Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil
<p>Distribution maps of borehole locations where (<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span> are available, and histograms of (<b>c</b>) <span class="html-italic">D<sub>bedrock</sub></span> and (<b>d</b>) <span class="html-italic">V<sub>Ssoil</sub></span>.</p> "> Figure 2
<p>(<b>a</b>) Map of South Korea and study area (Seoul), (<b>b</b>) DEM used in this study, (<b>c</b>) slope gradient (SG), (<b>d</b>) local convexity (LC), and (<b>e</b>) surface texture (ST) derived from DEM in South Korea.</p> "> Figure 2 Cont.
<p>(<b>a</b>) Map of South Korea and study area (Seoul), (<b>b</b>) DEM used in this study, (<b>c</b>) slope gradient (SG), (<b>d</b>) local convexity (LC), and (<b>e</b>) surface texture (ST) derived from DEM in South Korea.</p> "> Figure 3
<p>(<b>a</b>) Satellite image for the Seoul region and slope gradient maps with (<b>b</b>) 3 × 3 kernel window, (<b>c</b>) 5 × 5 kernel window, and (<b>d</b>) 7 × 7 kernel window.</p> "> Figure 4
<p>Maps of local convexity for Seoul region with (<b>a</b>–<b>c</b>) 3 × 3 kernel windows, (<b>d</b>–<b>f</b>) 5 × 5 kernel windows, and (<b>g</b>–<b>i</b>) 7 × 7 kernel windows with 1 m (<b>a</b>,<b>d</b>,<b>g</b>), 2 m (<b>b</b>,<b>e</b>,<b>h</b>), and 3 m (<b>c</b>,<b>f</b>,<b>i</b>) thresholds.</p> "> Figure 5
<p>Maps of surface texture for Seoul region with (<b>a</b>–<b>c</b>) 3 × 3 kernel windows, (<b>d</b>–<b>f</b>) 5 × 5 kernel windows, and (<b>g</b>–<b>i</b>) 7 × 7 kernel windows with 1 m (<b>a</b>,<b>d</b>,<b>g</b>), 2 m (<b>b</b>,<b>e</b>,<b>h</b>), and 3 m (<b>c</b>,<b>f</b>,<b>i</b>) thresholds.</p> "> Figure 6
<p>Maps of (<b>a</b>) surface geology from 1:50,000 resolution geology map and (<b>b</b>) mountainous region obtained from national cadastral map for the Seoul region.</p> "> Figure 7
<p>Schematic drawing showing partitioning slope gradients, local convexity, and surface texture based on nested means suggested by Iwahashi and Pike [<a href="#B14-remotesensing-16-00233" class="html-bibr">14</a>].</p> "> Figure 8
<p>Maps of terrain classes of Seoul region classified using automatic terrain classification scheme proposed by Iwahashi and Pike [<a href="#B14-remotesensing-16-00233" class="html-bibr">14</a>] for Case 1 to Case 9 which correspond to (<b>a</b>–<b>i</b>).</p> "> Figure 8 Cont.
<p>Maps of terrain classes of Seoul region classified using automatic terrain classification scheme proposed by Iwahashi and Pike [<a href="#B14-remotesensing-16-00233" class="html-bibr">14</a>] for Case 1 to Case 9 which correspond to (<b>a</b>–<b>i</b>).</p> "> Figure 9
<p>Maps of terrain classes in the Seoul region classified using the Sequentially Optimized Classification scheme for <span class="html-italic">D<sub>bedrock</sub></span> prediction in Case 1 to Case 9 which are correspond to (<b>a</b>–<b>i</b>).</p> "> Figure 10
<p>Maps of terrain classes in the Seoul region classified using the Non-Sequentially Optimized Classification scheme for <span class="html-italic">D<sub>bedrock</sub></span> prediction in Case 1 to Case 9, which correspond to (<b>a</b>–<b>i</b>).</p> "> Figure 11
<p>Boxplots of (<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span> for each terrain class using NOC with Case 2.</p> "> Figure 12
<p>(<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> versus elevation and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span> versus elevation for all classes. A fit model at each class is shown as red line.</p> "> Figure 13
<p>Maps of (<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> (red color gradient) and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span> (blue color gradient) for the Korean Peninsula.</p> "> Figure 14
<p>Comparison between standard deviations of residuals for each class using median predictions and elevation models for (<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span>.</p> "> Figure 14 Cont.
