The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study
"> Figure 1
<p>Schematic diagram of the four-wavelength ozone lidar system.</p> "> Figure 2
<p>Optical properties of atmospheric aerosols: (<b>a</b>) profile of the atmospheric aerosol backscatter coefficient; (<b>b</b>) profile of the atmospheric aerosol extinction coefficient.</p> "> Figure 3
<p>Ozone concentration profile.</p> "> Figure 4
<p>Errors analysis caused by high-concentration aerosol: (<b>a</b>) the error distribution of backscatter coefficients; (<b>b</b>) the error distribution of extinction coefficients.</p> "> Figure 5
<p>(<b>a</b>) Error caused by the extinction term; (<b>b</b>) aerosol extinction coefficient.</p> "> Figure 6
<p>Concentration of ozone optimized with (After) and without (Before) aerosol consideration. (<b>a</b>) At 14:00 on 14 April 2021; (<b>b</b>) 07:00 on 15 April 2021; (<b>c</b>) 13:00 on 17 April 2021.</p> "> Figure 6 Cont.
<p>Concentration of ozone optimized with (After) and without (Before) aerosol consideration. (<b>a</b>) At 14:00 on 14 April 2021; (<b>b</b>) 07:00 on 15 April 2021; (<b>c</b>) 13:00 on 17 April 2021.</p> "> Figure 7
<p>Improvement rate of ozone concentration profiles before (black), during (red), and after (green) sand dust event.</p> "> Figure 8
<p>Time series of ozone concentration at 200 m retrieved with (red) and without (black) considering aerosol and ground level (blue).</p> "> Figure 9
<p>The correlation coefficients of between ground level and with (red) and without (black) considering aerosol.</p> "> Figure 10
<p>Vertical distribution of ozone observed using ozone lidar from 26 to 30 May.</p> "> Figure 11
<p>Comparison of the monitoring results between a ground -level automatic ozone analyzer and ozone lidar at different altitudes.</p> "> Figure 12
<p>Vertical profiles of ozone concentrations at different times on 28 May.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Four-Wavelength Ozone Lidar
2.2. Data Inversion
2.2.1. Aerosol Detection
2.2.2. Ozone Concentration Inversion
2.3. Ground-Level Observation System
3. Results
3.1. Analysis of the Impact of Aerosol
3.2. Analysis of Ozone Pollution Process
4. Discussion
4.1. Impact of Aerosols on Ozone Concentration Profile Inversion
4.2. Ozone Pollution Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, W.P.; Guo, X.T. Spatial and temporal distribution characteristics of ozone in Urban agglomerations in China. China Environ. Sci. 2022, 42, 2481–2494. [Google Scholar]
- Wang, Q.; Jing, K.; Wang, C.J.; Liu, B.X.; Shen, X.E.; Zhang, J.; Liu, Y.; Luo, X.X. Vertical Distribution of Ozone in Lower Atmosphere in Summer in the Southeastern Suburb of Beijing. Res. Environ. Sci. 2024, 37, 686–695. [Google Scholar]
- Xiang, Y.; Liu, J.G.; Zhang, T.S.; Fan, G.Q.; Sun, X.H.; La, L.H. Differential absorption lidar combined with numerical model used fordetecting distribution of ozone during summer in Hangzhou. Opt. Precis. Eng. 2018, 26, 1882–1887. [Google Scholar] [CrossRef]
- Li, X.B.; Fan, G.Q. Interannual variations, sources, and health impacts of the springtime ozone in Shanghai. Environ. Pollut. 2022, 306, 119458. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L. Characteristics of Ozone Pollution in Hefei. J. Green. Sci. Technol. 2023, 25, 87–91. [Google Scholar]
- Cao, T.W.; Wu, K.; Kang, P.; Wen, X.H.; Wang, Y.; Li, X.Y.; Li, A.Q.; Pan, W.H.; Fan, W.B.; Yi, H.; et al. Study on ozone pollution characteristics and meteorological cause of Chengdu Chongqing urban agglomeration. Acta Sci. Circumstantiae 2018, 38, 1275–1284. [Google Scholar]
