Enhancing Regional Quasi-Geoid Refinement Precision: An Analytical Approach Employing ADS80 Tri-Linear Array Stereoscopic Imagery and GNSS Gravity-Potential Leveling
<p>GNSS gravity-potential leveling model and the height system. In this figure, all equations and symbols are defined as per <a href="#sec2dot6-remotesensing-16-02984" class="html-sec">Section 2.6</a>, Equations (1)–(9).</p> "> Figure 2
<p>Distribution of regional and multi-source remote sensing imagery.</p> "> Figure 3
<p>ADS80 stereo imagery acquisition system platform and control point distribution. (<b>a</b>) Represents the hardware platform for acquiring stereo imagery in this study. (<b>b</b>) Flight path design configuration. (<b>c</b>) Actual flight path conditions. (<b>d</b>) Control point distribution and design in the study area. (<b>e</b>) Signal coverage of CORS stations in the study area.</p> "> Figure 4
<p>Retrieval of ground elevation points within a 3D stereoscopic environment and their spatial distribution across the surveyed region. (<b>a</b>) Delineates the three employed stereoscopic image display modalities. (<b>b</b>) The features of the key notations for interpreting the spatial data.</p> "> Figure 5
<p>InSAR data processing baseline distribution and deformation information. (<b>a</b>,<b>b</b>) Illustrate the vertical and LOS deformation rates. (<b>b</b>) The ellipses colored in red, gray, magenta, pink, purple, and blue each signify six distinct micro-regions representing varying terrain deformation patterns. (<b>c</b>) The red lines delineate interferometric image pairs, while the yellow pentagram marks the master image and the green pentagrams represent respective temporal Sentinel-1A images. (<b>d</b>) Showcases six unique curves that correspond to the deformation changes in the six regions depicted in (<b>b</b>).</p> "> Figure 6
<p>Analysis of the precision in PPK data processing. (<b>a</b>) Observational status of the five satellite systems, including GPS, GLONASS, BeiDou, and Galileo, (<b>b</b>) DD_DOP values across all satellite observation periods. (<b>c</b>) Residuals for a subset of satellite observation fits. (<b>d</b>) Operational performance of the PAV80 tri-axial stabilization platform during the flight. (<b>e</b>) Breakdown of the aircraft’s velocity components during flight. (<b>f</b>) Stability of the aircraft’s flight altitude. (<b>g</b>) Precision of POS data obtained from the fusion of IMU (roll φ, pitch Ω, yaw κ) and GNSS (X, Y, Z) readings. (<b>h</b>) Adjustments to the Roll, Pitch, and Azimuth (Az) values. (<b>i</b>) Residuals following the transformation of the forward flight velocity components to the E, N, and U directions.</p> "> Figure 7
<p>Spatial distribution of GCPs and checkpoints for aerial triangulation. (<b>a</b>–<b>f</b>) Illustrate the various GCP layout schemes, with red triangles representing the GCPs and green triangles denoting the checkpoints. Depict the deployment of GCPs in various environments within the study area. (<b>g</b>–<b>i</b>) Measurement conditions in three different geographical environments.</p> "> Figure 8
