Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes
Abstract
:1. Introduction
2. Basic Measurements of Forest Carbon Sinks and Fluxes
3. Ground-Based Remote Sensing
3.1. Methods of Observation
3.2. Impact of Seasonal Variations on Observation Equipment
4. Airborne Remote Sensing
4.1. Methods of Observation
4.2. Impact of Seasonal Variations on Observation Equipment
5. Spaceborne Remote Sensing
5.1. Methods of Observation
5.2. Impact of Seasonal Variations on Observation Equipment
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Ciais, P.; Frappart, F.; Li, X.; Brandt, M.; Fensholt, R.; Fan, L.; Saatchi, S.; Besnard, S.; Deng, Z. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 2023, 16, 886–892. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, K.; Chevallier, F.; Zhu, D.; Lian, J.; He, Y.; Tian, H.; Li, J.; Zhu, J.; et al. The size of the land carbon sink in China. Nature 2022, 603, E7–E9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, T.-R.; Hsu, Y.-H.; Kershaw, J.A.; Prest, D. Application of big BAF sampling for estimating carbon on small woodlots. For. Ecosyst. 2019, 6, 13. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, Z.; Mannan, A.; Khan, T.; Shen, C.; Saeed, S. Estimating Tree Position, Diameter at Breast Height, and Tree Height in Real-Time Using a Mobile Phone with RGB-D SLAM. Remote Sens. 2018, 10, 1845. [Google Scholar] [CrossRef]
- Fan, G.; Feng, W.; Chen, F.; Chen, D.; Dong, Y.; Wang, Z. Measurement of volume and accuracy analysis of standing trees using Forest Survey Intelligent Dendrometer. Comput. Electron. Agric. 2020, 169, 105211. [Google Scholar] [CrossRef]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon-neutrality-capactiy index for evaluating carbon sink contributions. Sci. Total Environ. 2023, 15, 100237. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Chen, F.; Dong, Y.; Wang, Z.; Li, H.; Chen, D. A New Quantitative Approach to Tree Attributes Estimation Based on LiDAR Point Clouds. Remote Sens. 2020, 12, 1779. [Google Scholar] [CrossRef]
- Nezval, O.; Krejza, J.; Světlík, J.; Šigut, L.; Horáček, P. Comparison of traditional ground-based observations and digital remote sensing of phenological transitions in a floodplain forest. Agric. For. Meteorol. 2020, 291, 108079. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Y.; Zhang, L.; Guo, M.; Li, A.; Zhou, C. A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables. Int. J. Appl. Earth Obs. 2021, 102, 102428. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Gamon, J.A.; Townsend, P.A.; Zygielbaum, A.I.; Helzer, C.J.; Hmimina, G.Y.; Yu, R.; Moore, R.M.; Schweiger, A.K.; Cavender-Bares, J. Detecting prairie biodiversity with airborne remote sensing. Remote Sens. Environ. 2019, 221, 38–49. [Google Scholar] [CrossRef]
- Jarron, L.R.; Coops, N.C.; MacKenzie, W.H.; Tompalski, P.; Dykstra, P. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sens. Environ. 2020, 244, 111770. [Google Scholar] [CrossRef]
- Fekry, R.; Yao, W.; Cao, L.; Shen, X. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest. For. Ecosyst. 2022, 9, 100065. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Queinnec, M.; Luther, J.E.; Bolton, D.K.; White, J.C.; Wulder, M.A.; van Lier, O.R.; Hermosilla, T. Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sens. Environ. 2021, 260, 112477. [Google Scholar] [CrossRef]
- Kim, I.; Martins, R.J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H.-Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 2021, 16, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Qu, Y.; Qi, J. Estimation of forest LAI using discrete airborne LiDAR: A review. Remote Sens. 2021, 13, 2408. [Google Scholar] [CrossRef]
- Xu, R.; Li, Y.; Teuling, A.J.; Zhao, L.; Spracklen, D.V.; Garcia-Carreras, L.; Meier, R.; Chen, L.; Zheng, Y.; Lin, H. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 2022, 13, 670. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; Li, Y.; Shi, J.; Yan, M.; Ji, Y. Forest Above-Ground Biomass Inversion Using Optical and SAR Images Based on a Multi-Step Feature Optimized Inversion Model. Remote Sens. 2022, 14, 1608. [Google Scholar] [CrossRef]
- Mutanga, O.; Masenyama, A.; Sibanda, M.; Sensing, R. Spectral saturation in the remote sensing of high-density vegetation traits: A systematic review of progress, challenges, and prospects. ISPRS J. Photogramm. Remote Sens. 2023, 198, 297–309. [Google Scholar] [CrossRef]
- Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How can remote sensing help monitor tropical moist forest degradation?—A systematic review. Remote Sens. 2020, 12, 1087. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Guo, Z. Estimation of tree height and aboveground biomass of coniferous forests in North China using stereo ZY-3, multispectral Sentinel-2, and DEM data. Ecol. Indic. 2021, 126, 107645. [Google Scholar] [CrossRef]
- He, X.; Lei, X.-D.; Dong, L.-H. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models? Ecol. Indic. 2021, 126, 107569. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the geographical environment and the forest carbon sink capacity in China based on an individual-tree growth-rate model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Loveland, T.R.; Herold, M.; Bauer, M.E. Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sens. Environ. 2020, 238, 111558. [Google Scholar] [CrossRef]
- Yona, L.; Cashore, B.; Jackson, R.B.; Ometto, J.; Bradford, M.A. Refining national greenhouse gas inventories. Ambio 2020, 49, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhang, H.; Wang, T.; Zhang, X. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China: Progress and challenges. Sci. Bull. 2021, 66, 1713–1718. [Google Scholar] [CrossRef]
- Liu, P.; Zha, T.; Zhang, F.; Jia, X.; Bourque, C.P.A.; Tian, Y.; Bai, Y.; Yang, R.; Li, X.; Yu, H.; et al. Environmental controls on carbon fluxes in an urban forest in the Megalopolis of Beijing, 2012–2020. Agric. For. Meteorol. 2023, 333, 109412. [Google Scholar] [CrossRef]
- Mulverhill, C.; Coops, N.C.; Tompalski, P.; Bater, C.W. Digital terrestrial photogrammetry to enhance field-based forest inventory across stand conditions. Can. J. Remote Sens. 2020, 46, 622–639. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef]
- Fol, C.R.; Kükenbrink, D.; Rehush, N.; Murtiyoso, A.; Griess, V.C. Evaluating state-of-the-art 3D scanning methods for stem-level biodiversity inventories in forests. Int. J. Appl. Earth Obs. 2023, 122, 103396. [Google Scholar] [CrossRef]
- Schneider, F.D.; Kükenbrink, D.; Schaepman, M.E.; Schimel, D.S.; Morsdorf, F. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agric. For. Meteorol. 2019, 268, 249–257. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Xu, A.; Chen, B. Passive measurement method of tree diameter at breast height using a smartphone. Comput. Electron. Agric. 2019, 163, 104875. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, Z.; Shen, C.; Khan, T.U.; Mannan, A.; Gao, X.; Chen, P.; Saeed, S. A trunk-based SLAM backend for smartphones with online SLAM in large-scale forest inventories. ISPRS J. Photogramm. Remote Sens. 2020, 162, 41–49. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Wofsy, S.C.; Goulden, M.L.; Munger, J.W.; Fan, S.M.; Bakwin, P.S.; Daube, B.C.; Bassow, S.L.; Bazzaz, F.A. Net Exchange of CO2 in a Mid-Latitude Forest. Science 1993, 260, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.J.; Fan, R.X.; Chen, Z.; Wang, Q.F.; Yu, G.R. Eddy covariance-based differences in net ecosystem productivity values and spatial patterns between naturally regenerating forests and planted forests in China. Sci. Rep. 2022, 12, 20556. [Google Scholar] [CrossRef]
- Galdino, T.L.G.; Signor, D.; de Moraes, S.A. Modification of closed static chambers for collection of greenhouse gases emitted by soil. Int. J. Environ. Sci. Technol. 2023, 21, 1549–1558. [Google Scholar] [CrossRef]
- Vourlitis, G.L.; Pinto, O.B., Jr.; Dalmagro, H.J.; de Arruda, P.E.Z.; de Almeida Lobo, F.; de Souza Nogueira, J. Net primary production and ecosystem carbon flux of Brazilian tropical savanna ecosystems from eddy covariance and inventory methods. J. Geophys. Res.-Biogeosci. 2022, 127, e2021JG006780. [Google Scholar] [CrossRef]
- Zhang, Y.; Onda, Y.; Kato, H.; Feng, B.; Gomi, T. Understory biomass measurement in a dense plantation forest based on drone-SfM data by a manual low-flying drone under the canopy. J. Environ. Manag. 2022, 312, 114862. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.-L.; Chen, W.-N. Global change and ecosystems research progress and prospect. Chin. J. Plant Ecol. 2020, 44, 449–460. [Google Scholar] [CrossRef]
