CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite
<p>Coverage of all CALIPSO and AGRI matched points during daytime throughout 2021 and January–June 2023.</p> "> Figure 2
<p>Schematic of the daytime SZA > 70° and SZA < 70° portions of FY-4A AGRI, with the green line indicating SZA = 70° and the red line indicating SZA = 70°.</p> "> Figure 3
<p>Conceptual diagram of the structure of CACM-Net, which consists mainly of a training step and a prediction step, with the sizes of the input and output vectors shown at the bottom of the picture, representing the dimensional sizes of the channels, rows, and columns.</p> "> Figure 4
<p>CBAM block; the module has two consecutive submodules, namely the channel attention module and the spatial attention module. ⊗ denotes element-wise multiplication. The sizes of the input and output vectors are shown below the image, representing the dimensional sizes of the channels, rows, and columns.</p> "> Figure 5
<p>Confusion matrix schematic.</p> "> Figure 6
<p>Overall accuracy trend of CACM-Net cloud mask results and NSMC cloud mask product on the 2021 dataset. (<b>a</b>) CACM-Net cloud mask result. (<b>b</b>) NSMC cloud mask product.</p> "> Figure 7
<p>Box plots of per-batch accuracy for the last epoch after convergence for all models.</p> "> Figure 8
<p>CACM-Net training set data with rising and falling nodes showing cloud probability distributions. Vertical dashed lines indicate the probability thresholds that distinguish clear from probably clear (0.09), probably clear from probably cloudy (0.56), and probably cloudy from cloudy (0.87).</p> "> Figure 9
<p>CACM-Net (SZA < 70°), CACM-Net (SZA > 70°), and CACM-Net (Full) cloud mask evaluation metrics including accuracy, POD, precision, F1 score, and FAR referenced to the 2021 test dataset.</p> "> Figure 10
<p>Schematic comparison of the results of CACM-Net and NSMC on 21 April 2021, 05:00 UTC. (<b>a</b>) Reflectance of 0.65 μm; (<b>b</b>) difference in cloud mask between CACM-Net and NSMC, where red pixels are mostly judged as cloudy by NSMC, blue pixels are mostly judged as cloudy by CACM-Net, and white pixels represent agreement between the models; (<b>c</b>) cloud mask results for CACM-Net; (<b>d</b>) Cloud mask results for NSMC.</p> "> Figure 11
<p>CACM-Net cloud mask result, as well as NSMC cloud mask product evaluation metrics, including accuracy, POD, precision, and F1 score, (<b>a</b>) for the SZA < 70° portion and (<b>b</b>) for the SZA > 70° portion. (<b>c</b>) Comparison of the FAR metrics for the CACM-Net cloud mask result, as well as the NSMC cloud mask product, for the SZA < 70° and SZA > 70° portions using the 2023 test set data as a reference.</p> "> Figure 12
<p>Overall accuracy trends for CACM-Net cloud mask results and NSMC cloud mask products on the 2023 independently validated dataset.</p> "> Figure 13
<p>A diagram showing the formation and dissipation of Typhoon Nanmadol from 13 September 2022 to 20 September 2022, with the red dot representing the center of the typhoon.</p> "> Figure 14
<p>Schematic comparison of the results of CACM-Net and MODIS for 16 January 2023, 01:00 UTC (<b>a</b>–<b>d</b>); (<b>a</b>) reflectance of 0.65 μm; (<b>b</b>) difference in cloud mask between CACM-Net and MODIS; (<b>c</b>) cloud mask results for CACM-Net; (<b>d</b>) cloud mask results for MODIS. Schematic comparison of the results of CACM-Net and Himawari 9 for 1 January 2023, 01:00 UTC (<b>e</b>–<b>h</b>), (<b>e</b>) reflectance of 0.65 μm; (<b>f</b>) difference in cloud mask between CACM-Net and Himawari-9; (<b>g</b>) cloud mask results for CACM-Net; (<b>h</b>) cloud mask results for Himawari-9.</p> "> Figure 14 Cont.