<p>The accuracy analysis of five aerial triangulation densification schemes. (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>) depict the horizontal MSE values for control and checkpoint distribution in Control Point Deployment Schemes I through V. Blue circles represent the MSE of control points, with the cyan line illustrating the fitted curve for the control points’ MSE. Red circles indicate the MSE of checkpoints, with the magenta line representing the fitted curve for the checkpoints’ MSE. Conversely, (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>) display the vertical MSE values for control and checkpoint distribution across the same deployment schemes. Here, magenta circles denote the control points’ MSE, accompanied by a cyan fitted curve, while green circles indicate the checkpoints’ MSE, with a magenta fitted curve for these errors as well.</p> "> Figure 9
<p>Comparison and analysis of normal heights from leveling route measurements and GNSS gravity-potential calculations. (<b>a</b>) The black lines represent the two leveling routes surveyed in the study area, with the leveling points denoted by yellow circles. The red lines indicate the designed flight paths, while the pale yellow ellipses mark the representative leveling point locations. Subfigures (<b>a1</b>–<b>a4</b>) illustrate GNSS measurements taken simultaneously at leveling points across different geographic environments. (<b>b</b>–<b>m</b>) represent the Root Mean Square Error (RMSE) values of leveling points computed using twelve geopotential models, namely EGM2008, SGG-UGM-2, SGG-UGM-1, Eigen6C4, GECO, XGM2019e-2159, EGM96, GGM05C, GO-CONS-GCF-2-DIR-R6, Tongji-GMMG2021S, EigenCG03C, and Tongji-GRACE02, respectively.</p> "> Figure 10
<p>Evaluation of the accuracy of different gravity-potential models. (<b>a</b>) Elevation residual values for GNSS points captured by all 3D solid models, calculated from 12 gravity potential models. (<b>b</b>–<b>m</b>) residual values values of elevations for GNSS points captured by all 3D solid models, calculated from 12 gravity potential models.</p> "> Figure 11
<p>Precision analysis of height anomalies.</p> "> Figure 12
<p>Residual values for height anomalies calculated using the 12 gravitational models.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition and Processing of GF2, GF7, and Sentinel-1A Imagery
2.3. Acquisition and Processing of ADS80 Push-Broom Tri-Linear Stereo Imagery Data
2.4. Data Extraction of GNSS Gravity-Potential Control Points in Dimensional Environments
2.5. Acquisition and Processing of GNSS/Leveling Data
2.6. Acquisition and Processing of Gravity Satellite Data
2.6.1. Height System
2.6.2. Gravity-Potential
2.6.3. Normal Gravity
3. Results
3.1. Analysis of Displacement Characteristics in the Study Area
3.2. High-Precision POS Data Post-Differential Processing Accuracy Analysis
3.3. Airborne Triangulation Accuracy Enhancement Analysis
3.3.1. Analysis of Ground Control Point Layout Schemes
3.3.2. Analysis of Airborne Triangulation Accuracy under Various GCP Layout Schemes
3.4. Leveling Points Accuracy Enhancement Analysis
3.5. GNSS Gravity-Potential Accuracy Enhancement Analysis
4. Discussion
4.1. Influence of Different Gravity Field Models on the Accuracy of Regional Quasi-Geoid
4.2. Impact of Various Errors on GNSS Gravity-Potential Leveling
4.3. Characteristics of Refined Regional Quasi-Geoid Models
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molodenskiĭ, M.S.; Eremeev, V.F.; Yurkina, M.I. Methods for study of the external gravitational field and figure of the earth. In Israel Program for Scientific Translations; The Office of Technical Services, U.S. Department of Commerce: Washington, DC, USA, 1962. [Google Scholar]
- Stokes, G.G. On the Variation of Gravity at the Surface of the Earth; Cambridge University Press: Cambridge, UK, 2010; pp. 131–171. [Google Scholar]