<p>Comparison between standard deviations of residuals for each class using median predictions and elevation models for (<b>a</b>) <span class="html-italic">D<sub>bedrock</sub></span> and (<b>b</b>) <span class="html-italic">V<sub>Ssoil</sub></span>.</p> "> Figure 15
<p>Maps of mountainous and surface geology, and the classification of terrain class maps for the Busan (<b>a</b>–<b>c</b>), Pohang (<b>d</b>–<b>f</b>), and Goheung (<b>g</b>–<b>i</b>) regions based on this study (<b>a</b>,<b>d</b>,<b>g</b>), the world (<b>b</b>,<b>e</b>,<b>h</b>), and Japan (<b>c</b>,<b>f</b>,<b>i</b>).</p> ">
Abstract
:1. Introduction
2. Data
2.1. Ground Investigations
2.2. Topographic Features
2.2.1. Slope Gradient (SG)
2.2.2. Local Convexity (LC)
2.2.3. Surface Texture (ST)
2.3. Geological Features
3. Methods of Terrain Classification
3.1. Analysis Cases
3.2. Automated Classification (AC)
- (1)
- Divide the SG into two groups based on the SGTH1, which is the mean of the whole SG;
- (2)
- Divide the nested LC, where the SG is steeper than SGTH1 (SG1), into two groups based on the LCTH1, which is the mean of the nested LC (i.e., LC1 that is greater than LCTH1 and LC2 that is lower than LCTH1);
- (3)
- Divide the nested ST, where the SG is steeper than SGTH1 (SG1), into two groups based on the STTH1, which is the mean of the nested ST (i.e., ST1 that is greater than STTH1 and ST2 that is lower than STTH1);
- (4)
- Denote regions with [SG1, LC1, and ST1] as Class 1, with [SG1, LC1, ST2] as Class 2, with [SG1, LC2, ST1] as Class 3, and with [SG1, LC2, ST2] as Class 4.
3.3. Sequentially Optimized Classification (SOC)
3.4. Non-Sequentially Optimized Classification (NOC)
4. Results
4.1. Prediction of Bedrock Depth and Average VS of Soil Layers per Terrain Class
4.2. Regression with DEM
5. Discussion
5.1. Dbedrock and VSsoil Prediction Performance
5.2. Comparison with Other Thresholds
6. Conclusions
- (1)
- The results of this study indicate the capability of the NOC method to not only predict subsurface conditions but also reflect the geologic formation of the landscape. The Dbedrock and VSsoil are the result of geologic formations, so the terrain classes derived from our study can be applied to geological interpretations.
- (2)
- The incorporation of a regression model based on DEM elevation significantly enhanced the prediction accuracy for Dbedrock, and showed a moderate enhancement in predicting VSsoil.
- (3)
- This study highlights the importance of considering regional specificity when setting thresholds for terrain classification, as evidenced by the varying effectiveness of world and Japan cases applied to South Korean regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MOLIT. General Seismic Design. KDS 17 10 00; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2018.
- Wald, D.J.; Allen, T.I. Topographic slope as a proxy for seismic site conditions and amplification. Bull. Seismol. Soc. Am. 2009, 97, 1379–1395. [Google Scholar] [CrossRef]
- Allen, T.I.; Wald, D.J. On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull. Seismol. Soc. Am. 2009, 99, 935–943. [Google Scholar] [CrossRef]
- Yang, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar]
- Choi, I.; Yoo, B.; Kwak, D. Development of Korean Peninsula VS30 map based on proxy using linear regression analysis. KSCE J. Civ. Environ. Eng. 2022, 42, 35–44. (In Korean) [Google Scholar]
- Yang, H.Q.; Chu, J.; Qi, X.; Wu, S.; Chiam, K. Bayesian evidential learning of soil-rock interface identification using boreholes. Comput. Geotech. 2023, 162, 105638. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Hu, Y.; Guo, X.; He, X.; Kek, H.Y.; Ku, T.; Goh, S.H.; Leung, C.F. Predicting geological interfaces using stacking ensemble learning with multi-scale features. Can. Geotech. J. 2023, 60, 1036–1054. [Google Scholar] [CrossRef]
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Toutin, T. Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2241–2247. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- Hofton, M.A.; Minster, J.B.; Blair, J.B. Decomposition of laser altimeter waveforms. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1989–1996. [Google Scholar] [CrossRef]
- National Geographic Information Institute (NGII). Available online: http://www.ngii.go.kr (accessed on 18 July 2023).