- Ma, M.L. Temporal and spatial analysis of tropospheric ozone, simulation of influencing factors and surface ozone estimation. Acta Geod. Cartogr. Sin. 2020, 49, 1507. [Google Scholar]
- Kumar, A.; Shukla, G.; Singh, A. Long-range global transport and characterization of dust. Asian Atmos. Pollut. 2022, 25, 483–504. [Google Scholar]
- Langford, A.O.; Alvarez, R.J., II; Brioude, J. Coordinated Profiling of Stratospheric Intrusions and Transported Pollution by the Tropospheric Ozone Lidar Network (TOLNet) and NASA Alpha Jet Experiment (AJAX): Observations and Comparison to HYSPLIT, RAQMS, and FLEXPART. Atmos. Environ. 2018, 174, 1–14. [Google Scholar] [CrossRef]
- Ancellet, G.; Ravetta, F.; Pelon, J.; Quennehen, B. Ozone Production Inferred from Aircraft-Based Lidar Measurements During the European Stratospheric Ozone Experiment (EASOE). Geophys. Res. Lett. 1994, 21, 1383–1386. [Google Scholar]
- Sullivan, J.T.; Rabenhorst, S.D.; Dreessen, J.; McGee, T.J.; Delgado, R.; Twigg, L.; Sumnicht, G. Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for “next-day” pollution. Atmos. Environ. 2017, 158, 160–171. [Google Scholar] [CrossRef]
- Bernet, L.; Boyd, I.; Nedoluha, G.; Querel, R.; Swart, D.; Hocke, K. Validation and Trend Analysis of Stratospheric Ozone Data from Ground-Based Observations at Lauder, New Zealand. Remote Sens. 2021, 13, 109. [Google Scholar] [CrossRef]
- Wu, K.; Kang, P.; Wang, Z.S.; Gu, S.; Tie, X.; Zhang, Y.; Wn, X.H.; Wang, S.H.; Chen, Y.Z.; Wang, Y.; et al. Ozone temporal variation and its meteorological factors over Chengdu City. Acta Sci. Circumstantiae 2017, 37, 4241–4252. [Google Scholar]
- Liu, X.C.; Zhong, Y.T.; He, Q.; Mamtimin, A.-L. Analysis on mass concentration of atmospheric particulate matter and its Influencing Factors in Sandstorm Process in the Taklimakan Desert Hinterland. J. Desert Res. 2013, 33, 1548–1553. [Google Scholar]
- Hu, S.X.; Meng, X.Q.; Cao, K.F.; Xu, Z.H.; Hu, H.L.; Wang, Y.J. Analysis of vertical distribution of atmospheric ozone over Hefei. J. Atmos. Environ. Opt. 2011, 6, 141–145. [Google Scholar]
- Liu, P.; Zhang, T.S.; Sun, X.H.; Fan, G.Q.; Xiang, Y.; Fu, Y.B.; Dong, Y.S. Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source. Opt. Express 2020, 28, 13786. [Google Scholar] [CrossRef]
- Fang, X.; Li, T.; Ban, C.; Wu, Z.P.; Li, J.; Li, F.; Cen, Y.T.; Tian, B.G. A Mobile differential absorption Lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet. Opt. Express 2019, 27, 4126. [Google Scholar] [CrossRef]
- Huang, Z.Z.; Pei, C.L.; Wang, Y.J.; Chen, Y.N.; Zhang, T.S.; Fan, G.Q.; Wan, X.P.; Hu, T.T.; Liang, Y.J.; Li, Z.; et al. The networking observation and analysis of atmospheric ozone lidars in Guangzhou in 2017. Environ. Sci. Technol. 2018, 41, 159–164. [Google Scholar]
- Fan, G.Q.; Zhang, T.S.; Fu, Y.B.; Dong, Y.; Liu, W. Temporal and spatial distribution characteristics of ozone based on differential absorption Lidar in Beijing. Atmos. Environ. 2014, 41, 14003-1–14003-8. [Google Scholar] [CrossRef]
- Wang, Z.E.; Nakane, H.; Hu, H.L.; Zhou, J. Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols. Appl. Opt. 1997, 36, 1245–1252. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, T.S.; Xiang, Y.; Lv, L.H.; Ou, J.P. Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Sci. Total Environ. 2021, 751, 141740. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, Y.C.; Tao, Z.M.; Liu, X.Q.; Shao, S.S.; Tan, K.; Lv, Y.H.; Zhou, J.; Hu, H.L. Lidar geometrical form factor and its effect on aerosol detection. Chin. J. Quantum Electron. 2005, 22, 299–304. [Google Scholar]