- Trochta, J.; Krucek, M.; Vrska, T.; Kral, K. 3D Forest: An application for descriptions of three-dimensional forest structures using terrestrial LiDAR. PLoS ONE 2017, 12, e0176871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhang, S.; Xue, R.; Li, J.; Wang, S. A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring. J. Environ. Sci. 2023, 123, 3–14. [Google Scholar] [CrossRef]
- Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sens. 2016, 8, 445. [Google Scholar] [CrossRef]
- Peña, J.M.; de Castro, A.I.; Torres-Sánchez, J.; Andújar, D.; San Martín, C.; Dorado, J.; Fernández-Quintanilla, C.; López-Granados, F. Estimating tree height and biomass of a poplar plantation with image-based UAV technology. AIMS Agric. Food 2018, 3, 313–326. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree species classification and health status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Neinavaz, E.; Schlerf, M.; Darvishzadeh, R.; Gerhards, M.; Skidmore, A.K. Thermal infrared remote sensing of vegetation: Current status and perspectives. Int. J. Appl. Earth Obs. 2021, 102, 102415. [Google Scholar] [CrossRef]
- Saarela, S.; Wästlund, A.; Holmström, E.; Mensah, A.A.; Holm, S.; Nilsson, M.; Fridman, J.; Ståhl, G. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors. For. Ecosyst. 2020, 7, 43. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Solberg, S.; Kvaalen, H.; Puliti, S. Age-independent site index mapping with repeated single-tree airborne laser scanning. Scand. J. For. Res. 2019, 34, 763–770. [Google Scholar] [CrossRef]
- Keefe, R.F.; Zimbelman, E.G.; Picchi, G. Use of Individual Tree and Product Level Data to Improve Operational Forestry. Curr. For. Rep. 2022, 8, 148–165. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef]
- Mugabowindekwe, M.; Brandt, M.; Chave, J.; Reiner, F.; Skole, D.L.; Kariryaa, A.; Igel, C.; Hiernaux, P.; Ciais, P.; Mertz, O.; et al. Nation-wide mapping of tree-level aboveground carbon stocks in Rwanda. Nat. Clim. Change 2023, 13, 91–97. [Google Scholar] [CrossRef]
- Scheeres, J.; de Jong, J.; Brede, B.; Brancalion, P.H.S.; Broadbent, E.N.; Zambrano, A.M.A.; Gorgens, E.B.; Silva, C.A.; Valbuena, R.; Molin, P.; et al. Distinguishing forest types in restored tropical landscapes with UAV-borne LIDAR. Remote Sens. Environ. 2023, 290, 113533. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A review on environmental gas sensors: Materials and technologies. Sens. Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, C.Y.; Wang, J.L.; Pan, X.X.; Chen, Y.C.; Ho, Y.J. An optimized multicopter UAV sounding technique (MUST) for probing comprehensive atmospheric variables. Chemosphere 2020, 254, 126867. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Xiao, C.; Wang, Y.; Peng, X.; Wen, Y.; Li, Q. Maritime vessel emission monitoring by an UAV gas sensor system. Ocean Eng. 2020, 218, 108206. [Google Scholar] [CrossRef]
- Hillman, S.; Wallace, L.; Lucieer, A.; Reinke, K.; Turner, D.; Jones, S. A comparison of terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll forest. Int. J. Appl. Earth Obs. 2021, 95, 102261. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Roman, A.; Tovar-Sanchez, A.; Roque-Atienza, D.; Huertas, I.E.; Caballero, I.; Fraile-Nuez, E.; Navarro, G. Unmanned aerial vehicles (UAVs) as a tool for hazard assessment: The 2021 eruption of Cumbre Vieja volcano, La Palma Island (Spain). Sci. Total Environ. 2022, 843, 157092. [Google Scholar] [CrossRef]
- Zhu, Y.; Feng, Z.; Lu, J.; Liu, J. Estimation of Forest Biomass in Beijing (China) Using Multisource Remote Sensing and Forest Inventory Data. Forests 2020, 11, 163. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2007, 27, 1297–1328. [Google Scholar] [CrossRef]
- Babiy, I.A.; Im, S.T.; Kharuk, V.I. Estimating Aboveground Forest Biomass Using Radar Methods. Contemp. Probl. Ecol. 2022, 15, 433–448. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, D.; Cao, Y.; Zhang, L.; Peng, H.; Wang, K.; Xie, H.; Wang, C. An integrated remote sensing and model approach for assessing forest carbon fluxes in China. Sci. Total Environ. 2022, 811, 152480. [Google Scholar] [CrossRef]