- National Spatial Data Infrastructure Portal (NSDI). Available online: http://www.nsdi.go.kr (accessed on 15 August 2023).
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Vilanova, S.P.; Narciso, J.; Carvalho, J.P.; Lopes, I.; Quinta0Ferreira, M.; Pinto, C.C.; Borges, J.; Nemser, E.S. Developing a Geologically-Based VS30 Site-Conditions Model for Portugal: Methodology and Assessment of the Performance of Proxies. Bull. Seismol. Soc. Am. 2018, 108, 322–337. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Feizizadeh, B.; Matsuoka, M. DEM-based Vs30 map and terrain surface classification in nationwide scale—A case study in Iran. ISPRS Int. J. Geo-Inf. 2019, 8, 537. [Google Scholar] [CrossRef]
- Irsyam, M.; Asrurifak, M.; Mikhail, R.; Wahdiny, I.I.; Rustiani, S. Development of Nationwide Vs30 Map and Calibrated Conversion Table for Indonesia using Automated Topographical Classification. J. Eng. Technol. Sci. 2017, 49, 457–471. [Google Scholar] [CrossRef]
- Kim, H.S.; Sun, C.G.; Lee, M.G.; Cho, H.I. Terrain Proxy-Based Site Classification for Seismic Zonation in North Korea within a Geospatial Data-Driven Workflow. Remote Sens. 2021, 13, 1844. [Google Scholar] [CrossRef]
- Yong, A.; Hough, S.E.; Iwahashi, J.; Braverman, A. A terrain-based site-conditions map of California with implications for the contiguous United States. Bull. Seismol. Soc. Am. 2012, 102, 114–128. [Google Scholar] [CrossRef]
- Furze, S.; O’Sullivan, A.M.; Allard, S.; Pronk, T.; Curry, R.A. A high-resolution, random forest approach to mapping depth-to-bedrock across shallow overburden and post-glacial terrain. Remote Sens. 2021, 13, 4210. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Available online: https://www.geoinfo.or.kr (accessed on 15 August 2023). (In Korean)
- Heo, G.S.; Kwak, D.Y. VS prediction model using SPT-N values and soil layers in South Korea. J. Korean Geotech. Soc. 2022, 53–66. (In Korean) [Google Scholar]
- Horn, B.K. Hill shading and the reflectance map. Proc. IEEE 1981, 61, 14–47. [Google Scholar] [CrossRef]
- Iwahashi, J.; Yamazaki, D.; Nakano, T.; Endo, R. Classification of topography for ground vulnerability assessment of alluvial plains and mountains of Japan using 30 m DEM. Prog. Earth Planet. Sci. 2021, 8, 3. [Google Scholar] [CrossRef]
- Korean Institute of Geoscience and Mineral Resources (KIGAM). Available online: https://data.kigam.re.kr (accessed on 1 February 2023). (In Korean).