- Sjöberg, L.E. On the existence of solutions for the method of Bjerhammar in the continuous case. Bull. Geod. 1979, 53, 227–230. [Google Scholar] [CrossRef]
- Erol, S.; Erol, B.A. Comparative assessment of different interpolation algorithms for prediction of GNSS/levelling geoid surface using scattered control data. Measurement 2021, 173, 108623. [Google Scholar] [CrossRef]
- Ligas, M.; Kulczycki, M. Kriging and moving window kriging on a sphere in geome-tric (GNSS/levelling) geoid modelling. Surv. Rev. 2016, 50, 155–162. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhou, H.; Zhong, B.; Luo, Z.C. Regional gravity field recovery using the GOCE gravity gradient tensor and heterogeneous gravimetry and altimetry data. J. Geophys. Res. Solid Earth 2017, 122, 6928–6952. [Google Scholar] [CrossRef]
- Wei, Z.Q. GPS gravity-potential Leveling. Geod. Geodyn. 2007, 27, 1–7. [Google Scholar]
- Brown, N.J.; McCubbine, J.C.; Featherstone, W.E.; Gowans, N.; Woods, A.; Baran, I. AUSGeoid2020 combined gravimetric–geometric model: Location-specific uncertainties and baseline-length-dependent error decorrelation. J. Geod. 2018, 92, 1457–1465. [Google Scholar] [CrossRef]
- Boesch, R.; Bühler, Y.; Marty, M.; Ginzler, C. Comparison of digital surface models for snow depth mapping with UAV and aerial cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 453–458. [Google Scholar]
- Müller, J.; Gärtner-Roer, I.; Thee, P.; Ginzler, C. Accuracy assessment of airborne photogrammetrically derived high-resolution digital elevation models in a high mountain environment. ISPRS J. Photogramm. Remote Sens. 2014, 98, 58–69. [Google Scholar] [CrossRef]
- Klees, R.; Slobbe, D.C.; Farahani, H.H. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. J. Geod. 2017, 92, 431–442. [Google Scholar] [CrossRef]
- Farahani, H.H.; Slobbe, D.C.; Klees, R.; Seitz, K. Impact of accounting for coloured noise in radar altimetry data on a regional quasi-geoid model. J. Geod. 2017, 91, 97–112. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.C.; Xu, X.Y.; Zhang, S.J.; Zhao, Y.Q. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Gilardoni, M.; Reguzzoni, M.; Sampietro, D. GECO: A global gravity model by locally combining GOCE data and EGM2008. Stud. Geophys. Geod. 2016, 60, 228–247. [Google Scholar] [CrossRef]
- Chisenga, C.; Yan, J.G. A new crustal thickness model for mainland China derived from EIGEN-6C4 gravity data. J. Asian Earth Sci. 2019, 179, 430–442. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef]
- Klees, R.; Slobbe, D.C.; Farahani, H.H. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model? J. Geod. 2018, 93, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Li, H.P.; Bian, S.F.; Li, Z.M. Chinese Geodetic Coordinate System 2000 and its Comparison with WGS84. Appl. Mech. Mater. 2014, 580–583, 2793–2796. [Google Scholar]
- Cheng, P.F.; Cheng, Y.Y.; Wang, X.M.; Xu, Y.T. Update China geodetic coordinate frame considering plate motion. Satell. Navig. 2021, 2, 2. [Google Scholar] [CrossRef]
- Yang, Y.X. Chinese geodetic coordinate system 2000. Sci. Bull. 2009, 54, 2714–2721. [Google Scholar] [CrossRef]
- Cheng, P.F.; Cheng, Y.Y.; Wang, X.M.; Wu, S.Q.; Xu, Y.T. Realization of an optimal dynamic geodetic reference frame in China: Methodology and applications. Engineering 2020, 6, 879–897. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Li, K.; Myint, S.W.; Du, Z.Y.; Li, Y.B.; Cao, J.J.; Liu, L.; Wu, Z.F. Integration of GF-2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China’s largest artificially planted mangroves. Remote Sens. 2020, 12, 2039. [Google Scholar] [CrossRef]
