Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression
<p>The whole structure of the proposed DifferNet.</p> "> Figure 2
<p>The proposed local detail attention.</p> "> Figure 3
<p>The proposed local Transformer attention.</p> "> Figure 4
<p>Pseudo-color image and the ground truth of four datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) SpecTIR; (<b>d</b>) WHU-Hi-River.</p> "> Figure 5
<p>Pseudo-color image and the ground truth of the MUUFLGulfport dataset: (<b>a</b>) pseudo-color image; (<b>b</b>) ground truth.</p> "> Figure 6
<p>Effects of the number of base convolutional kernels <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </semantics></math> and the number of group channels <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mi>g</mi> <mi>r</mi> <mi>o</mi> <mi>u</mi> <mi>p</mi> </mrow> </msub> </semantics></math> on the performance of the proposed method for different datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 7
<p>Effects of the local detail attention position <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>l</mi> <mi>d</mi> </mrow> </msub> </semantics></math> and the local Transformer position <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mi>l</mi> <mi>t</mi> </mrow> </msub> </semantics></math> on the performance of the proposed method for different datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 8
<p>Detection performance of different methods on five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 9
<p>3D ROC curves (<math display="inline"><semantics> <msub> <mi>P</mi> <mi>D</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mi>F</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mi>τ</mi> </semantics></math>) on the five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 10
<p>2D ROC curves (<math display="inline"><semantics> <msub> <mi>P</mi> <mi>D</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>P</mi> <mi>F</mi> </msub> </semantics></math>) on the five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 11
<p>2D ROC curves (<math display="inline"><semantics> <msub> <mi>P</mi> <mi>D</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mi>τ</mi> </semantics></math>) on the five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 12
<p>2D ROC curves (<math display="inline"><semantics> <msub> <mi>P</mi> <mi>F</mi> </msub> </semantics></math>, <math display="inline"><semantics> <mi>τ</mi> </semantics></math>) on the five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 13
<p>Detection performance on five datasets with different noises: (<b>a</b>) without noise; (<b>b</b>) with Gaussian noise; (<b>c</b>) with salt and pepper noise; (<b>d</b>) with uniform multiplicative noise.</p> "> Figure 14
<p>Detection results of the proposed method with different attentions on the five datasets: (<b>a</b>) Bay Champagne; (<b>b</b>) Pavia; (<b>c</b>) MUUFLGulfport; (<b>d</b>) SpecTIR; (<b>e</b>) WHU-Hi-River.</p> "> Figure 15
<p>Detection results of the differential convolution and standard convolution on the five datasets: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>×</mo> <mn>5</mn> </mrow> </semantics></math> convolution; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> convolution; (<b>c</b>) differential convolution.</p> "> Figure 16
<p>Detection results of the Auto-AD with and without differential convolution on the five datasets: (<b>a</b>) results of Auto-AD; (<b>b</b>) results of Auto-AD with differential convolution.</p> ">
Abstract
:1. Introduction
- (1)
- A differential convolutional network is proposed to extract the local punctured neighborhood features for background reconstruction.
- (2)
- To enhance the capability of the network to extract details, a local detail attention module is proposed.
- (3)
- To enhance the focusing ability of the network on important features, a local Transformer attention module is proposed.