- Imasu, R.; Matsunaga, T.; Nakajima, M.; Yoshida, Y.; Shiomi, K.; Morino, I.; Saitoh, N.; Niwa, Y.; Someya, Y.; Oishi, Y.; et al. Greenhouse gases Observing SATellite 2 (GOSAT-2): Mission overview. Prog. Earth Planet. Sci. 2023, 10, 148–160. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Li, J.; Li, Z.; Shen, H.; Zhang, L. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS J. Photogramm. Remote Sens. 2020, 162, 148–160. [Google Scholar] [CrossRef]
- Hughes, M.J.; Kennedy, R. High-Quality Cloud Masking of Landsat 8 Imagery Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2591. [Google Scholar] [CrossRef]
- Hashimoto, H.; Wang, W.; Dungan, J.L.; Li, S.; Michaelis, A.R.; Takenaka, H.; Higuchi, A.; Myneni, R.B.; Nemani, R.R. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 2021, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, Z.; Hu, Z.; Zhang, J.; Li, M.; Mo, L.; Molinier, M. Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 373–389. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Løke, T.; Schläpfer, D.; Coops, N.C.; Lucanus, O.; Leblanc, G. Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions. Remote Sens. Environ. 2021, 258, 112396. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Che, H.-Z.; Tan, S.-C.; Yao, X.-P.; Peng, Y.; Shi, G.-Y. Radiative forcing of the aerosol-cloud interaction in seriously polluted East China and East China Sea. Atmos Res. 2021, 252, 105405. [Google Scholar] [CrossRef]
Categorization | Methods | Instrumentation | Scale | Advantages | Limitations |
---|---|---|---|---|---|
Direct measurement | Traditional measurement methods | Diameter tape; calipers; Blume–Leiss; ultrasonic altimeter; Abney level; clinometer; Santos inclinometer; DQL-9 altimeter compass. | sample plot | Low cost of equipment | Equipment does not store data in real time and relies on manual operation. |
New sample survey methodology | Electronic protractor; handheld total station. | sample plot | The device can acquire multiple parameters and record the data in real time. | Instruments are not widely available. | |
Remote sensing measurements | Optical measurement methods | Theodolite; total station. | sample plot | High-precision equipment, simple operation, real-time data recording. | Limited measurement range, expensive equipment, and limited penetration capability. |
LiDAR | Airborne LIDAR; backpack LIDAR; ground-based LIDAR. | local/strip /sample plot | High precision, high efficiency, strong penetration. | High cost, sensitivity to environmental conditions, limited penetration capability, complex data processing, high energy consumption, line-of-sight limitations. | |
Photogrammetric methods | Aerial cameras; panoramic cameras; infrared sensors. | local/strip /sample plot | Flexibility, controllability, low cost. | The effect of light and weather, large amount of data, cumbersome post-processing, and limited accuracy. | |
Remote sensing of forestry | Optical remote sensing; SAR. | global/regional/local | High spatial resolution, multi-spectral information, non-contact measurements (Optical remote Sensing). Penetration capability, all-weather, all the time (SAR). | Optical remote sensing is susceptible to weather, light-dependent, and has limited penetration capabilities. High equipment costs, large data volumes, sensitivity to electromagnetic interference, limited depth penetration, noise issues (SAR). |
Methods | Principle | Instrumentation | Application Range |
---|---|---|---|
Eddy covariance | Measurement of gas concentrations and flow velocities above forests using 3D anemometers and infrared gas analyzers, with net ecosystem carbon exchange (NEE) obtained by calculating covariates. | 3D Sonic anemometer (CAST3, Campbell Scientific, Inc. Logan, UT, USA), CO2/H2O infra-red gas analyzer; data collector (CR1000, Campbell Scientific, Inc. Logan, UT, USA); atmospheric temperature and humidity sensors (HMP45C, Vaisala, Helsinki, Finland); open-path or closed-path infrared gas analyzer (Li-7500, Li-Cor Inc., Lincoln, Nebraska, USA); net radiation sensor (CNR4, Kipp&Zonen, Delft, Holland); soil temperature sensors (109, Campbell Scientific, Inc., Logan, Utah, USA); soil moisture content sensors (CS616, Campbell Scientific, Inc., Logan, Utah, USA). | Regional and global |
The box method | Physiological; mathematical calculations. | Infra-red gas analyzer; gas chromatograph. | Low-vegetation ecosystems such as farmland and grasslands |
Remote sensing | Sensors; electromagnetic radiation; digital imaging; laser. | Terra; aqua; landsat. | Large area |