- Tang, X.M.; Xie, J.F.; Liu, R.; Huang, G.H.; Zhao, C.G.; Zhen, Y.; Tang, H.Z.; Dou, X.H. Overview of the GF-7 Laser Altimeter System Mission. Earth Space Sci. 2020, 7, e2019EA000777. [Google Scholar] [CrossRef]
- Dong, S.C.; Samsonov, S.; Yin, H.W.; Ye, S.J.; Cao, Y.R. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth. Sci. 2013, 72, 677–691. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Milliner, C.W.; Dolan, J.F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.; Sammis, C.G. Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake. Geochem. Geophys. Geosyst. 2015, 16, 1577–1598. [Google Scholar] [CrossRef]
- Türk, T. Determination of mass movements in slow-motion landslides by the Cosi-Corr method. Geomat. Nat. Hazards Risk 2018, 9, 325–336. [Google Scholar] [CrossRef]
- Zhao, F.M.; Meng, X.M.; Zhang, Y.; Chen, G.; Su, X.J.; Yue, D.X. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef]
- Wang, Q.J.; Yu, W.Y.; Xu, B.; Wei, G.G. Assessing the use of GACOS products for SBAS-INSAR deformation monitoring: A case in Southern California. Sensors 2019, 19, 3894. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.; Zeni, G.; Lanari, R. Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.B.; Wu, H.G. Using GF-2 imagery and the conditional random field model for urban forest cover mapping. Remote Sens. Lett. 2016, 7, 378–387. [Google Scholar] [CrossRef]
- Ren, C.F.; Xie, J.F.; Zhi, X.D.; Yang, Y.; Yang, S. Laser Spot Center location method for Chinese spaceborne GF-7 footprint camera. Sensors 2020, 20, 2319. [Google Scholar] [CrossRef]
- Sun, Z.H.; Li, P.H.; Wang, D.C.; Meng, Q.Y.; Sun, Y.X.; Zhai, W.F. Recognizing urban functional zones by GF-7 satellite stereo imagery and POI data. Appl. Sci. 2023, 13, 6300. [Google Scholar] [CrossRef]
- Du, L.M.; Pang, Y.; Ni, W.J.; Liang, X.J.; Li, Z.Y.; Suarez, J.; Wei, W. Forest terrain and canopy height estimation using stereo images and spaceborne LiDAR data from GF-7 satellite. Geo-Spat. Inf. Sci. 2023, 27, 811–821. [Google Scholar] [CrossRef]
- Hermas, E.; Leprince, S.; El-Magd, I.A. Retrieving sand dune movements using sub-pixel correlation of multi-temporal optical remote sensing imagery, northwest Sinai Peninsula, Egypt. Remote Sens. Environ. 2012, 121, 51–60. [Google Scholar] [CrossRef]
- Scheidt, S.P.; Lancaster, N. The application of COSI-Corr to determine dune system dynamics in the southern Namib Desert using ASTER data. Earth Surf. Process. Landf. 2013, 38, 1004–1019. [Google Scholar] [CrossRef]
- Hobi, M.L.; Ginzler, C. Accuracy assessment of digital surface models based on WorldView-2 and ADS80 stereo remote sensing data. Sensors 2012, 12, 6347–6368. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, T.; Bühler, Y.; Lehning, M. Elevation dependency of mountain snow depth. Cryosphere 2014, 8, 2381–2394. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.A.; Na, J.M.; Huang, X.L.; Xue, Z.G.; Yang, X.; Li, F.Y. Detection of Catchment-Scale Gully-Affected Areas using unmanned aerial vehicle (UAV) on the Chinese Loess Plateau. ISPRS Int. J. Geo-Inf. 2016, 5, 238. [Google Scholar] [CrossRef]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy assessment of different digital surface models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. [Google Scholar] [CrossRef]
