A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment
<p>Geometric diagram of a multichannel HRWS-SAR system and a static ground-based characteristic cluster.</p> "> Figure 2
<p>Processing flowchart of the proposed method.</p> "> Figure 3
<p>Matched filtering results of the five-channel SAR system’s Channel 1 before reconstruction with different PRF values: (<b>a</b>) Sampling at PRF = 10 Hz and the corresponding ambiguity index is 7. (<b>b</b>) Sampling at PRF = 17 Hz and the corresponding ambiguity index is 5. (<b>c</b>) Sampling at PRF = 30 Hz and the corresponding ambiguity index is 3. (<b>d</b>) Sampling at PRF = 50 Hz and the corresponding ambiguity index is 3.</p> "> Figure 3 Cont.
<p>Matched filtering results of the five-channel SAR system’s Channel 1 before reconstruction with different PRF values: (<b>a</b>) Sampling at PRF = 10 Hz and the corresponding ambiguity index is 7. (<b>b</b>) Sampling at PRF = 17 Hz and the corresponding ambiguity index is 5. (<b>c</b>) Sampling at PRF = 30 Hz and the corresponding ambiguity index is 3. (<b>d</b>) Sampling at PRF = 50 Hz and the corresponding ambiguity index is 3.</p> "> Figure 4
<p>Matched filtering results of the five-channel SAR system’s single channels before reconstruction: (<b>a</b>) Matched filtering result of channel 1. (<b>b</b>) Matched filtering result of channel 2. (<b>c</b>) Matched filtering result of channel 3. (<b>d</b>) Matched filtering result of channel 4. (<b>e</b>) Matched filtering result of channel 5.</p> "> Figure 4 Cont.
<p>Matched filtering results of the five-channel SAR system’s single channels before reconstruction: (<b>a</b>) Matched filtering result of channel 1. (<b>b</b>) Matched filtering result of channel 2. (<b>c</b>) Matched filtering result of channel 3. (<b>d</b>) Matched filtering result of channel 4. (<b>e</b>) Matched filtering result of channel 5.</p> "> Figure 5
<p>Doppler spectrum and reconstructed echo results of a five-channel SAR system: (<b>a</b>) Doppler spectrum after reconstruction without channel error calibration. (<b>b</b>) Doppler spectrum after reconstruction using the proposed calibration method. (<b>c</b>) Reconstructed echo result without channel error calibration. (<b>d</b>) Reconstructed echo result with channel error calibration using the proposed method.</p> "> Figure 6
<p>Reconstruction performance using different channel error estimation methods: (<b>a</b>) Estimated results using the Cross-Correlation (CC) algorithm in the spatial time domain. (<b>b</b>) Estimated results using the Sub-Space (SS) algorithm in the Doppler frequency domain. (<b>c</b>) Estimated results using the LLN algorithm in the image domain. (<b>d</b>) Estimated results using the proposed method.</p> "> Figure 6 Cont.
<p>Reconstruction performance using different channel error estimation methods: (<b>a</b>) Estimated results using the Cross-Correlation (CC) algorithm in the spatial time domain. (<b>b</b>) Estimated results using the Sub-Space (SS) algorithm in the Doppler frequency domain. (<b>c</b>) Estimated results using the LLN algorithm in the image domain. (<b>d</b>) Estimated results using the proposed method.</p> "> Figure 7
<p>The relationship between the phase error estimation ARMSE and SNR.</p> "> Figure 8
<p>Model of multi-channel phased-array antenna.</p> "> Figure 9
<p>Airplane mounted with multi-channel SAR system.</p> "> Figure 10
<p>Selected imaging scenes from Google Earth.</p> "> Figure 11
<p>Critical step results in processing. (<b>a</b>) Separately imaged results before construction of channel 1. (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>∗</mo> <mn>4</mn> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math> sub-images zoning along azimuth and range directions. (<b>c</b>) Characteristic clusters searching and marking in 16 sub-images.</p> "> Figure 11 Cont.
