sun, W.; Ye, J.; Zhang, Y. Terahertz polarization real-time imaging based on balanced electro-optic detection. J. Opt. Soc. Am. A 2010, 27, 2387–2393. [Google Scholar] [CrossRef]
- Wu, Q.; Hewitt, T.; Zhang, X.C. Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 1996, 69, 1026–1028. [Google Scholar] [CrossRef]
- Gallot, G.; Zhang, J.; McGowan, R.; Jeon, T.I.; Grischkowsky, D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett. 1999, 74, 3450–3452. [Google Scholar] [CrossRef]
- Hisatake, S.; Pham, H.H.N.; Nagatsuma, T. Visualization of the spatial–temporal evolution of continuous electromagnetic waves in the terahertz range based on photonics technology. Optica 2014, 1, 365–371. [Google Scholar] [CrossRef]
- Lee, D.J.; Whitaker, J.F. An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing. Opt. Express 2008, 16, 21587–21597. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; David, G.; Yook, J.G.; Papapolymerou, I.; Katehi, L.P.; Whitaker, J.F. Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna. IEEE Trans. Microw. Theory Tech. 2000, 48, 288–294. [Google Scholar] [CrossRef]
- Sasaki, A.; Nagatsuma, T. Electric-field scanning system using electro-optic sensor. IEICE Trans. Electron. 2003, 86, 1345–1351. [Google Scholar]
- Sasagawa, K.; Okada, R.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Polarization Image Sensor for Highly Sensitive Polarization Modulation Imaging Based on Stacked Polarizers. IEEE Trans. Electron Devices 2022, 69, 2924–2931. [Google Scholar] [CrossRef]
- Okada, R.; Sasagawa, K.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Improvement of on-pixel polarizer with 0.35 µm CMOS process for electro-optic imaging systems. Jpn. J. Appl. Phys. 2023, 62, SC1052. [Google Scholar] [CrossRef]
- Okada, R.; Sasagawa, K.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. A polarisation-analysing CMOS image sensor for sensitive polarisation modulation detection. Electron. Lett. 2021, 57, 472–474. [Google Scholar] [CrossRef]
- Yamazaki, T.; Maruyama, Y.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Terada, T.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-μm back-illuminated pixels. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-μm pixels. IEEE Trans. Electron Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Lu, Y.; Cho, M.H.; Lee, Y.; Rhee, J.Y. Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits. Appl. Phys. Lett. 2008, 93, 061102. [Google Scholar] [CrossRef]
- Duvillaret, L.; Rialland, S.; Coutaz, J.L. Electro-optic sensors for electric field measurements. II. Choice of the crystals and complete optimization of their orientation. J. Opt. Soc. Am. B 2002, 19, 2704–2715. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kanno, A.; Tsuchiya, M. Instantaneous visualization of K-band electric near-fields by a live electrooptic imaging system based on double sideband suppressed carrier modulation. J. Light. Technol. 2008, 26, 2782–2788. [Google Scholar] [CrossRef]
- Baudry, D.; Louis, A.; Mazari, B. Characterization of the open-ended coaxial probe used for near-field measurements in EMC applications. Prog. Electromagn. Res. 2006, 60, 311–333. [Google Scholar] [CrossRef]
- Wakana, S.; Ohara, T.; Abe, M.; Yamazaki, E.; Kishi, M.; Tsuchiya, M. Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field. IEEE Trans. Microw. Theory Tech. 2000, 48, 2611–2616. [Google Scholar] [CrossRef]
- Lin, F.; Wang, X.; Tang, M.; Zhang, J.; Wang, L.; Liu, X.; Yang, Q. High-frequency electric field intensity measurement based on frequency shift with high gain and wide frequency range. Opt. Commun. 2023, 545, 129682. [Google Scholar] [CrossRef]