<p>Schematic comparison of the results of CACM-Net and MODIS for 16 January 2023, 01:00 UTC (<b>a</b>–<b>d</b>); (<b>a</b>) reflectance of 0.65 μm; (<b>b</b>) difference in cloud mask between CACM-Net and MODIS; (<b>c</b>) cloud mask results for CACM-Net; (<b>d</b>) cloud mask results for MODIS. Schematic comparison of the results of CACM-Net and Himawari 9 for 1 January 2023, 01:00 UTC (<b>e</b>–<b>h</b>), (<b>e</b>) reflectance of 0.65 μm; (<b>f</b>) difference in cloud mask between CACM-Net and Himawari-9; (<b>g</b>) cloud mask results for CACM-Net; (<b>h</b>) cloud mask results for Himawari-9.</p> ">
Abstract
:1. Introduction
2. Data
2.1. FY-4A AGRI Data
2.2. CALIPSO Data
2.3. Other Verification Cloud Mask Products
2.3.1. MODIS Cloud Mask Product
2.3.2. Himawari-9 AHI Cloud Mask Product
3. Methodology
3.1. Definition of Division Schemes
3.1.1. Division of Space Based on Satellite Zenith Angle
3.1.2. Division of Daytime Based on Solar Zenith Angles
3.1.3. Four-Level Cloud Mask Division
3.2. Data Preorocessing
3.3. Feature Selection
3.4. Construction of the Datasets
3.4.1. Data Point Filtering Rules
3.4.2. Data Block Establishment Rules
3.5. The CACM-Net Architecture
3.5.1. Training Step
3.5.2. Prediction Step
3.5.3. Implementation Details
3.6. Metric Definitions
3.6.1. Evaluation Metrics
3.6.2. Cross-Comparison Metrics
4. Results
4.1. CACM-Net Cloud Mask Results
4.2. Evaluation Results of NSMC Cloud Mask Products
5. Discussion
5.1. Ablation Experiments and Training Strategy
5.2. Four-Level Cloud Mask Division
5.3. The Need for SZA Demarcation
5.4. Validation and Cross-Comparison
5.4.1. Validation
5.4.2. Case Demonstration
5.4.3. Cross-Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Z.; Woodcock, C.E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 2014, 152, 217–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Stowe, L.L.; Davis, P.A.; McClain, E.P. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Ocean. Technol. 1999, 16, 656–681. [Google Scholar] [CrossRef]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35); Institute for Meteorological Satellite Studies, University of Wisconsin: Madison, WI, USA, 2010. [Google Scholar]
- Hutchison, K.D.; Roskovensky, J.K.; Jackson, J.M.; Heidinger, A.K.; Kopp, T.J.; Pavolonis, M.J.; Frey, R. Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens. 2005, 26, 4681–4706. [Google Scholar] [CrossRef]
- Kopp, T.J.; Thomas, W.; Heidinger, A.K.; Botambekov, D.; Frey, R.A.; Hutchison, K.D.; Iisager, B.D.; Brueske, K.; Reed, B. The VIIRS Cloud Mask: Progress in the first year of S-NPP toward a common cloud detection scheme. J. Geophys. Res. Atmos. 2014, 119, 2441–2456. [Google Scholar] [CrossRef]
- Frey, R.A.; Ackerman, S.A.; Holz, R.E.; Dutcher, S.; Griffith, Z. The Continuity MODIS-VIIRS Cloud Mask. Remote Sens. 2020, 12, 3334. [Google Scholar] [CrossRef]
- Heidinger, A.; Straka III, W.C. Algorithm Theoretical Basis Doucment: ABI Cloud Mask; NOAA/NESDIS Center for Satellite Applications and Research: Silver Spring, ML, USA, 2012. [Google Scholar]
- Le GLeau, H. Algorithm Theoretical Basis Document for the Cloud Product Processors of the NWC/GEO; Technical Report, EUMETSAT NWC SAF Support to Nowcasting And Very Short Range Forecasting, Centre de Meteorologie Spatiale: Meteo, France, 2019. [Google Scholar]