2. Proposed Method
2.1. Differential Convolutional Neural Network
2.2. Local Detail Attention
Algorithm 1 Pseudo-code of the proposed local detail attention. |
Input: |
, input outer window feature with shape [1, C, M, N] |
, input inner window feature with shape [1, C, M, N] |
Output: , output inner window feature with shape [1, C, M, N] |
Hyperparameters: the number of base convolutional kernels |
Operators: |
FA, fusion attention model |
Conv, Convolution |
Fusion coefficients C = FA() with shape [1, , M, N] |
for i = 1 to M |
for j = 1 to N |
W = zeros([1, C, 5, 5]) |
for k = 1 to do |
W = W + C[i, j, k] × W[K] |
end for |
[i, j, :] = Conv([i − 2:i + 2, j − 2:j + 2, :], W) |
end for |
end for |
= + |
2.3. Local Transformer Attention
Algorithm 2 Pseudo-code of the proposed local Transformer attention. |
Input: |
, input outer window feature with shape [1, C, M, N] |
, input inner window feature with shape [1, C, M, N] |
Output: , output inner window feature with shape [1, C, M, N] |
Hyperparameters: the number of group channels |
Operators: |
Conv(F, r), feature convolution on feature F with kernels size r |
act, Leaky ReLU activation Cat, Concatenation |
Generate query map Q = Conv(, 1) with output shape [1, C, M, N] |
Extract nonlocal features = act(Conv(Q, r)) with output shape [1, , M, N] |
Map to coefficients = Conv(, 1) with output shape [1, , M, N] |
for i = 1 to M |
for j = 1 to N |
[i, j, :] = [i−r:i+r, j−r:j+r, :]·Softmax([i, j, :]) |
end for |
end for |
= Cat(, ) |
= Conv(, 1) |
2.4. Loss Function
2.5. Anomaly Target Extraction
Algorithm 3 Pseudo-code of the proposed method. |
Input: Y, hyperspectral image with shape [1, B, M, N] |
Output: E, anomaly detection result |
Hyperparameters: |
the number of base convolutional kernels |
, the number of group channels |
, the position of local detail attention |
, the position of local Transformer attention |
, learning rate |
, maximum training epochs |
, the number of epochs at which learning rate decays |
, factor by which learning rate decays |
Operators: |
DN, differential network with local detail attention and local Transformer attention |
L, Loss function |
norm1, Vector L1 norm |
Construct the network using parameters , , , and . |
for i = 1 to do |
Predicting process [, , ] = DN(Y) |
Total loss is calculated by = L(, , ;Y) |
Weight gradients of back propagation G = |
if i mod is 0 do |
= |
end if |
Weights update by W = W − × G |
end for |
Background prediction [_, _, B]=DN(Y) |
Anomaly detection E = norm1(Y−B, dim=1) |
3. Results and Disscussion
3.1. Experimental Datasets
- (1)
- Bay Champagne: This dataset was collected at Bay Champagne, France, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor [52] on 4 July 2010. This HSI is in size with spatial resolution of 4.4 m, as shown in Figure 4a. The HSI data have 188 bands. All the bands are used in the experiments. The ship in the scene is regarded as an anomaly target.
- (2)
- (3)
- SpecTIR: This dataset was obtained from the SpecTIR hyperspectral aircraft Rochester experiment [53]. This HSI is in size with spatial resolution of 1 m and 120 in bands with spectral resolution of 5 nm. In the experiments, we select a area with 120 bands as the experimental dataset, as shown in Figure 4c. The artificial-colored square fabrics are regarded as the anomaly targets.
- (4)
- WHU-Hi-River: This dataset was collected at a long river bank in Honghu, Hubei Province of China on 21 March 2018 [54]. This HSI is in size with spatial resolution of 6 cm, as shown in Figure 4d. The HSI has 135 bands ranging from 0.4 m to 1 m. Two plastic plates and two gray panels are treated as anomaly targets.
- (5)
- MUUFLGulfport: This dataset was collected at University of Southern Mississippi Gulf Park Campus, Long Beach, Mississippi, in November 2010 [55,56]. This HSI is in size and 72 in bands with 10 nm spectral resolution ranging from 375 nm to 1050 nm, as shown in Figure 5. In the experiments, 64 bands are selected by removing the noise bands. Four cloth panels in the scene are regarded as anomaly targets.