- Gulve, R.; Sarhangnejad, N.; Dutta, G.; Sakr, M.; Nguyen, D.; Rangel, R.; Chen, W.; Xia, Z.; Wei, M.; Gusev, N.; et al. 39000-Subexposures/s Dual-ADC CMOS Image Sensor with Dual-Tap Coded-Exposure Pixels for Single-Shot HDR and 3-D Computational Imaging. IEEE J. Solid-State Circuits 2023, 58, 3150–3163. [Google Scholar] [CrossRef]
- Shirakawa, Y.; Yasutomi, K.; Kagawa, K.; Aoyama, S.; Kawahito, S. An 8-tap CMOS lock-in pixel image sensor for short-pulse time-of-flight measurements. Sensors 2020, 20, 1040. [Google Scholar] [CrossRef]
- Kuo, C.C.; Kuroda, R. A 134 × 132 4-Tap CMOS Indirect Time-of-Flight Range Imager Using In-Pixel Memory Array with 10 Kfps High-Speed Mode and High Precision Mode. IEEE J. Solid-State Circuits 2023, 59, 492–501. [Google Scholar] [CrossRef]
- Kamoshita, S.; Suzuki, M.; Kuroda, R.; Sugawa, S. A Proposal of Analog Correlated Multiple Sampling with High Density Capacitors for Low Noise CMOS Image Sensors. Electron. Imaging 2021, 33, art00008. [Google Scholar] [CrossRef]
- Sasagawa, K.; Okada, R.; Akamatsu, Y.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect. Sensors 2024, 24, 1249. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Kang, N.W.; Choi, J.H.; Kim, J.; Whitaker, J.F. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing. Sensors 2011, 11, 806–824. [Google Scholar] [CrossRef] [PubMed]
- Sasagawa, K.; Kanno, A.; Kawanishi, T.; Tsuchiya, M. Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields. IEEE Trans. Microw. Theory Tech. 2007, 55, 2782–2791. [Google Scholar] [CrossRef]
- Hisatake, S.; Yamaguchi, K.; Uchida, H.; Tojyo, M.; Oikawa, Y.; Miyaji, K.; Nagatsuma, T. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system. Appl. Phys. Express 2018, 11, 046601. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kawanishi, T.; Izutsu, M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett. 2007, 32, 1515–1517. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Supradeepa, V.; Long, C.M.; Leaird, D.E.; Weiner, A.M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 2010, 35, 3234–3236. [Google Scholar] [CrossRef]
- Fujiwara, M.; Teshima, M.; Kani, J.i.; Suzuki, H.; Takachio, N.; Iwatsuki, K. Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation. J. Light. Technol. 2003, 21, 2705–2714. [Google Scholar] [CrossRef]
Technology | 0.35-µm 2-poly 4-metal standard CMOS |
Pixel size | 30 × 30 µm |
Photodiode size | 15 × 15 µm |
Photodiode | n-well/p-sub |
Pixel type | 3-Tr active pixel sensor |
Number of pixels | 80 × 60 (40 × 60 pairs) |
On-pixel polarizer structure | Line/Space = 0.70/0.70 µm (M2 & M3) |
Extinction ratio | 3.27 (0°), 3.31 (90°) at 780 nm |
Responsivity | 0.98 @780 nm (Peak wavelength: 750 nm) |
NEP | (W/ /pixel) @780 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, R.; Mizuno, M.; Nagaoka, T.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J.; Sasagawa, K. Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source. Sensors 2024, 24, 4138. https://doi.org/10.3390/s24134138
Okada R, Mizuno M, Nagaoka T, Takehara H, Haruta M, Tashiro H, Ohta J, Sasagawa K. Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source. Sensors. 2024; 24(13):4138. https://doi.org/10.3390/s24134138
Chicago/Turabian StyleOkada, Ryoma, Maya Mizuno, Tomoaki Nagaoka, Hironari Takehara, Makito Haruta, Hiroyuki Tashiro, Jun Ohta, and Kiyotaka Sasagawa. 2024. "Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source" Sensors 24, no. 13: 4138. https://doi.org/10.3390/s24134138
APA StyleOkada, R., Mizuno, M., Nagaoka, T., Takehara, H., Haruta, M., Tashiro, H., Ohta, J., & Sasagawa, K. (2024). Millimeter-Wave Band Electro-Optical Imaging System Using Polarization CMOS Image Sensor and Amplified Optical Local Oscillator Source. Sensors, 24(13), 4138. https://doi.org/10.3390/s24134138