<p>Critical step results in processing. (<b>a</b>) Separately imaged results before construction of channel 1. (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>∗</mo> <mn>4</mn> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math> sub-images zoning along azimuth and range directions. (<b>c</b>) Characteristic clusters searching and marking in 16 sub-images.</p> "> Figure 12
<p>Imaging results of the airborne SAR data using the proposed method.</p> "> Figure 13
<p>Detailed image of the airborne SAR data using the proposed method.</p> ">
Abstract
:1. Introduction
2. Error Model of Multichannel SAR Signal
3. Proposed Estimation Method
3.1. Range Synchronization Time Errors
3.2. Under-Sampling SAR Imaging Results Expressions
3.3. Estimation Method
4. Experiments
4.1. Simulation Verification
4.2. Airborne Data Verification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic Aperture Radar |
HRWS | High Resolution Wide Swath |
LFM | Linear Frequency Modulation |
PRF | Pulse Repetition Frequency |
PRT | Pulse Repetition Time |
RCMC | Range Cell Migration Correction |
SCCC | Spatial Cross Correlation Coefficient |
SSP | Signal Subspace |
OSM | Orthogonal Subspace Method |
MVDR | Minimum Variance Distortionless Response |
SNR | Signal Noise Ratio |
LML-WME | Local Maximum-Likelihood-Weighted Minimum Entropy |
WBPA | Weighted Back Projection Algorithm |
GDM | Gradient Descent Method |
LLN | Least L1-Norm |
References
- Li, Z.F.; Wang, H.Y.; Su, T.; Bao, Z. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 82–86. [Google Scholar] [CrossRef]
- Aguttes, J.P. The SAR train concept: Required antenna area distributed over N smaller satellites, increase of performance by N. IEEE Geosci. Remote Sens. Lett. 2004, 1, 142–149. [Google Scholar] [CrossRef]
- Huber, S.; de Almeida, F.Q.; Villano, M.; Younis, M.; Krieger, G.; Moreira, A. Tandem-L: A technical perspective on future spaceborne SAR sensors for Earth observation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4792–4807. [Google Scholar] [CrossRef]
- Goodman, N.A.; Lin, S.C.; Rajakrishna, D.; Stiles, J.M. Processing of multiple-receiver spaceborne arrays for wide-area SAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 841–852. [Google Scholar] [CrossRef]
- Krieger, G.; Fiedler, H.; Houman, D.; Moreira, A. Analysis of system concepts for bi- and multi-static SAR missions. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 2, pp. 770–772. [Google Scholar] [CrossRef]
- Schindler, J.K.; Steyskal, H.; Franchi, P. Pattern synthesis for moving target detection with TechSat21—A distributed space-based radar system. In Proceedings of the RADAR, Edinburgh, UK, 15–17 October 2002; pp. 375–379. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Feng, J.; Gao, C.; Zhang, Y.; Wang, R. Phase mismatch calibration of the multichannel SAR based on azimuth cross correlation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 903–907. [Google Scholar] [CrossRef]
- Cai, Y.; Deng, Y.; Zhang, H.; Wang, R.; Wu, Y.; Cheng, S. An Image-Domain Least L1-Norm Method for Channel Error Effect Analysis and Calibration of Azimuth Multi-Channel SAR. IEEE Geosci. Remote Sens. Lett. 2022, 10, 548–552. [Google Scholar] [CrossRef]
- Huang, H.; Huang, P.; Liu, X.; Xia, X.-G.; Deng, Y.; Fan, H. A novel channel errors calibration algorithm for multichannel high-resolution and wide-swath SAR imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5201619. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Wang, Z.; Bao, Z. On the baseband Doppler centroid estimation for multichannel HRWS SAR imaging. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2050–2054. [Google Scholar] [CrossRef]
- Xiao, F.; Ding, Z.; Li, Z.; Long, T. Channel error effect analysis for reconstruction algorithm in dual-channel SAR imaging. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1563–1567. [Google Scholar] [CrossRef]