Class | Landforms and Lithology | Class | Landforms and Lithology |
---|---|---|---|
1 | Mountain. Cretaceous accretionary complexes (plutonic rocks) | 9 | Volcanic hill. Holocene pyroclastic flow deposits |
2 | Volcano. Holocene mafic volcanic rocks | 10 | Volcanic footslope. Pleistocene volcanic debris |
3 | Mountain footslope. Chert (exotic blocks) | 11 | Valley bottom plain. Pliocene marine sedimentary rocks |
4 | Mountain footslope. Holocene mafic volcanic rocks | 12 | Alluvial fan. Holocene sediments |
5 | Volcanic hill. Pleistocene pyroclastic flow deposits | 13 | Terrace covered with volcanic ash soil. Pleistocene sediments |
6 | Volcanic footslope. Pleistocene volcanic debris | 14 | Alluvial fan. Pleistocene sediments |
7 | Mountain footslope. Pliocene mafic volcanic rocks | 15 | Sand dunes. Holocene sediments |
8 | Mountain footslope. Pleistocene volcanic debris | 16 | Natural levee. Holocene sediments |
Case | Threshold for LC (m) | Window Size 1 and Calculation Radius for ST (grids) | Thresholds for ST (m) |
---|---|---|---|
1 | 1 | 3 × 3, 10 | 1 |
2 | 1 | 3 × 3, 10 | 2 |
3 | 1 | 3 × 3, 10 | 3 |
4 | 2 | 5 × 5, 15 | 1 |
5 | 2 | 5 × 5, 15 | 2 |
6 | 2 | 5 × 5, 15 | 3 |
7 | 3 | 7 × 7, 20 | 1 |
8 | 3 | 7 × 7, 20 | 2 |
9 | 3 | 7 × 7, 20 | 3 |
Case | AC | SOC | NOC | |||
---|---|---|---|---|---|---|
(Dbedrock) | (VSsoil) | (Dbedrock) | (VSsoil) | (Dbedrock) | (VSsoil) | |
1 | 0.871 | 0.234 | 0.819 | 0.211 | 0.721 | 0.19 |
2 | 0.865 | 0.235 | 0.807 | 0.21 | 0.831 | 0.229 |
3 | 0.869 | 0.235 | 0.781 | 0.211 | 0.833 | 0.225 |
4 | 0.868 | 0.234 | 0.8 | 0.212 | 0.833 | 0.221 |
5 | 0.866 | 0.234 | 0.791 | 0.208 | 0.784 | 0.232 |
6 | 0.864 | 0.235 | 0.773 | 0.209 | 0.832 | 0.211 |
7 | 0.867 | 0.234 | 0.776 | 0.219 | 0.833 | 0.228 |
8 | 0.868 | 0.235 | 0.793 | 0.206 | 0.824 | 0.218 |
9 | 0.864 | 0.236 | 0.775 | 0.21 | 0.819 | 0.22 |
Scheme/Case | Phase | SG (deg) | LC | ST |
---|---|---|---|---|
AC/Case 2 | 1 | 11.08 | 0.254 | 0.234 |
2 | 4.67 | 0.205 | 0.174 | |
3 | 1.86 | 0.152 | 0.109 | |
SOC/Case 2 | 1 | 2.1 | 0.214 | 0.263 |
2 | 0.32 | 0.154 | 0.046 | |
3 | 0.12 | 0.071 | 0.030 | |
NOC/Case 2 | 1 | 3.77 | 0.188 | 0.232 |
2 | 1.88 | 0.242 | 0.079 | |
3 | 0.58 | 0.197 | 0.048 |
Terrain Class | Number of Data Points | Dbedrock | VSsoil | ||
---|---|---|---|---|---|
xm (m) | xm (m/s) | ||||
1 | 21,597 | 5.0 | 0.953 | 304 | 0.254 |
2 | 18,071 | 6.9 | 0.925 | 312 | 0.252 |
3 | 63 | 9.1 | 0.879 | 304 | 0.201 |
4 | 10,487 | 8.0 | 0.885 | 307 | 0.237 |
5 | 4154 | 5.5 | 0.927 | 300 | 0.258 |
6 | 8 | 12.5 | 0.878 | 301 | 0.266 |
7 | 12,954 | 8.0 | 0.855 | 300 | 0.241 |
8 | 7121 | 10.3 | 0.868 | 301 | 0.233 |