- Miller, S.D.; Noh, Y.-J.; Heidinger, A.K. Liquid-top mixed-phase cloud detection from shortwave-infrared satellite radiometer observations: A physical basis. J. Geophys. Res. Atmos. 2014, 119, 8245–8267. [Google Scholar] [CrossRef]
- Pavolonis, M.J.; Heidinger, A.K. Daytime cloud overlap detection from AVHRR and VIIRS. J. Appl. Meteorol. Climatol. 2004, 43, 762–778. [Google Scholar] [CrossRef]
- Meister, G.; Franz, B.A.; Kwiatkowska, E.J.; McClain, C.R. Corrections to the calibration of MODIS Aqua ocean color bands derived from SeaWiFS data. IEEE Trans. Geosci. Remote Sens. 2011, 50, 310–319. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Cros, S.; Guignard, A.; Lamquin, N. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat. Atmos. Chem. Phys. 2010, 10, 7197–7214. [Google Scholar] [CrossRef]
- Addesso, P.; Conte, R.; Longo, M.; Restaino, R.; Vivone, G. SVM-based cloud detection aided by contextual information. In Proceedings of the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italy, 12–14 September 2012; pp. 214–221. [Google Scholar]
- Reguiegue, M.; Chouireb, F. Automatic day time cloud detection over land and sea from MSG SEVIRI images using three features and two artificial intelligence approaches. Signal Image Video Process. 2017, 12, 189–196. [Google Scholar] [CrossRef]
- Wang, C.; Platnick, S.; Meyer, K.; Zhang, Z.; Zhou, Y. A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations. Atmos. Meas. Tech. 2020, 13, 2257–2277. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x. J. Appl. Meteorol. Climatol. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Heidinger, A.; Botambekov, D.; Walther, A. A Naïve Bayesian Cloud Mask Delivered to NOAA Enterprise. Algorithm Theoretical Basis Document. 2016. Available online: https://www.star.nesdis.noaa.gov/goesr/documents/ATBDs/Enterprise/ATBD_Enterprise_Cloud_Mask_v1.2_2020_10_01.pdf (accessed on 1 April 2023).
- Haynes, J.M.; Noh, Y.-J.; Miller, S.D.; Haynes, K.D.; Ebert-Uphoff, I.; Heidinger, A. Low cloud detection in multilayer scenes using satellite imagery with machine learning methods. J. Atmos. Ocean. Technol. 2022, 39, 319–334. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Bonfiglio, S.; Gallo, G.; Del Negro, C. A texton-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomat. Nat. Hazards Risk 2011, 2, 279–290. [Google Scholar] [CrossRef]
- Liu, C.; Yang, S.; Di, D.; Yang, Y.; Zhou, C.; Hu, X.; Sohn, B.-J. A machine learning-based cloud detection algorithm for the Himawari-8 spectral image. Adv. Atmos. Sci. 2022, 39, 1994–2007. [Google Scholar] [CrossRef]
- Zhang, C.; Zhuge, X.; Yu, F. Development of a high spatiotemporal resolution cloud-type classification approach using Himawari-8 and CloudSat. Int. J. Remote Sens. 2019, 40, 6464–6481. [Google Scholar] [CrossRef]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016, 187, 27–48. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Sheng, V.S. A real-time typhoon eye detection method based on deep learning for meteorological information forensics. J. Real-Time Image Process. 2020, 17, 95–102. [Google Scholar] [CrossRef]