- Gao, C.-G.; Deng, Y.-K.; Feng, J. Theoretical analysis on the mismatch influence of displaced phase center multiple-beam SAR systems. J. Electron. Inf. Technol. 2011, 33, 1828–1832. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Digital beamforming on receive techniques and optimization strategies for high-resolution wide-swath SAR imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, H.Y.; Bao, Z.; Liao, G.S. Performance improvement for constellation SAR using signal processing techniques. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 436–452. [Google Scholar] [CrossRef]
- Sun, G.; Xiang, J.; Wang, Y.; Zhang, Z.; Yang, J.; Xing, M. A postmatched-filtering image-domain subspace method for channel mismatch estimation of multiple azimuth channels SAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yang, T.; Li, Z.; Liu, Y.; Bao, Z. Channel error estimation methods for multichannel SAR systems in azimuth. IEEE Geosci. Remote Sens. Lett. 2013, 10, 548–552. [Google Scholar] [CrossRef]
- Liu, A.F.; Liao, G.S.; Ma, L.; Xu, Q. An array error estimation method for constellation SAR systems. IEEE Geosci. Remote Sens. Lett. 2010, 7, 731–735. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Y.; Wang, K.; Liu, X. Improved channel error calibration algorithm for azimuth multichannel SAR systems. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1022–1026. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Y.; Liu, X. Robust channel phase error calibration algorithm for multichannel high-resolution and wide-swath SAR imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 649–653. [Google Scholar] [CrossRef]
- Hawkes, M.; Nehorai, A.; Stoica, P. Performance breakdown of subspace-based methods: Prediction and cure. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; pp. 4005–4008. [Google Scholar] [CrossRef]
- Khabbazibasmenj, A.; Vorobyov, S.A.; Hassanien, A. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information. IEEE Trans. Signal Process. 2012, 60, 2974–2987. [Google Scholar] [CrossRef]
- de Almeida, F.Q.; Younis, M.; Krieger, G.; Moreira, A. An analytical error model for spaceborne SAR multichannel azimuth reconstruction. In Proceedings of the International Conference on Radar Systems (Radar 2017), Belfast, Northern Ireland, 23–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, S.; Xing, M.; Xia, X.; Liu, Y.; Guo, R.; Bao, Z. A robust channel-calibration algorithm for multi-channel in azimuth HRWS SAR imaging based on local maximum-likelihood weighted minimum entropy. IEEE Trans. Image Process. 2013, 22, 5294–5305. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Wang, R.; Deng, Y.; Fan, H.; Zhang, H.; Zhang, L. A channel calibration method based on weighted backprojection algorithm for multichannel SAR imaging. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1254–1258. [Google Scholar] [CrossRef]
- Sun, G.; Xiang, J.; Xing, M.; Yang, J.; Guo, L. A channel phase error correction method based on joint quality function of GF-3 SAR dual-channel images. Sensors 2018, 18, 3131. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xie, Z.; Jiang, N.; Song, Y.; Han, S.; Liu, W.; Huang, X. Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection. Remote Sens. 2024, 16, 2898. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, T.; Guo, W.; Zhang, B.; Zhou, Z. An Underwater Target Azimuth Trajectory Enhancement Approach in BTR. Appl. Acoust. 2025, 230, 110373. [Google Scholar] [CrossRef]
- Jao, J.K.; Yegulalp, A. Multichannel Synthetic Aperture Radar Signatures and Imaging of a Moving Target. Inverse Probl. 2013, 29, 054009. [Google Scholar] [CrossRef]
Amp Order | ||||||||
Coefficient | ||||||||
