Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection
<p>The delay-Doppler map of (<b>a</b>) theoretical GPTM algorithm without range migration and (<b>b</b>) GPTM algorithm with range migration. (the Doppler of the target equals 0 and 1 rad, respectively, and the unit of the color bar is dB).</p> "> Figure 2
<p>Process flow of OGPTM scheme for complementary sets.</p> "> Figure 3
<p>The comparison results of (<b>a</b>) standard Golay pair; (<b>b</b>) PTM design; (<b>c</b>) standard complementary sets; and (<b>d</b>) GPTM algorithm (the unit of the color bar is dB).</p> "> Figure 4
<p>The delay-Doppler maps of OGPTM with different oversampling rates: (<b>a</b>) 1 time; (<b>b</b>) 2 times; (<b>c</b>) 4 times; (<b>d</b>) 8 times; (<b>e</b>) 16 times; and (<b>f</b>) 32 times (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>32</mn> </mrow> </semantics></math>, the unit of the color bar is dB).</p> "> Figure 5
<p>The delay-Doppler maps of OGPTM with different oversampling rates: (<b>a</b>) 1 time; (<b>b</b>) 2 times; (<b>c</b>) 4 times; (<b>d</b>) 8 times; (<b>e</b>) 16 times; (<b>f</b>) 32 times; and (<b>g</b>) 64 times (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>64</mn> </mrow> </semantics></math>, the unit of the color bar is dB).</p> "> Figure 6
<p>The delay-Doppler maps of (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mrow> <mi>OGPTM</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>F</mi> <mi mathvariant="normal">D</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (1 time OGPTM, i.e., GPTM); (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mrow> <mi>OGPTM</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>F</mi> <mi mathvariant="normal">D</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (2 times OGPTM); (<b>c</b>) PMP; (<b>d</b>) PAP; (<b>e</b>) PTP (<math display="inline"><semantics> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> <mo>=</mo> <mn>2</mn> <mi>dB</mi> </mrow> </semantics></math>); and (<b>f</b>) PMuP (<math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>32</mn> </mrow> </semantics></math>, the unit of the color bar is dB).</p> ">
Abstract
:1. Introduction
2. Signal Model
3. Technical Approach
3.1. OGPTM
- 1.
- Assume a sequence ;
- 2.
- Change the elements in S to base D, denoted as ;
- 3.
- The GPTM sequence , where represents a function that adds each digit of , e.g., .
- Example:
3.2. PMuP
4. Simulation Discussion and Results
4.1. Evaluation of OGPTM
- 1 time:
- 2 times:
- 4 times:
- 8 times:
- 16 times:
4.2. Performance of PMuP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golay, M. Complementary series. IRE Trans. Inform. Theory 1961, 7, 82–87. [Google Scholar] [CrossRef]
- Tseng, C.C.; Liu, C. Complementary sets of sequences. IEEE Trans. Inform. Theory 1972, 18, 644–652. [Google Scholar] [CrossRef]
- Aparicio, J.; Shimura, T. Asynchronous detection and identification of multiple users by multi-carrier modulated complementary set of sequences. IEEE Access 2018, 6, 22054–22069. [Google Scholar] [CrossRef]
- Farnane, K.; Minaoui, K. Analysis of the radar ambiguity function for a new Golay sets shaping. In Proceedings of the 2020 10th International Symposium on Signal, Image, Video and Communications (ISIVC), Tokyo, Japan, 7–9 April 2021; pp. 1–4. [Google Scholar]
- Urkowitz, H.; Bucci, N.J. Complementary sequences with Doppler tolerance for radar sidelobe suppression in meteorological radar. In Proceedings of the 1992 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Houston, TX, USA, 26–29 May 1992; pp. 1737–1738. [Google Scholar]
- Koshevyy, V.; Popova, V. Complementary coded waveforms sets in marine radar application. In Proceedings of the 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 29 May–2 June 2017; pp. 215–220. [Google Scholar]
- Aparicio, J.; Shimura, T. Detection of acoustic signals based on OFDM modulated complementary set of sequences. In Proceedings of the OCEANS 2017, Aberdeen, UK, 19–22 June 2017; pp. 1–7. [Google Scholar]
- Zhang, Q.; Zhang, Y.; Qi, X.; Li, H. A novel phase coding design for MIMO SAR based on Golay complementary sequences. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 563–566. [Google Scholar]
- Zhu, Y.; Chen, J.; Zhang, H.; Wang, P.B.; Yang, W. A novel SAR scheme using CC-S based phase coding waveform for ultra-low range PSLR performance. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 2039–2042. [Google Scholar]
- Wang, F.; Feng, S.; Yin, J.; Pang, C.; Li, Y.; Wang, X. Unimodular sequence and receiving filter design for local ambiguity function shaping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5113012. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Z.; Fan, C.; Han, S.; Huang, X. Robust radar waveform optimization under target interpulse fluctuation and practical constraints via sequential Lagrange dual approximation. IEEE Trans. Aerosp. Electron. Sys. 2023, 59, 9711–9721. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, L.; Zhu, J.; Lops, M.; Huang, X.; Shankar, B. RIS-Aided radar for target detection clutter region analysis and joint active-passive design. IEEE Trans. Signal Process. 2024, 72, 1706–1723. [Google Scholar] [CrossRef]