Biomass method | Use the sample plot data to obtain the average biomass per unit area of vegetation and multiply the average biomass by the area of the forest type. | Electronic balances; weighing stations; biomass sample collection tools. | Wide range of applications |
Modeling approach | Indirect calculation of systemic carbon fluxes based on long-term observations in multiple sites or studies of carbon stocks in small individuals and scale transformations. | -- | Wide range of applications |
Chemical method | Alkali absorption | Gas chromatograph (GC); infra-red gas analyzer (IRGA). | Wide range of applications |
Property | Ground Platforms | Aviation Platforms | Space Platforms |
---|---|---|---|
Conceptual | Sensor on the ground | Remote sensing platforms suspended in the atmosphere (troposphere, stratosphere) below 80 km altitude. | Remote sensing platform located at an altitude of 80 km above sea level. |
Functions and features | Close-range remote sensing, determination of spectral properties, and images of various features | Low-flight altitude, better ground resolution, maneuverability, less restricted by ground conditions, shorter cycle time, easy data recovery. | Macroscopic, integrated, dynamic, and rapid observation of the Earth. High-altitude sounding rockets are not limited by orbits, are flexible in their application, and are launched and recovered in a short period of time. They are costly and obtain little information. Spacecraft have large load capacity, can carry many kinds of instruments, timely maintenance, and convenient data recovery, but short flight time. The space shuttle is flexible and economical. |
Sensors on board | Geophysical spectrographic instruments, cameras, radars, etc. | Cameras, video cameras, LiDAR, hyperspectral imagers, microwave radar, and many other sensors. | Equipped with optical sensors, microwave sensors, etc. |
Example | Tripod: 0.75–2.0 m; determination of spectral characteristics of various features, ground photography, scanning. Remote sensing tower: determination of fixed targets and dynamic monitoring; height of about 6 m. Mobile platforms: remote sensing vehicles, boats. Portable: wearable | Aircraft: Specially designed or converted from ordinary aircraft. Low-altitude aircraft: below 2 km above the ground, lower troposphere; helicopters can be as low as about 10 m. Medium-altitude aircraft: altitude of 2 km–6 km, middle troposphere High altitude airplane: altitude of 12 km–30 km Balloons: low-altitude balloons (troposphere), high-altitude balloons (stratosphere, 12 km–40 km) | High-altitude exploration rockets: generally at an altitude of 300 km–400 km, between airplanes and artificial Earth satellites. Spacecraft: Apollo; Gemini; Mir space station; Shenzhou series, etc. Space Shuttle: Columbia; Challenger; Endeavor; Discovery, etc. Artificial Earth satellites: Environmental satellites are categorized into three types according to their operational orbital altitude and lifespan: low-altitude short-lived satellite: altitude 150 km–350 km; life 1–3 weeks; high resolution; mostly used for military reconnaissance; medium-altitude long-lived satellite: altitude 350 km–1800 km; life expectancy of more than 1 year, such as land satellites, ocean satellites, meteorological satellites; high-altitude long-lived satellite: geosynchronous satellites or geostationary satellites with an altitude of 36,000 km, such as communication satellites and meteorological satellites. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Chen, Y.; Feng, Z.; Wang, Z. Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes. Remote Sens. 2024, 16, 2293. https://doi.org/10.3390/rs16132293
Lu D, Chen Y, Feng Z, Wang Z. Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes. Remote Sensing. 2024; 16(13):2293. https://doi.org/10.3390/rs16132293
Chicago/Turabian StyleLu, Dangui, Yuan Chen, Zhongke Feng, and Zhichao Wang. 2024. "Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes" Remote Sensing 16, no. 13: 2293. https://doi.org/10.3390/rs16132293
APA StyleLu, D., Chen, Y., Feng, Z., & Wang, Z. (2024). Assessment of Carbon Sink and Carbon Flux in Forest Ecosystems: Instrumentation and the Influence of Seasonal Changes. Remote Sensing, 16(13), 2293. https://doi.org/10.3390/rs16132293