Amp Order | ||||||||
Coefficient | ||||||||
Amp Order | ||||||||
Coefficient |
Parameter | Value |
---|---|
Wavelength | 0.03125 m |
Azimuth length of antenna | 1.32 m |
Channel number in azimuth | 5 |
SAR velocity | 10.6 m/s |
Pulse duration | 2 μs |
Look-angle | 85° |
Nearest slant range | 700 m |
Doppler bandwidth | 80.333 Hz |
Doppler centroid | 0 Hz |
Pulse repetition frequency | 10 Hz 17 Hz 30 Hz 50 Hz |
characteristic point position in azimuth | 50 m |
Signal Bandwidth | 600 MHz |
Sampling Rate | 800 MHz |
Channel Number v | Phase Errors’ Setting |
---|---|
Channel 1 | |
Channel 2 | |
Channel 3 | |
Channel 4 | |
Channel 5 |
Channel Number | Phase of Max Point Phase | Obtained Phase Error |
---|---|---|
Channel 1 | ||
Channel 2 | ||
Channel 3 | ||
Channel 4 | ||
Channel 5 |
Channel Number | Real Phase Error | SNR | CC | SS | LML-WME | LLN | Proposed Method |
---|---|---|---|---|---|---|---|
Channel 1 | 0 dB | ||||||
10 dB | |||||||
20 dB | |||||||
30 dB | |||||||
Channel 2 | 50° | 0 dB | 51.21° | 51.15° | 50.23° | 49.98° | 49.71° |
10 dB | 52.37° | 50.93° | 49.87° | 50.02° | 50.33° | ||
20 dB | 51.59° | 50.37° | 50.06° | 50.01° | 50.06° | ||
30 dB | 51.67° | 50.02° | 50.02° | 50.01° | 50.04° | ||
Channel 3 | −20.03° | 0 dB | −16.90° | −17.91° | −19.81° | −20.02° | −20.49° |
10 dB | −17.32° | −19.24° | −20.14° | −19.98° | −19.91° | ||
20 dB | −17.78° | −19.89° | −19.91° | −20.02° | −20.04° | ||
30 dB | −17.75° | −19.94° | −20.02° | −20.01° | −20.00° | ||
Channel 4 | 80° | 0dB | 80.53° | 81.72° | 80.31° | 80.03° | 79.58° |
10 dB | 81.37° | 81.26° | 80.18° | 80.01° | 80.19° | ||
20dB | 81.34° | 80.64° | 79.93° | 79.98° | 79.97° | ||
30 dB | 81.64° | 80.14° | 79.98° | 80.01° | 80.00° | ||
Channel 5 | −70° | 0 dB | −73.52° | −70.69° | −69.72° | −70.02° | −70.33° |
10 dB | −69.40° | −69.72° | −69.79° | −69.99° | −69.87° | ||
20 dB | −70.33° | −70.13° | −70.05° | −70.01° | −70.04° | ||
30 dB | −70.02° | −70.01° | −70.01° | −70.00° | −69.99° |
Channel Number | Range Synchronization Time Errors’ Setting |
---|---|
Channel 1 | 0 ns |
Channel 2 | 3.52 ns |
Channel 3 | 2.02 ns |
Channel 4 | 2.89 ns |
Channel 5 | 0.77 ns |
Channel Number | No Interpolation | 10 Times Interpolation | 100 Times Interpolation |
---|---|---|---|
Channel 1 | 0 | 0 | 0 |
Channel 2 | 2.816 cells | 28.16 cells | 281.6 cells |
Channel 3 | 1.616 cells | 16.16 cells | 161.6 cells |
Channel 4 | 2.312 cells | 23.12 cells | 231.2 cells |
Channel 5 | 0.616 cells | 6.16 cells | 61.6 cells |
Channel Number | Interpolation Factor | Range Gate | Range Location | Offset Gate | Delay Result | Estimation Error |
---|---|---|---|---|---|---|
Channel 1 | 1 | 1.25 ns | 1078 | 0 | 0 ns | 0 ns |
10 | 0.125 ns | 10,771 | 0 | 0 ns | 0 ns | |
100 | 0.0125 ns | 107,700 | 0 | 0 ns | 0 ns | |
Channel 2 | 1 | 1.25 ns | 1081 | 3 | 3.75 ns | 0.23 ns |
10 | 0.125 ns | 10,799 | 28 | 3.5 ns | −0.02 ns | |
100 | 0.0125 ns | 107,982 | 282 | 3.525 ns | 0.005 ns | |
Channel 3 | 1 | 1.25 ns | 1081 | 3 | 3.75 ns | 1.73 ns |
10 | 0.125 ns | 10,787 | 16 | 2 ns | −0.02 ns | |
100 | 0.0125 ns | 107,862 | 162 | 2.025 ns | 0.005 ns | |
Channel 4 | 1 | 1.25 ns | 1080 | 2 | 2.5 ns | −0.39 ns |
10 | 0.125 ns | 10,794 | 23 | 2.875 ns | −0.015 ns | |
100 | 0.0125 ns | 107,931 | 231 | 2.8875 ns | −0.0025 ns | |
Channel 5 | 1 | 1.25 ns | 1080 | 2 | 2.5 ns | 1.73 ns |
10 | 0.125 ns | 10,777 | 6 | 0.75 ns | −0.02 ns | |
100 | 0.0125 ns | 107,762 | 62 | 0.775 ns | 0.005 ns |
Parameter | Value |
---|---|
Wavelength | 0.03125 m |
Azimuth length of sub-channel antenna | 0.792 m |
Range length of antenna | 1.008 m |
Azimuth beamwidth of sub-channel antenna | 6° |
Range beamwidth of antenna | 1.6° |
Instantaneous output power | 480 W |
Channel number in azimuth | 3 |
Flight height | 4000 m |
SAR velocity | 61 m/s |