9 | 5032 | 6.8 | 0.872 | 296 | 0.236 |
10 | 126 | 8.9 | 0.727 | 318 | 0.225 |
11 | 12,280 | 9.6 | 0.781 | 293 | 0.220 |
12 | 11,062 | 13.5 | 0.822 | 297 | 0.215 |
13 | 883 | 7.3 | 0.751 | 285 | 0.228 |
14 | 17 | 5.6 | 0.644 | 255 | 0.216 |
15 | 5250 | 10.8 | 0.768 | 279 | 0.201 |
16 | 13,404 | 17.5 | 0.757 | 277 | 0.187 |
Class | Dbedrock | VSsoil | ||||||
---|---|---|---|---|---|---|---|---|
p-Value | p-Value | |||||||
1 | 7.88 | −0.111 | 0.95 | <0.1% | 296.6 | 0.009 | 0.254 | <0.1% |
2 | 7.38 | −0.041 | 0.925 | <0.1% | 265.4 | 0.038 | 0.25 | <0.1% |
3 | 1.02 | 0.434 | 0.849 | 4.1% | 148.1 | 0.152 | 0.185 | <0.1% |
4 | 10.31 | −0.084 | 0.882 | <0.1% | 257.0 | 0.047 | 0.234 | <0.1% |
5 | 11.43 | −0.18 | 0.914 | <0.1% | 302.5 | 0.004 | 0.258 | 46.3% |
6 | 11.09 | −0.059 | 0.877 | 91.4% | 163.4 | 0.16 | 0.243 | 30.9% |
7 | 11.98 | −0.125 | 0.847 | <0.1% | 273.1 | 0.028 | 0.239 | <0.1% |
8 | 18.54 | −0.212 | 0.852 | <0.1% | 270.5 | 0.036 | 0.232 | <0.1% |
9 | 16.72 | −0.23 | 0.839 | <0.1% | 279.2 | 0.017 | 0.235 | <0.1% |
10 | 42.07 | −0.433 | 0.69 | <0.1% | 410.9 | −0.075 | 0.221 | 4.6% |
11 | 16.97 | −0.179 | 0.758 | <0.1% | 261.7 | 0.037 | 0.216 | <0.1% |
12 | 32.00 | −0.321 | 0.77 | <0.1% | 283.6 | 0.019 | 0.214 | <0.1% |
13 | 16.93 | −0.218 | 0.713 | <0.1% | 277.1 | 0.015 | 0.227 | 3.4% |
14 | 12.84 | −0.166 | 0.642 | 78.3% | 647.4 | −0.229 | 0.206 | 24.8% |
15 | 18.60 | −0.202 | 0.724 | <0.1% | 256.8 | 0.034 | 0.196 | <0.1% |
16 | 34.87 | −0.341 | 0.656 | <0.1% | 270.2 | 0.019 | 0.186 | <0.1% |
Region | Phase | SG (deg) | LC | ST |
---|---|---|---|---|
Korea (90 m grid; NOC, Case 2) | 1 | 3.77 | 0.188 | 0.232 |
2 | 1.88 | 0.242 | 0.079 | |
3 | 0.58 | 0.197 | 0.048 | |
World (1 km grid; AC) | 1 | 1.76 | 0.456 | 0.669 |
2 | 0.48 | 0.454 | 0.639 | |
3 | 0.20 | 0.450 | 0.590 | |
Japan (270 m grid; AC) | 1 | 8.05 | 0.462 | 0.650 |
2 | 3.26 | 0.451 | 0.606 | |
3 | 1.30 | 0.439 | 0.539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, I.; Kwak, D. Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil. Remote Sens. 2024, 16, 233. https://doi.org/10.3390/rs16020233
Choi I, Kwak D. Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil. Remote Sensing. 2024; 16(2):233. https://doi.org/10.3390/rs16020233
Chicago/Turabian StyleChoi, Inhyeok, and Dongyoup Kwak. 2024. "Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil" Remote Sensing 16, no. 2: 233. https://doi.org/10.3390/rs16020233
APA StyleChoi, I., & Kwak, D. (2024). Optimizing Terrain Classification Methods for the Determination of Bedrock Depth and the Average Shear Wave Velocity of Soil. Remote Sensing, 16(2), 233. https://doi.org/10.3390/rs16020233