3.2. Evaluation Metrics
3.3. Parameter Analysis and Experimental Setup
3.4. Experimental Results
3.5. Ablation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiang, P.; Zhou, H.; Li, H.; Song, S.; Tan, W.; Song, J.; Gu, L. Hyperspectral anomaly detection by local joint subspace process and support vector machine. Int. J. Remote Sens. 2020, 41, 3798–3819. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhao, L.; Chen, S.; Li, X. Robust Tensor Low-Rank Sparse Representation with Saliency Prior for Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2023. [Google Scholar] [CrossRef]
- Guan, J.; Lai, R.; Li, H.; Yang, Y.; Gu, L. DnRCNN: Deep recurrent convolutional neural network for HSI destriping. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 3255–3268. [Google Scholar] [CrossRef]
- Xiang, P.; Song, J.; Li, H.; Gu, L.; Zhou, H. Hyperspectral anomaly detection with harmonic analysis and low-rank decomposition. Remote Sens. 2019, 11, 3028. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Wang, M.; Arun, P.V.; Zhao, D.; Zhu, X.; Hu, J.; Li, H.; Zhou, H.; Qian, K. Hyperspectral Video Tracker Based on Spectral Deviation Reduction and a Double Siamese Network. Remote Sens. 2023, 15, 1579. [Google Scholar] [CrossRef]
- Zhao, D.; Zhu, X.; Zhang, Z.; Arun, P.V.; Cao, J.; Wang, Q.; Zhou, H.; Jiang, H.; Hu, J.; Qian, K. Hyperspectral video target tracking based on pixel-wise spectral matching reduction and deep spectral cascading texture features. Signal Process. 2023, 209, 109033. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, X.; Zhao, D.; Arun, P.V.; Zhou, H.; Qian, K.; Hu, J. Hyperspectral Video Target Tracking Based on Deep Features with Spectral Matching Reduction and Adaptive Scale 3D Hog Features. Remote Sens. 2022, 14, 5958. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, M.; Cheng, X.; Shi, L.; Gamba, P.; Wang, H. Dynamic Low-Rank and Sparse Priors Constrained Deep Autoencoders for Hyperspectral Anomaly Detection. IEEE Trans. Instrum. Meas. 2023, 73, 2500518. [Google Scholar] [CrossRef]
- Zhao, D.; Cao, J.; Zhu, X.; Zhang, Z.; Arun, P.V.; Guo, Y.; Qian, K.; Zhang, L.; Zhou, H.; Hu, J. Hyperspectral Video Target Tracking Based on Deep Edge Convolution Feature and Improved Context Filter. Remote Sens. 2022, 14, 6219. [Google Scholar] [CrossRef]
- Xu, K.; Zhang, H.; Li, Y.; Zhang, Y.; Lai, R.; Liu, Y. An ultra-low power tinyml system for real-time visual processing at edge. IEEE Trans. Circ. Syst. II-Express Briefs 2023, 70, 2640–2644. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Li, Z.; Wu, C.; Xu, M.; Shao, M. Eliminating spatial correlations of anomaly: Corner-Visible Network for Unsupervised Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5529114. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Hu, B.; Huang, K.; Arun, P.V.; Jia, X.; Zhao, D.; Wang, Q.; Zhou, H.; Yang, S. DSP-Net: A dynamic spectral-spatial joint perception network for hyperspectral target tracking. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5510905. [Google Scholar] [CrossRef]
- Xiang, P.; Li, H.; Song, J.; Wang, D.; Zhang, J.; Zhou, H. Spectral–Spatial complementary decision fusion for hyperspectral anomaly detection. Remote Sens. 2022, 14, 943. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B. Background Reconstruction via 3D-Transformer Network for Hyperspectral Anomaly Detection. Remote Sens. 2023, 15, 4592. [Google Scholar] [CrossRef]