Side-looking angle | 80° |
Doppler bandwidth | 463 Hz |
Pulse repetition frequency | 200 Hz |
Signal Bandwidth | 600 MHz |
Sampling Rate | 800 MHz |
Sub-Image Number | Channel Number | Azimuth Position | Range Position | Azimuth Position | Range Position | Azimuth Position | Range Position | Azimuth Position | Range Position |
---|---|---|---|---|---|---|---|---|---|
Sub-image 1–4 | Channel 1 | 2516 | 4648 | 2543 | 7817 | 2728 | 10,421 | 3551 | 14,568 |
Channel 2 | 2516 | 4646 | 2543 | 7815 | 2728 | 10,420 | 3551 | 14,567 | |
Channel 3 | 2516 | 4648 | 2542 | 7817 | 2727 | 10,422 | 3550 | 14,569 | |
Sub-image 5–8 | Channel 1 | 3949 | 5606 | 4010 | 8892 | 4149 | 9646 | 4142 | 13,733 |
Channel 2 | 3949 | 5604 | 4010 | 8891 | 4154 | 9646 | 4142 | 13,732 | |
Channel 3 | 3949 | 5607 | 4009 | 8892 | 4152 | 9646 | 4142 | 13,733 | |
Sub-image 9–12 | Channel 1 | 5999 | 3755 | 5288 | 7466 | 5533 | 10,747 | 5380 | 13,877 |
Channel 2 | 5999 | 3754 | 5287 | 7464 | 5533 | 10,745 | 5383 | 13,876 | |
Channel 3 | 5998 | 3755 | 5287 | 7466 | 5532 | 10,746 | 5383 | 13,880 | |
Sub-image 13–16 | Channel 1 | 7586 | 4007 | 7903 | 7082 | 6851 | 11,355 | 8080 | 14,584 |
Channel 2 | 7585 | 4005 | 7903 | 7081 | 6851 | 11,353 | 8079 | 14,581 | |
Channel 3 | 7585 | 4007 | 7902 | 7082 | 6850 | 11,355 | 8078 | 14,582 |
Characteristic Point Number | C1 Amp. | C1 Pha. | C2 Amp. | C2 Pha. | C3 Amp. | C3 Pha. | Mean Amp. | C2 Pha. Error | C3 Pha. Error | Coeffi. Order |
---|---|---|---|---|---|---|---|---|---|---|
1 | 679.60 | −136.94 | 625.08 | −4.14 | 658.84 | −43.68 | 654.51 | 132.80 | 93.26 | 10 |
2 | 517.21 | 88.14 | 404.95 | −140.61 | 541.78 | −118.01 | 487.98 | 131.25 | 153.85 | 13 |
3 | 991.99 | 35.89 | 1154.70 | 152.70 | 1110.50 | 128.50 | 1085.73 | 116.81 | 92.61 | 5 |
4 | 2610.70 | −96.62 | 2535.08 | 81.70 | 2823.50 | 40.32 | 2656.43 | 178.32 | 136.94 | 1 |
5 | 972.18 | 26.58 | 1019.20 | −171.20 | 930.32 | −169.90 | 973.90 | 166.22 | 163.52 | 6 |
6 | 1274.10 | −131.39 | 1194.10 | 21.60 | 1294.60 | 8.82 | 1254.27 | 152.99 | 140.21 | 4 |
7 | 592.19 | 132.07 | 630.38 | −119.90 | 588.91 | −108.03 | 603.83 | 108.03 | 119.90 | 12 |
8 | 662.16 | 170.29 | 699.24 | −9.84 | 541.20 | −18.72 | 634.20 | 179.87 | 170.99 | 11 |
9 | 882.95 | 11.55 | 708.28 | 168.26 | 794.56 | 142.76 | 795.26 | 156.71 | 131.21 | 9 |
10 | 832.25 | −178.55 | 925.88 | −12.67 | 816.25 | −47.21 | 858.13 | 165.88 | 131.34 | 8 |
11 | 226835 | −160.53 | 1943.30 | −24.86 | 2347.6 | −45.44 | 2186.47 | 135.67 | 115.09 | 2 |
12 | 336.15 | 70.00 | 474.88 | 130.60 | 342.04 | −46.01 | 384.36 | 60.60 | 243.99 | −−− |
13 | 990.86 | 105.32 | 851.95 | −59.38 | 903.45 | −107.22 | 915.42 | 195.30 | 147.46 | 7 |
14 | 1422.80 | 3.84 | 1497.30 | 152.17 | 1421.00 | 145.64 | 1449.03 | 148.33 | 141.80 | 3 |
15 | 255.23 | −48.04 | 232.44 | 109.57 | 321.58 | 98.18 | 269.75 | 157.61 | 146.22 | 15 |
16 | 460.88 | −33.33 | 393.69 | 167.9 | 462.81 | 162.19 | 439.13 | 201.23 | 195.52 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Tao, R.; Huan, H.; Feng, J.; Chen, L.; Xu, Y.; Yang, J. A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment. Remote Sens. 2025, 17, 857. https://doi.org/10.3390/rs17050857
Yang W, Tao R, Huan H, Feng J, Chen L, Xu Y, Yang J. A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment. Remote Sensing. 2025; 17(5):857. https://doi.org/10.3390/rs17050857
Chicago/Turabian StyleYang, Wensen, Ran Tao, Hao Huan, Jing Feng, Longyong Chen, Yihao Xu, and Junhua Yang. 2025. "A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment" Remote Sensing 17, no. 5: 857. https://doi.org/10.3390/rs17050857
APA StyleYang, W., Tao, R., Huan, H., Feng, J., Chen, L., Xu, Y., & Yang, J. (2025). A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment. Remote Sensing, 17(5), 857. https://doi.org/10.3390/rs17050857