Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect
<p>Schematic of frequency conversion by optical heterodyne.</p> "> Figure 2
<p>Relationship between signal and exposure time in the equivalent time sampling.</p> "> Figure 3
<p>Relationship between signal and exposure time for equivalent time sampling in the proposed method. We insert an interval corresponding to 1/4 cycle of the signal to be observed once every four frames.</p> "> Figure 4
<p>Micrograph of the image sensor with on-pixel polarizers. Inset shows a magnified view of the pixels.</p> "> Figure 5
<p>Experimental setup for the electric-field imaging. Red arrows show the directions of light.</p> "> Figure 6
<p>Electric-filed imaging results.</p> "> Figure 7
<p>(<b>a</b>) Spectra near the mid-frequency at pixels on a microstrip line. (<b>b</b>) Noise spectra in the low-frequency range.</p> ">
Abstract
:1. Introduction
2. Proposed Method
3. Experimental Setup
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohta, J. Smart CMOS Image Sensors and Applications; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Stoppa, D.; Massari, N.; Pancheri, L.; Malfatti, M.; Perenzoni, M.; Gonzo, L. A Range Image Sensor Based on 10-μm Lock-In Pixels in 0.18-μm CMOS Imaging Technology. IEEE J. Solid-State Circuits 2010, 46, 248–258. [Google Scholar] [CrossRef]
- Kawahito, S.; Baek, G.; Li, Z.; Han, S.M.; Seo, M.W.; Yasutomi, K.; Kagawa, K. CMOS lock-in pixel image sensors with lateral electric field control for time-resolved imaging. In Proceedings of the International Image Sensor Workshop (IISW), Snowbird, UT, USA, 12–16 June 2013; Volume 361. [Google Scholar]
- Han, S.M.; Takasawa, T.; Yasutomi, K.; Aoyama, S.; Kagawa, K.; Kawahito, S. A time-of-flight range image sensor with background canceling lock-in pixels based on lateral electric field charge modulation. IEEE J. Electron Devices Soc. 2014, 3, 267–275. [Google Scholar] [CrossRef]
- Seo, M.W.; Shirakawa, Y.; Kawata, Y.; Kagawa, K.; Yasutomi, K.; Kawahito, S. A time-resolved four-tap lock-in pixel CMOS image sensor for real-time fluorescence lifetime imaging microscopy. IEEE J. Solid-State Circuits 2018, 53, 2319–2330. [Google Scholar] [CrossRef]
- Valdmanis, J.; Mourou, G.; Gabel, C. Picosecond electro-optic sampling system. Appl. Phys. Lett. 1982, 41, 211–212. [Google Scholar] [CrossRef]
- Weingarten, K.J.; Rodwel, M.; Bloom, D.M. Picosecond optical sampling of GaAs integrated circuits. IEEE J. Quantum Electron. 1988, 24, 198–220. [Google Scholar] [CrossRef]
- Loualiche, S.; Clerot, F. Electro-optic microwave measurements in the frequency domain. Appl. Phys. Lett. 1992, 61, 2153–2155. [Google Scholar] [CrossRef]
- Sasaki, A.I.; Nagatsuma, T. Millimeter-wave imaging using an electrooptic detector as a harmonic mixer. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 735–740. [Google Scholar] [CrossRef]
- Sasagawa, K.; Tsuchiya, M. Low-noise and high-frequency resolution electrooptic sensing of RF near-fields using an external optical modulator. J. Light. Technol. 2008, 26, 1242–1248. [Google Scholar] [CrossRef]
- Lee, D.J.; Whitaker, J.F. An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing. Opt. Express 2008, 16, 21587–21597. [Google Scholar] [CrossRef]
- Lee, D.J.; Kang, N.W.; Choi, J.H.; Kim, J.; Whitaker, J.F. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing. Sensors 2011, 11, 806–824. [Google Scholar] [CrossRef]
- Lee, D.J.; Kwon, J.Y.; Kang, N.W. Field analysis of electro-optic probes for minimally invasive microwave sampling. Opt. Express 2014, 22, 2897–2909. [Google Scholar] [CrossRef]
- Hisatake, S.; Pham, H.H.N.; Nagatsuma, T. Visualization of the spatial–temporal evolution of continuous electromagnetic waves in the terahertz range based on photonics technology. Optica 2014, 1, 365–371. [Google Scholar]