- Wang, N.; Shi, Y.; Li, H.; Zhang, G.; Li, S.; Liu, X. Multi-Prior Graph Autoencoder with Ranking-Based Band Selection for Hyperspectral Anomaly Detection. Remote Sens. 2023, 15, 4430. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, K.; Xie, W.; Lei, J.; Zhang, X.; Du, Q. A Model-Driven Deep Mixture Network for Robust Hyperspectral Anomaly Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5522916. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Mu, Z.; Wang, M. FCAE-AD: Full Convolutional Autoencoder Based on Attention Gate for Hyperspectral Anomaly Detection. Remote Sens. 2023, 15, 4263. [Google Scholar] [CrossRef]
- Yang, X.; Tu, B.; Li, Q.; Li, J.; Plaza, A. Graph Evolution-Based Vertex Extraction for Hyperspectral Anomaly Detection. IIEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Zhang, H.; Du, Q. Hyperspectral anomaly detection: A survey. IEEE Geosci. Remote Sens. Mag. 2021, 10, 64–90. [Google Scholar] [CrossRef]
- Tu, B.; Yang, X.; Zhou, C.; He, D.; Plaza, A. Hyperspectral anomaly detection using dual window density. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8503–8517. [Google Scholar] [CrossRef]
- Chang, C.I. Hyperspectral anomaly detection: A dual theory of hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5511720. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Duan, P.; Kang, X. Hyperspectral anomaly detection with kernel isolation forest. IEEE Trans. Geosci. Remote Sens. 2019, 58, 319–329. [Google Scholar] [CrossRef]
- Matteoli, S.; Diani, M.; Corsini, G. A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 5–28. [Google Scholar] [CrossRef]
- Salem, M.B.; Ettabaa, K.S.; Hamdi, M.A. Anomaly detection in hyperspectral imagery: An overview. In Proceedings of the International Image Processing, Applications and Systems Conference, Sfax, Tunisia, 5–7 November 2014; pp. 1–6. [Google Scholar]
- Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Molero, J.M.; Garzon, E.M.; Garcia, I.; Plaza, A. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 801–814. [Google Scholar] [CrossRef]
- Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Kwon, H.; Nasrabadi, N.M. Hyperspectral anomaly detection using kernel RX-algorithm. In Proceedings of the 2004 International Conference on Image Processing, 2004, ICIP ’04, Singapore, 24–27 October 2004; Volume 5, pp. 3331–3334. [Google Scholar]
- Liu, J.; Hou, Z.; Li, W.; Tao, R.; Orlando, D.; Li, H. Multipixel anomaly detection with unknown patterns for hyperspectral imagery. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5557–5567. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Sun, J.; Liu, J. Hyperspectral anomaly detection using ensemble and robust collaborative representation. Inf. Sci. 2023, 624, 748–760. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1463–1474. [Google Scholar] [CrossRef]
- Peng, J.; Sun, W.; Li, H.C.; Li, W.; Meng, X.; Ge, C.; Du, Q. Low-rank and sparse representation for hyperspectral image processing: A review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 10–43. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Zhu, A.X.; Du, Q. Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction. ISPRS-J. Photogramm. Remote Sens. 2020, 169, 195–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, B.; Zhang, L.; Wang, S. A low-rank and sparse matrix decomposition-based Mahalanobis distance method for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1376–1389. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Hong, D.; Roy, S.K.; Chanussot, J. Learning tensor low-rank representation for hyperspectral anomaly detection. IEEE Trans. Cybern. 2022, 53, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, J.; Cheng, B.; Lin, F. Fractional fourier transform-based tensor RX for hyperspectral anomaly detection. Remote Sens. 2022, 14, 797. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Du, B.; Zhang, L. Hyperspectral anomaly detection based on machine learning: An overview. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 3351–3364. [Google Scholar] [CrossRef]
- Hu, X.; Xie, C.; Fan, Z.; Duan, Q.; Zhang, D.; Jiang, L.; Wei, X.; Hong, D.; Li, G.; Zeng, X.; et al. Hyperspectral anomaly detection using deep learning: A review. Remote Sens. 2022, 14, 1973. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, X.; Li, Y.; Lei, J.; Li, J.; Du, Q. Weakly supervised low-rank representation for hyperspectral anomaly detection. IEEE Trans. Cybern. 2021, 51, 3889–3900. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Du, Q. Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 597–601. [Google Scholar] [CrossRef]
- Rao, W.; Gao, L.; Qu, Y.; Sun, X.; Zhang, B.; Chanussot, J. Siamese transformer network for hyperspectral image target detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526419. [Google Scholar] [CrossRef]
- Xiang, P.; Ali, S.; Jung, S.K.; Zhou, H. Hyperspectral anomaly detection with guided autoencoder. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538818. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Zhang, L.; Zhong, Y. Auto-AD: Autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5503314. [Google Scholar] [CrossRef]
- Jiang, K.; Xie, W.; Lei, J.; Jiang, T.; Li, Y. LREN: Low-rank embedded network for sample-free hyperspectral anomaly detection. AAAI Conf. Artif. Intell. 2021, 35, 4139–4146. [Google Scholar] [CrossRef]
- Fu, X.; Jia, S.; Zhuang, L.; Xu, M.; Zhou, J.; Li, Q. Hyperspectral anomaly detection via deep plug-and-play denoising CNN regularization. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9553–9568. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Shi, X.; He, D.; Song, K.; Wang, X.; Qin, H.; Li, H. Kbnet: Kernel basis network for image restoration. arXiv 2023, arXiv:2303.02881. [Google Scholar]
- Chen, L.; Chu, X.; Zhang, X.; Sun, J. Simple baselines for image restoration. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2022; pp. 17–33. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5999–6009. [Google Scholar]
- Mao, X.; Qi, G.; Chen, Y.; Li, X.; Duan, R.; Ye, S.; He, Y.; Xue, H. Towards robust vision transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12042–12051. [Google Scholar]
- Schmidt, M.; Fung, G.; Rosales, R. Fast optimization methods for l1 regularization: A comparative study and two new approaches. In Proceedings of the Machine Learning: ECML 2007: 18th European Conference on Machine Learning, Warsaw, Poland, 17–21 September 2007; Proceedings 18. Springer: Berlin/Heidelberg, Germany, 2007; pp. 286–297. [Google Scholar]
- Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [Google Scholar] [CrossRef]
- Herwegab, J.A.; Kerekesa, J.P.; Weatherbeec, O.; Messingera, D.; van Aardta, J.; Ientiluccia, E.; Ninkova, Z.; Faulringa, J.; Raquenoa, N.; Meolad, J. Spectir hyperspectral airborne rochester experiment data collection campaign. In Proceedings of the SPIE, Bellingham, WA, USA, 27 December 2012. [Google Scholar]