- Taravat, A.; Proud, S.; Peronaci, S.; Del Frate, F.; Oppelt, N. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking. Remote Sens. 2015, 7, 1529–1539. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Jacobsen, R.H.; Inceoglu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Lin, H.; Chen, X.; Li, J.; Han, W. Cloud Detection and Classification Algorithms for Himawari-8 Imager Measurements Based on Deep Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Iwabuchi, H.; Yamashita, T. Cloud identification and property retrieval from Himawari-8 infrared measurements via a deep neural network. Remote Sens. Environ. 2022, 275, 113026. [Google Scholar] [CrossRef]
- Matsunobu, L.M.; Pedro, H.T.C.; Coimbra, C.F.M. Cloud detection using convolutional neural networks on remote sensing images. Sol. Energy 2021, 230, 1020–1032. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Yu, M.; Chiu, L.S.; Hao, X.; Duffy, D.Q.; Yang, C. Daytime rainy cloud detection and convective precipitation delineation based on a deep neural Network method using GOES-16 ABI images. Remote Sens. 2019, 11, 2555. [Google Scholar] [CrossRef]
- Shao, Z.; Pan, Y.; Diao, C.; Cai, J. Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4062–4076. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Guo, X.; Qu, J.; Ye, L.; Han, M.; Shi, M. A naive bayesian-based approach for FY-4A/AGRI cloud detection. J. Appl. Meteorol. Sci. 2023, 34, 282–294. [Google Scholar]
- Yu, Z.; Ma, S.; Han, D.; Li, G.; Gao, D.; Yan, W. A cloud classification method based on random forest for FY-4A. Int. J. Remote Sens. 2021, 42, 3353–3379. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, W.; Gao, F.; Zhang, S.; Wang, S.; Liu, C.; Liu, J. A cloud classification method based on a convolutional neural network for FY-4A satellites. Remote Sens. 2022, 14, 2314. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, M.; Cheng, W.; Chen, Y.; Sheng, Q.; Li, J.; Wang, L. An efficient cloud classification method based on a densely connected hybrid convolutional network for FY-4A. Remote Sens. 2023, 15, 2673. [Google Scholar] [CrossRef]
- Liang, Y.; Min, M.; Yu, Y.; Xi, W.; Xia, P. Assessment on thediurnal cycle of cloud covers of Fengyun-4A geostationary satellite based on the manual observation data in China. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Lai, R.; Teng, S.; Yi, B.; Letu, H.; Min, M.; Tang, S.; Liu, C. Comparison of cloud properties from Himawari-8 and FengYun-4A geostationary satellite radiometers with MODIS cloud retrievals. Remote Sens. 2019, 11, 1703. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Evaluation of ISCCP cloud amount with MODIS observations. Atmos. Res. 2015, 153, 310–317. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C. Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? J. Geophys. Res. Atmos. 2017, 122, 329–343. [Google Scholar] [CrossRef]
- Gasparini, B.; Meyer, A.; Neubauer, D.; Münch, S.; Lohmann, U. Cirrus cloud properties as seen by the CALIPSO satellite and ECHAM-HAM global climate model. J. Clim. 2018, 31, 1983–2003. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Wang, Q.; Cong, Z.; Yang, X.; Fan, H. Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmos. Chem. Phys. 2021, 21, 4849–4868. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Winker, D.M.; Powell, K.A. CALIOP algorithm theoretical basis document, part 2: Feature detection and layer properties algorithms. Rep. PC-SCI 2005, 202, 87. [Google Scholar]