- Li, J.W.; Zhan, W.; Guo, B.F.; Li, S.P.; Guo, B.H. Combination of the Levenberg–Marquardt and differential evolution algorithms for the fitting of postseismic GPS time series. Acta Geophys. 2021, 69, 405–414. [Google Scholar] [CrossRef]
- Klees, R.; Prutkin, I. The combination of GNSS-levelling data and gravimetric (quasi-) geoid heights in the presence of noise. J. Geod. 2010, 84, 731–749. [Google Scholar] [CrossRef]
- Albayrak, M.; Özlüdemir, M.T.; Aref, M.M.; Halıcıoğlu, K. Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geod. Geodyn. 2020, 11, 163–173. [Google Scholar] [CrossRef]
- Li, W.Q.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Lake level and surface topography measured with spaceborne GNSS-Reflectometry from CYGNSS Mission: Example for the Lake Qinghai. Geophys. Res. Lett. 2018, 45, 13–332. [Google Scholar] [CrossRef]
- Klokočník, J.; Kostelecký, J.; Bezděk, A.; Cílek, V.; Kletetschka, G.; Staňková, H. Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics 2020, 780, 228396. [Google Scholar] [CrossRef]
- Li, Y. Analysis of GAMIT/GLOBK in high-precision GNSS data processing for crustal deformation. Earthq. Res. Adv. 2021, 1, 100028. [Google Scholar] [CrossRef]
- Ryanda, K.; Handoko, E.Y.; Maulida, P. Land Subsidence Study using Geodetic GPS and GAMIT/GLOBK software (Case study: Banjarasri Village and Kedungbanteng Village, Tanggulangin District, Sidoarjo Regency). IOP Conf. Ser. Earth Environ. Sci. 2021, 936, 012020. [Google Scholar] [CrossRef]
- Alçay, S.; Öğütçü, S.; Kalaycı, İ.; Yiğit, C.Ö. Displacement monitoring performance of relative positioning and Precise Point Positioning (PPP) methods using simulation apparatus. Adv. Space Res. 2019, 63, 1697–1707. [Google Scholar] [CrossRef]
- Liang, W.; Xu, X.Y.; Li, J.C.; Zhu, G.B. The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Acta Geod. Cartogr. Sin. 2018, 47, 425–434. [Google Scholar]
- Ali, S.H. Technical Report: Determination of the orthometric height inside Mosul University campus by using GPS data and the EGM96 gravity field model. J. Appl. Geod. 2007, 1, 241–247. [Google Scholar] [CrossRef]
- Milyukov, V.K.; Yeh, H. Next Generation Space Gravimetry: Scientific tasks, concepts, and realization. Astron. Rep. 2018, 62, 1003–1012. [Google Scholar] [CrossRef]
- Rummel, R.; Yi, W.; Stummer, C. GOCE gravitational gradiometry. J. Geod. 2011, 85, 777–790. [Google Scholar] [CrossRef]
- Chen, Q.J.; Shen, Y.Z.; Francis, O.; Chen, W.; Zhang, X.F.; Hsu, H. Tongji-Grace02S and Tongji-Grace02K: High-Precision static GRACE-Only global Earth’s gravity field models derived by refined data processing strategies. J. Geophys. Res. Solid Earth 2018, 123, 6111–6137. [Google Scholar] [CrossRef]
- Erol, B.; Sideris, M.G.; Çelik, R.N. Comparison of global geopotential models from the champ and grace missions for regional geoid modelling in Turkey. Stud. Geophys. Geod. 2009, 53, 419–441. [Google Scholar] [CrossRef]
- Li, J.C.; Chu, Y.H.; Xu, X.Y. Determination of Vertical Datum Offset between the Regional and the Global Height Datum. Acta Geod. Cartogr. Sin. 2017, 46, 1262–1273. [Google Scholar]
- Brown, N.J.; Featherstone, W.E.; Hu, G.; Johnston, G.M. AUSGeoid09: A more direct and more accurate model for converting ellipsoidal heights to AHD heights. J. Spat. Sci. 2011, 56, 27–37. [Google Scholar] [CrossRef]
- Slobbe, C.; Klees, R.; Farahani, H.H.; Huisman, L.; Alberts, B.; Voet, P.; Doncker, F.D. The impact of noise in a GRACE/GOCE global gravity model on a local Quasi-Geoid. J. Geophys. Res. Solid Earth 2019, 124, 3219–3237. [Google Scholar] [CrossRef]