- Wang, F.; Pang, C.; Zhou, J.; Li, Y.; Wang, X. Design of complete complementary sequences for ambiguity functions optimization with a PAR constraint. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3505705. [Google Scholar] [CrossRef]
- Pezeshki, A.; Calderbank, A.R.; Moran, W.; Howard, S.D. Doppler resilient Golay complementary waveforms. IEEE Trans. Inform. Theory 2008, 54, 4254–4266. [Google Scholar] [CrossRef]
- Calderbank, R.; Howard, S.D.; Moran, B. Waveform diversity in radar signal processing. IEEE Signal Process. Mag. 2009, 26, 32–41. [Google Scholar] [CrossRef]
- Dang, W.; Pezeshki, A.; Howard, S.; Moran, W.; Calderbank, R. Coordinating complementary waveforms for sidelobe suppression. In Proceedings of the 45th Asilomar Conference Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2011; pp. 2096–2100. [Google Scholar]
- Dang, W. Signal Design for Active Sensing. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2014. [Google Scholar]
- Zhu, J.; Wang, X.; Huang, X.; Suvorova, S.; Moran, B. Range sidelobe suppression for using Golay complementary waveforms in multiple moving target detection. Signal Process. 2017, 141, 28–31. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Huang, X.; Suvorova, S.; Moran, B. Detection of moving targets in sea clutter using complementary waveforms. Signal Process. 2018, 146, 15–21. [Google Scholar] [CrossRef]
- Zhu, J.; Chu, N.; Song, Y.; Yi, S.; Wang, X.; Huang, X.; Moran, B. Alternative signal processing of complementary waveform returns for range sidelobe suppression. Signal Process. 2019, 159, 187–192. [Google Scholar] [CrossRef]
- Zhu, J.; Song, Y.; Jiang, N.; Xie, Z.; Fan, C.; Huang, X. Enhanced Doppler resolution and sidelobe suppression performance for Golay complementary waveforms. Remote Sens. 2023, 15, 2452. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, C.; Song, Y.; Huang, X.; Zhang, B.; Ma, Y. Coordination of complementary sets for low Doppler-induced Sidelobes. Remote Sens. 2022, 14, 1549. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, N.; Ma, Z.; Tang, B. Construction of Doppler resilient complete complementary code in MIMO radar. IEEE Trans. Signal Process. 2014, 62, 4704–4712. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Coxson, G.E. Doppler tolerance, complementary code sets, and generalised Thue-Morse sequences. IET Radar Sonar Navi. 2016, 10, 1603–1610. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Wang, S.; Lou, Y.; Gao, Y.; Wu, W.; Ng, D.W.K. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation. IEEE Trans. Wireless Commun. 2024. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Wang, Y.; Shen, W.; Yang, J.; Ye, K.; Zhou, M.; Sun, H. LBF-based CS algorithm for multireceiver SAS. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1502505. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Wang, Y.; Shen, W.; Yang, J.; Wang, J.; Ye, K.; Zhou, M.; Sun, H. A novel multireceiver SAS RD processor. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4203611. [Google Scholar] [CrossRef]
- Zhang, X. An efficient method for the simulation of multireceiver SAS raw signal. Mutimedia Tools Appl. 2023, 83, 37351–37368. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Sun, H. Frequency-domain multireceiver synthetic aperture sonar imagery with Chebyshev polynomials. Electron. Lett. 2022, 58, 995–998. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Feng, X.; Sun, H. Efficient imaging method for multireceiver SAS. IET Radar Sonar Navi. 2022, 16, 1470–1483. [Google Scholar] [CrossRef]
Variable Name | Parameter | Value (Unit) |
---|---|---|
Sequences of complementary sets | D | 4 |
Chip number | L | 64 |
Chip length | 0.1 s | |
Carrier frequency | 1 GHz | |
Bandwidth | B | 50 MHz |
Delay sampling rate | ||
Doppler sampling rate | rad | |
Pulse number | N | 32 |
Pulse repetition interval (PRI) | T | 50 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Xie, Z.; Jiang, N.; Song, Y.; Han, S.; Liu, W.; Huang, X. Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection. Remote Sens. 2024, 16, 2898. https://doi.org/10.3390/rs16162898
Zhu J, Xie Z, Jiang N, Song Y, Han S, Liu W, Huang X. Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection. Remote Sensing. 2024; 16(16):2898. https://doi.org/10.3390/rs16162898
Chicago/Turabian StyleZhu, Jiahua, Zhuang Xie, Nan Jiang, Yongping Song, Sudan Han, Weijian Liu, and Xiaotao Huang. 2024. "Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection" Remote Sensing 16, no. 16: 2898. https://doi.org/10.3390/rs16162898
APA StyleZhu, J., Xie, Z., Jiang, N., Song, Y., Han, S., Liu, W., & Huang, X. (2024). Delay-Doppler Map Shaping through Oversampled Complementary Sets for High-Speed Target Detection. Remote Sensing, 16(16), 2898. https://doi.org/10.3390/rs16162898