- Dai, S.; Zhou, C.X.; Pang, X.B.; Li, J.J.; Chen, L.; Wu, Z.T.; Yuan, K.B.; Han, Z.L.; Wang, Q.; Wang, S.Q.; et al. Vertical profiles characteristics of near surface layer ozone in Shangyu Economic Development Zone of Hangzhou Bay based on unmanned aerial vehicle. China Environ. Sci. 2022, 42, 2514–2522. [Google Scholar]
- Wang, J.; Liu, W.Q.; Zhang, T.S.; Xia, J.D.; Deng, W.; Hu, W.J. Collaborative observation of vertical structures of ozone and aerosol in a dust episode based on Lidar. Spectrosc. Spectr. Anal. 2023, 43, 2258–2265. [Google Scholar]
- Yan, G.; Xue, W.-B.; Lei, Y.; Ning, S.; Wu, W.-L.; Liu, W. Situation and control measures of ozone pollution in China. Environ. Prot. 2020, 15, 15–19. [Google Scholar]
- Völger, P.; Bösenberg, J.; Schult, I. Scattering properties of selected model aerosols calculated at uv-wavelengths: Implications for dial measurements of tropospheric ozone. Contrib. Atmos. Phys. 1996, 69, 177–187. [Google Scholar]
- Elouragini, S.; Flamant, P.H. Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds. Appl. Opt. 1996, 35, 1512–1518. [Google Scholar] [CrossRef]
- Tao, Z.M.; Chen, Y.; Chu, D.L.; Hu, S.X.; Zhang, Y.C. Atmospheric backscattering correction for ozone measurement with AML-2 mobile Lidar. J. Atmos. Environ. Opt. 2008, 3, 401–406. [Google Scholar]
- Tong, J.Z.; Mi, J.Y.; Tu, C.Y.; Li, N.; Li, Z.H.; Deng, Y.; Ni, C.J. Variation of black carbon concentration during haze processes and its impact on aerosol scattering hygroscopic growth. China Environ. Sci. 2024, 1–10. [Google Scholar] [CrossRef]
- Wang, S.L.; Xie, J.; Cao, K.F.; Su, J.; Hu, H.L. Monitoring O3 in atmosphere by raman-differential absorption method. Chin. J. Lasers 2008, 35, 739–743. [Google Scholar] [CrossRef]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined raman elastic-backscatter lidar. Appl. Optics. 1992, 31, 7113–7131. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652. [Google Scholar] [CrossRef] [PubMed]
- Gutkowicz-Krusin, D. Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering. Appl. Opt. 1993, 32, 3266–3272. [Google Scholar] [CrossRef] [PubMed]
- Schotland, R.M. Errors in the Lidar measurement of atmospheric gases by differential absorption. J. Appl. Meteorol. 1974, 13, 71–77. [Google Scholar]
- Sun, W.-B.; Hu, Y.-X.; MacDonnell, D.G.; Weimer, C.; Baize, R.R. Technique to separate lidar signal and sunlight. Opt. Express 2016, 24, 12949–12954. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.Q.; Liu, J.G.; Liu, W.Q.; Lu, Y.H.; Zhang, T.S.; Zhao, X.S.; Dong, Y.S. Experimental determination of Lidar geometric factor in differential absorption Lidar. Chin. J. Quantum Electron. 2013, 30, 93–97. [Google Scholar]
- Potter, J.F. Two-frequency lidar inversion technique. Appl. Opt. 1987, 26, 1250–1256. [Google Scholar] [CrossRef]
- Ackermann, J. Two-wavelength lidar inversion algorithm for a two-component atmosphere. Appl. Opt. 1997, 36, 5134–5143. [Google Scholar] [CrossRef]
- Liu, B.M.; Ma, Y.Y.; Gong, W.; Yang, J.; Zhang, M. Two-wavelength lidar inversion algorithm for determining planetary boundary layer height. J. Quant. Spectrosc. Radiat. Transf. 2018, 206, 117–124. [Google Scholar] [CrossRef]
- Immler, F. A new algorithm for simultaneous ozone and aerosol retrieval from tropospheric DIAL measurements. Appl. Phys. B 2003, 76, 593–596. [Google Scholar] [CrossRef]
- Young, R.D.; Carrion, W.; Ganoe, R.; Pliutau, D.; Gronoff, G.; Berkoff, T.; Kuang, S. Langley Mobile ozone Lidar: Ozone and aerosol atmospheric profiling for air quality research. Appl. Opt. 2017, 56, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.X.; Hu, J.; Zhang, H.; Li, H.; Zhang, M.; Wang, H.; Wang, S. Characteristics and formation efficiency of summer ozone heavy pollution in the suburbs of Beijing. Environ. Sci. Res. 2017, 30, 663–671. [Google Scholar]