- Hisatake, S.; Kamada, J.; Asano, Y.; Uchida, H.; Tojo, M.; Oikawa, Y.; Miyaji, K. Asynchronous electric field visualization using an integrated multichannel electro-optic probe. Sci. Rep. 2020, 10, 16479. [Google Scholar] [CrossRef]
- Hong, Y.P.; Kwon, J.Y.; Hwang, I.J.; Lee, D.J. Field-calibrated electrooptic probing system for millimeter-wave 5G applications. IEEE Trans. Instrum. Meas. 2022, 72, 8000308. [Google Scholar] [CrossRef]
- Wakana, S.; Ohara, T.; Abe, M.; Yamazaki, E.; Kishi, M.; Tsuchiya, M. Fiber-edge electrooptic/magnetooptic probe for spectral-domain analysis of electromagnetic field. IEEE Trans. Microw. Theory Tech. 2000, 48, 2611–2616. [Google Scholar] [CrossRef]
- Wakana, S.; Yamazaki, E.; Mitani, S.; Park, H.; Iwanami, M.; Hoshino, S.; Kishi, M.; Tsuchiya, M. Performance evaluation of fiber-edge magnetooptic probe. J. Light. Technol. 2003, 21, 3292–3299. [Google Scholar] [CrossRef]
- Togo, H.; Shimizu, N.; Nagatsuma, T. Near-field mapping system using fiber-based electro-optic probe for specific absorption rate measurement. IEICE Trans. Electron. 2007, 90, 436–442. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kanno, A.; Kawanishi, T.; Tsuchiya, M. Live electrooptic imaging system based on ultraparallel photonic heterodyne for microwave near-fields. IEEE Trans. Microw. Theory Tech. 2007, 55, 2782–2791. [Google Scholar] [CrossRef]
- Wu, Q.; Hewitt, T.; Zhang, X.C. Two-dimensional electro-optic imaging of THz beams. Appl. Phys. Lett. 1996, 69, 1026–1028. [Google Scholar] [CrossRef]
- Ferguson, B.; Wang, S.; Gray, D.; Abbott, D.; Zhang, X.C. Identification of biological tissue using chirped probe THz imaging. Microelectron. J. 2002, 33, 1043–1051. [Google Scholar] [CrossRef]
- Nahata, A.; Yardley, J.T.; Heinz, T.F. Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection. Appl. Phys. Lett. 2002, 81, 963–965. [Google Scholar] [CrossRef]
- Miyamaru, F.; Yonera, T.; Tani, M.; Hangyo, M. Terahertz two-dimensional electrooptic sampling using high speed complementary metal-oxide semiconductor camera. Jpn. J. Appl. Phys. 2004, 43, L489. [Google Scholar] [CrossRef]
- Blanchard, F.; Doi, A.; Tanaka, T.; Tanaka, K. Real-time, subwavelength terahertz imaging. Annu. Rev. Mater. Res. 2013, 43, 237–259. [Google Scholar] [CrossRef]
- Blanchard, F.; Tanaka, K. Improving time and space resolution in electro-optic sampling for near-field terahertz imaging. Opt. Lett. 2016, 41, 4645–4648. [Google Scholar] [CrossRef]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photonics 2018, 10, 843–938. [Google Scholar] [CrossRef]
- Blanchard, F.; Arikawa, T.; Tanaka, K. Real-time megapixel electro-optical imaging of THz beams with probe power normalization. Sensors 2022, 22, 4482. [Google Scholar] [CrossRef]
- Okada, R.; Sasagawa, K.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. A polarisation-analysing CMOS image sensor for sensitive polarisation modulation detection. Electron. Lett. 2021, 57, 472–474. [Google Scholar] [CrossRef]
- Sasagawa, K.; Okada, R.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Polarization image sensor for highly sensitive polarization modulation imaging based on stacked polarizers. IEEE Trans. Electron Devices 2022, 69, 2924–2931. [Google Scholar] [CrossRef]
- Sasagawa, K.; Kanno, A.; Tsuchiya, M. Real-time digital signal processing for live electro-optic imaging. Opt. Express 2009, 17, 15641–15651. [Google Scholar] [CrossRef]
- Tokuda, T.; Yamada, H.; Sasagawa, K.; Ohta, J. Polarization-analyzing CMOS image sensor with monolithically embedded polarizer for microchemistry systems. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 259–266. [Google Scholar] [CrossRef]
- Andreou, A.G.; Kalayjian, Z.K. Polarization imaging: Principles and integrated polarimeters. IEEE Sens. J. 2002, 2, 566–576. [Google Scholar] [CrossRef]
- Sato, T.; Araki, T.; Sasaki, Y.; Tsuru, T.; Tadokoro, T.; Kawakami, S. Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements. Appl. Opt. 2007, 46, 4963–4967. [Google Scholar] [CrossRef]