- Ditmar, P.; Klees, R.; Liu, X. Frequency-dependent data weighting in global gravity field modeling from satellite data contaminated by non-stationary noise. J. Geod. 2006, 81, 81–96. [Google Scholar] [CrossRef]
- Denker, H. Regional Gravity Field modeling: Theory and Practical results. In Sciences of Geodesy-II: Innovations and Future Developments; Springer: Berlin/Heidelberg, Germany, 2012; pp. 185–291. [Google Scholar]
- Li, S.W.; Xu, W.B.; Li, Z.W. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Jin, Z.Y.; Fialko, Y. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake. Geophys. Res. Lett. 2021, 48, e2021GL095213. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.; Peltzer, G.; Li, Z.H. Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. Solid Earth. 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Bühler, Y.; Marty, M.; Ginzler, C. High resolution DEM generation in High-Alpine terrain using airborne remote sensing techniques. Trans. GIS 2012, 16, 635–647. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Dumka, R.K.; Chopra, S.; Prajapati, S. GPS derived crustal deformation analysis of Kachchh, zone of 2001(M7.7) earthquake, Western India. Quatern. Int. 2019, 507, 295–301. [Google Scholar] [CrossRef]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dynam. 2019, 7, 807–827. [Google Scholar] [CrossRef]
- Çetin, S.; Aydın, C.; Dogan, U. Comparing GPS positioning errors derived from GAMIT/GLOBK and Bernese GNSS software packages: A case study in CORS-TR in Turkey. Surv. Rev. 2018, 51, 533–543. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Dang, Y.M.; Jiang, T.; Guo, C.X.; Ke, B.G.; Wang, B. Heterogeneous gravity data fusion and gravimetric quasigeoid computation in the coastal area of China. Mar. Geod. 2017, 40, 142–159. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Osada, E.; Karsznia, K. Precise local quasigeoid modelling using GNSS/levelling height anomalies and gravity data. Surv. Rev. 2018, 52, 76–83. [Google Scholar] [CrossRef]
- Eshagh, M.; Zoghi, S. Local error calibration of EGM08 geoid using GNSS/levelling data. J. Appl. Geophys. 2016, 130, 209–217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Chen, G.; Yang, D.; Ding, K.; Dong, R.; Ma, X.; Han, S.; Zhang, S.; Zhang, Y. Enhancing Regional Quasi-Geoid Refinement Precision: An Analytical Approach Employing ADS80 Tri-Linear Array Stereoscopic Imagery and GNSS Gravity-Potential Leveling. Remote Sens. 2024, 16, 2984. https://doi.org/10.3390/rs16162984
Xu W, Chen G, Yang D, Ding K, Dong R, Ma X, Han S, Zhang S, Zhang Y. Enhancing Regional Quasi-Geoid Refinement Precision: An Analytical Approach Employing ADS80 Tri-Linear Array Stereoscopic Imagery and GNSS Gravity-Potential Leveling. Remote Sensing. 2024; 16(16):2984. https://doi.org/10.3390/rs16162984
Chicago/Turabian StyleXu, Wei, Gang Chen, Defang Yang, Kaihua Ding, Rendong Dong, Xuyan Ma, Sipeng Han, Shengpeng Zhang, and Yongyin Zhang. 2024. "Enhancing Regional Quasi-Geoid Refinement Precision: An Analytical Approach Employing ADS80 Tri-Linear Array Stereoscopic Imagery and GNSS Gravity-Potential Leveling" Remote Sensing 16, no. 16: 2984. https://doi.org/10.3390/rs16162984
APA StyleXu, W., Chen, G., Yang, D., Ding, K., Dong, R., Ma, X., Han, S., Zhang, S., & Zhang, Y. (2024). Enhancing Regional Quasi-Geoid Refinement Precision: An Analytical Approach Employing ADS80 Tri-Linear Array Stereoscopic Imagery and GNSS Gravity-Potential Leveling. Remote Sensing, 16(16), 2984. https://doi.org/10.3390/rs16162984