- Liu, H.T.; Chen, L.F.; Su, L. Theoreticalresearch of Fernald forward integration method for aerosol backscatter coefficientinversion of airborneatmospheredetecting lidar. Acta Phys. Sin. 2011, 60, 064204-1–064204-9. [Google Scholar]
- Gorshelev, V.; Serdyuchenko, A.; Weber, M.; Chehade, W.; Burrows, J.-P. High spectral resolution ozone absorption cross-sections–Part 1: Measurements, data analysis and comparison with previous measurements around 293 K. Atmos. Meas. Tech. 2014, 7, 609–624. [Google Scholar] [CrossRef]
- Yue, H.Y.; Jiang, Y.; Gu, T.F.; Wang, C.L.; Wu, H. Vertical distribution characteristics and its cause analysis of urban ozone pollution based on multilayer observation on Guangzhou tower. Acta Sci. Circumstantiae 2023, 43, 54–62. [Google Scholar]
- Yu, J.-Y.; Meng, L.S.; Chen, Y.; Zhang, H.-F.; Liu, J.G. Ozone profiles, precursors, and vertical distribution in urban Lhasa, Tibetan Plateau. Remote Sens. 2022, 14, 2533. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, T.; Cai, Y.; Wang, S.; Chen, P.; Li, S.; Li, M.; Yuan, C.; Wang, J.; Xu, S. Analysis a typical O3 pollution in Nanjing using Ozone Laser radar. Adm. Tech. Environ. Monit. 2018, 30, 60–63. [Google Scholar]
- Wang, X.Q.; Zhang, T.S.; Pei, C.L.; Chen, D.H. Monitoring of vertical distribution of ozone using differential absorption Lidar in Guangzhou. Atmos. Environ. 2019, 46, 1211003. [Google Scholar]
Emitting System | Receiving System | Data Acquisition and Control System | |||
---|---|---|---|---|---|
Laser type | Nd:YAG | Telescope type | Cassegrain reflection type | Detector type | Photomultiplier tube |
Laser wavelength/nm | 532 | Telescope aperture/mm | 200 | Sampling digit of acquisition card/Bit | 12-bit |
Detection wavelength/nm | 560, 590, 280, and 295 | Beam expansion divergence angle/rad | 0.2×10−3 | Sampling frequency of acquisition card/ MHz | 40 |
Pulse frequency/Hz | 100 | Receiving field of view angle/rad | 1.5 × 10−3 | Photon counting/MHz | 250 |
Single-pulse energy/mJ | 30 | Spectral method | Filter | ||
Raman tube | Solid-state Raman tube |
Date | AQI | Maximum 8 h Mass Concentration ρ (μg·m−3) | Maximum Hourly Mass Concentration ρ (μg·m−3) | Average Wind Speed v (m·s−1) | Dominant Wind Direction | Daily Maximum Temperature θ (°C) |
---|---|---|---|---|---|---|
26 May 2021 | 81 | 137 | 184 | 1.8 | N | 33.2 |
27 May 2021 | 108 | 167 | 184 | 2.9 | NW | 37.8 |
28 May 2021 | 133 | 156 | 177 | 2.5 | N | 31.2 |
29 May 2021 | 151 | 216 | 238 | 3.0 | NNE | 37.2 |
30 May 2021 | 98 | 157 | 163 | 1.6 | N | 26.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, N.; Wang, J.; Pei, C.; Yang, S.; Zhang, T.; Zhang, Y.; Wan, J.; Xu, Y. The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study. Remote Sens. 2024, 16, 2997. https://doi.org/10.3390/rs16162997
Ma N, Wang J, Pei C, Yang S, Zhang T, Zhang Y, Wan J, Xu Y. The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study. Remote Sensing. 2024; 16(16):2997. https://doi.org/10.3390/rs16162997
Chicago/Turabian StyleMa, Na, Jie Wang, Chenglei Pei, Sipeng Yang, Tianshu Zhang, Yujun Zhang, Jianing Wan, and Yiwei Xu. 2024. "The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study" Remote Sensing 16, no. 16: 2997. https://doi.org/10.3390/rs16162997
APA StyleMa, N., Wang, J., Pei, C., Yang, S., Zhang, T., Zhang, Y., Wan, J., & Xu, Y. (2024). The Accurate Inversion of the Vertical Ozone Profile in High-Concentration Aerosols Based on a New DIAL-A Case Study. Remote Sensing, 16(16), 2997. https://doi.org/10.3390/rs16162997