- Wang, S.; Wang, X.; Zhong, Y.; Zhang, L. Hyperspectral anomaly detection via locally enhanced low-rank prior. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6995–7009. [Google Scholar] [CrossRef]
- Gader, P.; Zare, A.; Close, R.; Aitken, J.; Tuell, G. Muufl Gulfport Hyperspectral and Lidar Airborne Data Set; Tech. Rep. REP-2013-570; University Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Du, X.; Zare, A. Technical Report: Scene Label Ground Truth Map for MUUFL Gulfport Data Set; University of Florida: Gainesville, FL, USA, 2017. [Google Scholar]
- Chang, C.I. An effective evaluation tool for hyperspectral target detection: 3D receiver operating characteristic curve analysis. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5131–5153. [Google Scholar] [CrossRef]
Datasets | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
RX | CRD | 2S-GLRT | PCA-TLRSR | GAED | Auto-AD | LREN | DeCNND | DifferNet | |
Bay Champagne | 0.9998 | 0.9998 | 0.9946 | 0.9985 | 0.9889 | 0.9276 | 0.9669 | 0.9938 | 0.9999 |
Pavia | 0.9538 | 0.9453 | 0.9868 | 0.9664 | 0.9348 | 0.9767 | 0.9102 | 0.9601 | 0.9973 |
MUUFLGulfport | 0.9980 | 0.9886 | 0.9878 | 0.9844 | 0.9760 | 0.8453 | 0.9849 | 0.9819 | 0.9986 |
SpecTIR | 0.9748 | 0.9870 | 0.9844 | 0.9824 | 0.9664 | 0.9812 | 0.9716 | 0.9710 | 0.9980 |
WHU-Hi-River | 0.9988 | 0.9802 | 0.9971 | 0.9988 | 0.9716 | 0.9954 | 0.9599 | 0.9899 | 0.9993 |
Datasets | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
RX | CRD | 2S-GLRT | PCA-TLRSR | GAED | Auto-AD | LREN | DeCNND | DifferNet | |
Bay Champagne | 0.5314 | 0.6854 | 0.3967 | 0.6848 | 0.3422 | 0.4743 | 0.5265 | 0.5642 | 0.6962 |
Pavia | 0.1343 | 0.3479 | 0.1607 | 0.3197 | 0.0924 | 0.1018 | 0.3284 | 0.2254 | 0.2876 |
MUUFLGulfport | 0.3481 | 0.2198 | 0.2804 | 0.5253 | 0.2403 | 0.0110 | 0.7499 | 0.4175 | 0.5106 |
SpecTIR | 0.4263 | 0.2432 | 0.1815 | 0.4278 | 0.1374 | 0.1149 | 0.3928 | 0.4879 | 0.5304 |
WHU-Hi-River | 0.1698 | 0.0642 | 0.4098 | 0.3862 | 0.1133 | 0.1049 | 0.2329 | 0.2894 | 0.5686 |
Datasets | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
RX | CRD | 2S-GLRT | PCA-TLRSR | GAED | Auto-AD | LREN | DeCNND | DifferNet | |
Bay Champagne | 0.0259 | 0.0685 | 0.0080 | 0.0955 | 0.0160 | 0.1141 | 0.0754 | 0.0900 | 0.0919 |
Pavia | 0.0233 | 0.1338 | 0.0186 | 0.0748 | 0.0085 | 0.0013 | 0.0750 | 0.0390 | 0.0339 |
MUUFLGulfport | 0.0172 | 0.0025 | 0.0011 | 0.1665 | 0.0269 | 0.0034 | 0.2290 | 0.0959 | 0.0717 |
SpecTIR | 0.0555 | 0.0453 | 0.0052 | 0.0915 | 0.0167 | 0.0053 | 0.0550 | 0.1140 | 0.0529 |
WHU-Hi-River | 0.0150 | 0.0019 | 0.0064 | 0.0286 | 0.0061 | 0.0008 | 0.0388 | 0.0508 | 0.0504 |
Datasets | GPU | Time(s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RX | CRD | 2S-GLRT | PCA-TLRSR | GAED | Auto-AD | LREN | DeCNND | DifferNet | ||
Bay Champagne | ✗ | 0.0437 | 2.7322 | 173.9472 | 6.4567 | 449.0402 | 58.2303 | 118.0271 | - | 626.4889 |
✓ | - | - | - | - | - | 8.3890 | 56.2896 | 21.5019 | 36.6918 | |
Pavia | ✗ | 0.0387 | 5.5085 | 33.5038 | 8.2466 | 502.2639 | 291.2721 | 231.4080 | - | 1913.1071 |
✓ | - | - | - | - | - | 23.0904 | 116.5415 | 26.7872 | 91.4145 | |
MUUFLGulfport | ✗ | 0.1687 | 366.6264 | 4602.1543 | 40.7141 | 163.3412 | 1201.6475 | 638.6995 | - | 3479.0125 |
✓ | - | - | - | - | - | 61.2890 | 315.9486 | 51.3641 | 251.3833 | |
SpecTIR | ✗ | 0.0344 | 4.3991 | 16.0232 | 3.8254 | 270.6453 | 41.9761 | 109.0282 | - | 704.3134 |
✓ | - | - | - | - | - | 2.9343 | 52.4552 | 23.9450 | 31.9733 | |