- Zhao, X.; Bermak, A.; Boussaid, F.; Chigrinov, V.G. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum. Opt. Express 2010, 18, 17776–17787. [Google Scholar] [CrossRef]
- Gruev, V.; Perkins, R.; York, T. CCD polarization imaging sensor with aluminum nanowire optical filters. Opt. Express 2010, 18, 19087–19094. [Google Scholar] [CrossRef]
- Sarkar, M.; Bello, D.S.S.; Van Hoof, C.; Theuwissen, A. Integrated polarization analyzing CMOS image sensor for material classification. IEEE Sens. J. 2010, 11, 1692–1703. [Google Scholar] [CrossRef]
- Sarkar, M.; Bello, D.S.S.; Van Hoof, C.; Theuwissen, A. Biologically inspired CMOS image sensor for fast motion and polarization detection. IEEE Sens. J. 2012, 13, 1065–1073. [Google Scholar] [CrossRef]
- Gruev, V. Fabrication of a dual-layer aluminum nanowires polarization filter array. Opt. Express 2011, 19, 24361–24369. [Google Scholar] [CrossRef]
- York, T.; Powell, S.B.; Gao, S.; Kahan, L.; Charanya, T.; Saha, D.; Roberts, N.W.; Cronin, T.W.; Marshall, J.; Achilefu, S.; et al. Bioinspired polarization imaging sensors: From circuits and optics to signal processing algorithms and biomedical applications. Proc. IEEE 2014, 102, 1450–1469. [Google Scholar] [CrossRef]
- Yamazaki, T.; Maruyama, Y.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Terada, T.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. Four-directional pixel-wise polarization CMOS image sensor using air-gap wire grid on 2.5-μm back-illuminated pixels. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016. [Google Scholar]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. 3.2-MP back-illuminated Polarization Image Sensor With Four-Directional Air-Gap Wire Grid and 2.5-μm Pixels. IEEE Trans. Electron Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Garcia, M.; Davis, T.; Blair, S.; Cui, N.; Gruev, V. Bioinspired polarization imager with high dynamic range. Optica 2018, 5, 1240–1246. [Google Scholar] [CrossRef]
- Okada, R.; Sasagawa, K.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Improvement of on-pixel polarizer with 0.35 μm CMOS process for electro-optic imaging systems. Jpn. J. Appl. Phys. 2023, 62, SC1052. [Google Scholar] [CrossRef]
- Sasagawa, K.; Okada, R.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Reflective high-sensitivity polarization change imaging using a dual polarizer structure. Opt. Contin. 2023, 2, 758–768. [Google Scholar] [CrossRef]
- Winnewisser, C.; Jepsen, P.U.; Schall, M.; Schyja, V.; Helm, H. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phys. Lett. 1997, 70, 3069–3071. [Google Scholar] [CrossRef]
Technology | 0.35-µm 2-poly 4-metal standard CMOS |
Operating voltage (V) | 3.3 |
Pixel number | 80 × 60 |
Pixel type | 3-transistor active pixel sensor |
Pixel Size (µ) | 30 × 30 |
Photodiode Size (µ) | 21 × 21 |
Photodiode type | Nwell-Psub |
Polarizer | Line/Space = 0.7 µm/0.7 µm (2 layers) |
Extinction ratio | 3.1 @ 780 nm |
Chip Area (µ) | 2700 (W) × 2645 (L) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasagawa, K.; Okada, R.; Akamatsu, Y.; Mizuno, M.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect. Sensors 2024, 24, 1249. https://doi.org/10.3390/s24041249
Sasagawa K, Okada R, Akamatsu Y, Mizuno M, Takehara H, Haruta M, Tashiro H, Ohta J. Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect. Sensors. 2024; 24(4):1249. https://doi.org/10.3390/s24041249
Chicago/Turabian StyleSasagawa, Kiyotaka, Ryoma Okada, Yoshihiro Akamatsu, Maya Mizuno, Hironari Takehara, Makito Haruta, Hiroyuki Tashiro, and Jun Ohta. 2024. "Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect" Sensors 24, no. 4: 1249. https://doi.org/10.3390/s24041249
APA StyleSasagawa, K., Okada, R., Akamatsu, Y., Mizuno, M., Takehara, H., Haruta, M., Tashiro, H., & Ohta, J. (2024). Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect. Sensors, 24(4), 1249. https://doi.org/10.3390/s24041249