- Imai, T.; Yoshida, R. Algorithm Theoretical Basis for Himawari-8 Cloud Mask Product; Meteorological Satellite Center Technical Note; Meteorological Satellite Center: Kiyose, Japan, 2016; pp. 1–17. [Google Scholar]
- Gholamalinezhad, H.; Khosravi, H. Pooling methods in deep neural networks, a review. arXiv 2020, arXiv:2009.07485. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
Sensor | ABI | SEVIRI | AHI | AGRI (Ours) |
---|---|---|---|---|
Daytime (solar zenith angle) | <87° | <80° | <85° | <70° |
Sensor | Daytime |
---|---|
ABI | 0.64 μm, 1.38 μm, 1.61 μm, 7.4 μm, 8.5 μm, 11.2 μm, 12.3 μm |
SEVIRI | 0.6 μm, 1.38 μm, 3.8 μm, 8.7 μm, 1.8 μm, 12.0 μm |
AHI | 0.64 μm, 0.86 μm, 1.6 μm, 3.9 μm, 7.3 μm, 8.6 μm, 10.4 μm, 11.2 μm, 12.4 μm |
AGRI (ours) | 0.65 μm, 1.375 μm, 1.61 μm, 3.75 μm, 8.5 μm, 10.7 μm, 12.0 μm |
Model | SZA | Matched Pixels | Accuracy (%) | POD (%) | Precision (%) | F1 (%) | FAR (%) |
---|---|---|---|---|---|---|---|
CACM-Net | <70° | 104,500 | 92.2 | 93.9 | 94.0 | 93.9 | 6.0 |
>70° | 5000 | 89.7 | 88.9 | 93.1 | 91.0 | 6.9 | |
NSMC product | <70° | 403,872 | 87.4 | 94.1 | 86.7 | 90.3 | 13.3 |
>70° | 18,598 | 77.5 | 95.2 | 73.6 | 83.0 | 26.4 |
Model | Accuracy (%) | POD (%) | Precision (%) | F1 (%) | FAR (%) |
---|---|---|---|---|---|
CACM-Net w/o CBAM | 90.9 | 92.4 | 93.3 | 92.8 | 6.7 |
CACM-Net | 91.7 | 92.3 | 94.4 | 93.3 | 5.6 |
CACM-Net +ReduceLROnPlateau | 92.2 | 93.8 | 94.0 | 93.9 | 6.0 |
Model | SZA | Threshold | Accuracy (%) | POD (%) | Precision (%) | F1 (%) | FAR (%) |
---|---|---|---|---|---|---|---|
CACM-Net | <70° | minimum | 92.2 | 93.9 | 94.0 | 93.9 | 6.0 |
0.5 | 92.1 | 94.7 | 93.1 | 93.9 | 7.0 | ||
>70° | minimum | 89.7 | 88.9 | 93.1 | 91.0 | 6.8 | |
0.5 | 89.5 | 89.1 | 92.7 | 90.8 | 7.3 |
Time | Latitude (°) | Longitude (°) | Typhoon Intensity |
---|---|---|---|
2022091306 | 22.1 | 138.9 | 1 |
2022091406 | 22.8 | 140.7 | 2 |
2022091506 | 23.4 | 137.9 | 4 |
2022091606 | 24.2 | 135.5 | 6 |
2022091706 | 26.7 | 132.5 | 6 |
2022091806 | 30.8 | 130.7 | 5 |
2022091906 | 35.4 | 132.1 | 3 |
2022092006 | 38.4 | 147.3 | 9 |
Data Source | Product | SZA | Matched Pixels | No Shift (%) | Cloudy Shift (%) | Clear Shift (%) |
---|---|---|---|---|---|---|
2023 | MODIS | <70° | 1,315,200 | 88.6 | 6.9 | 4.5 |
2023 | Himawari-9 | <70° | 1,699,800 | 86.3 | 6.1 | 7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Qiu, Z.; Zhao, D.; Song, B.; Liu, J.; Wang, Y.; Liao, K.; Li, K. CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite. Remote Sens. 2024, 16, 2660. https://doi.org/10.3390/rs16142660
Yang J, Qiu Z, Zhao D, Song B, Liu J, Wang Y, Liao K, Li K. CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite. Remote Sensing. 2024; 16(14):2660. https://doi.org/10.3390/rs16142660
Chicago/Turabian StyleYang, Jingyuan, Zhongfeng Qiu, Dongzhi Zhao, Biao Song, Jiayu Liu, Yu Wang, Kuo Liao, and Kailin Li. 2024. "CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite" Remote Sensing 16, no. 14: 2660. https://doi.org/10.3390/rs16142660
APA StyleYang, J., Qiu, Z., Zhao, D., Song, B., Liu, J., Wang, Y., Liao, K., & Li, K. (2024). CACM-Net: Daytime Cloud Mask for AGRI Onboard the FY-4A Satellite. Remote Sensing, 16(14), 2660. https://doi.org/10.3390/rs16142660