WHU-Hi-River | ✗ | 0.0780 | 117.1494 | 38.8183 | 11.0424 | 346.9338 | 110.9527 | 189.1533 | - | 1606.3941 |
✓ | - | - | - | - | - | 8.1995 | 91.7981 | 25.3940 | 78.3617 |
Datasets | |||||
---|---|---|---|---|---|
Maxmum | Minimum | Mean | Variance | Range | |
Bay Champagne | 0.9999 | 0.9961 | 0.9990 | ||
Pavia | 0.9973 | 0.9928 | 0.9944 | ||
MUUFLGulfport | 0.9986 | 0.9949 | 0.9979 | ||
SpecTIR | 0.9980 | 0.9908 | 0.9965 | ||
WHU-Hi-River | 0.9993 | 0.9838 | 0.9981 |
Noises | Datasets | ||||
---|---|---|---|---|---|
Bay Champagne | Pavia | MUUFLGulfport | SpecTIR | WHU-Hi-River | |
no noise | 0.9999 | 0.9973 | 0.9986 | 0.9980 | 0.9993 |
Gaussian | 0.9535 | 0.9530 | 0.9774 | 0.8907 | 0.9889 |
Salt & pepper | 0.9943 | 0.9648 | 0.9867 | 0.9439 | 0.9889 |
Multiplicative noise | 0.9925 | 0.9280 | 0.9914 | 0.9866 | 0.9921 |
Noises | Datasets | ||||
---|---|---|---|---|---|
Bay Champagne | Pavia | MUUFLGulfport | SpecTIR | WHU-Hi-River | |
no noise | 0.0089 | 0.0026 | 0.0086 | 0.0023 | |
Gaussian | 0.0162 | 0.2046 | 0.0332 | 0.3867 | 0.0293 |
Salt & pepper | 0.0159 | 0.0638 | 0.0352 | 0.0759 | 0.0336 |
Multiplicative noise | 0.0206 | 0.1479 | 0.0129 | 0.0263 | 0.0318 |
Versions | Datasets | ||||
---|---|---|---|---|---|
Bay Champagne | Pavia | MUUFLGulfport | SpecTIR | WHU-Hi-River | |
No Attention | 0.9991 | 0.9943 | 0.9977 | 0.9959 | 0.9990 |
With LTA1 | 0.9989 | 0.9944 | 0.9982 | 0.9946 | 0.9923 |
With LTA2 | 0.9996 | 0.9936 | 0.9982 | 0.9947 | 0.9990 |
With LTA3 | 0.9995 | 0.9943 | 0.9980 | 0.9942 | 0.9988 |
With LDA1 | 0.9958 | 0.9930 | 0.9982 | 0.9960 | 0.9990 |
With LDA2 | 0.9995 | 0.9941 | 0.9983 | 0.9960 | 0.9990 |
With LDA3 | 0.9994 | 0.9943 | 0.9982 | 0.9959 | 0.9992 |
DifferNet | 0.9999 | 0.9973 | 0.9986 | 0.9980 | 0.9993 |
Input Size | Methods | Storage (Byte) | Time(s) | |
---|---|---|---|---|
CPU | GPU | |||
100 × 100 | Transformer | 1549.28 M | 0.2829 | 0.0012 |
LTA | 372.52 M | 0.0427 | 0.0009 | |
150 × 150 | Transformer | 3919.28 M | 1.4296 | 0.2428 |
LTA | 2488.64 M | 0.1513 | 0.0012 |
Datasets | Versions | ||
---|---|---|---|
5 × 5 Conv | 3 × 3 Conv | Differ Conv | |
Bay Champagne | 0.9962 | 0.9981 | 0.9991 |
Pavia | 0.9918 | 0.9923 | 0.9943 |
MUUFLGulfport | 0.9899 | 0.9946 | 0.9977 |
SpecTIR | 0.9877 | 0.9884 | 0.9959 |
WHU-Hi-River | 0.9976 | 0.9980 | 0.9990 |
Auto-AD | Datasets | ||||
---|---|---|---|---|---|
Bay Champagne | Pavia | MUUFLGulfport | SpecTIR | WHU-Hi-River | |
with DC | 0.9276 | 0.9767 | 0.8453 | 0.9812 | 0.9954 |
without DC | 0.9997 | 0.9873 | 0.9980 | 0.9934 | 0.9911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xiang, P.; Teng, X.; Zhao, D.; Li, H.; Song, J.; Zhou, H.; Tan, W. Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression. Remote Sens. 2024, 16, 434. https://doi.org/10.3390/rs16030434
Zhang J, Xiang P, Teng X, Zhao D, Li H, Song J, Zhou H, Tan W. Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression. Remote Sensing. 2024; 16(3):434. https://doi.org/10.3390/rs16030434
Chicago/Turabian StyleZhang, Jiajia, Pei Xiang, Xiang Teng, Dong Zhao, Huan Li, Jiangluqi Song, Huixin Zhou, and Wei Tan. 2024. "Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression" Remote Sensing 16, no. 3: 434. https://doi.org/10.3390/rs16030434
APA StyleZhang, J., Xiang, P., Teng, X., Zhao, D., Li, H., Song, J., Zhou, H., & Tan, W. (2024). Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression. Remote Sensing, 16(3), 434. https://doi.org/10.3390/rs16030434