Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing
<p>Different geometrical configurations for wave scattering from the ocean surface. <math display="inline"><semantics> <mrow> <msup> <mstyle mathvariant="bold" mathsize="normal"> <mi>I</mi> </mstyle> <mi>i</mi> </msup> </mrow> </semantics></math> is the incoming radiance vectors from the solid angle <math display="inline"><semantics> <mrow> <mi>d</mi> <msup> <mi mathvariant="normal">Ω</mi> <mi>i</mi> </msup> </mrow> </semantics></math> incident from the <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>θ</mi> <mi>i</mi> </msup> <mo>,</mo> <msup> <mi>φ</mi> <mi>i</mi> </msup> <mo stretchy="false">)</mo> </mrow> </semantics></math> direction on a microfacet (pink area). <math display="inline"><semantics> <mrow> <msup> <mstyle mathvariant="bold" mathsize="normal"> <mi>I</mi> </mstyle> <mi>s</mi> </msup> </mrow> </semantics></math> is the outgoing radiance vectors from the solid angle <math display="inline"><semantics> <mrow> <mi>d</mi> <msup> <mi mathvariant="normal">Ω</mi> <mi>s</mi> </msup> </mrow> </semantics></math> in the <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <msup> <mi>θ</mi> <mi>s</mi> </msup> <mo>,</mo> <msup> <mi>φ</mi> <mi>s</mi> </msup> <mo stretchy="false">)</mo> </mrow> </semantics></math> direction.</p> "> Figure 2
<p>The spatial distribution of the scattering energy simulated by the two-scale pBRDF matrix at 37 GHz and 10 m/s wind speed in the specular direction. The unit of each matrix element is sr<sup>−1</sup>. The SST is 285 K, the SSS is 35‰, and the ocean wave spectrum is the modified Durden and Vesecky spectrum (DV2). (<b>a</b>) Rvvvv, (<b>b</b>) Rvhvh, (<b>c</b>) Re(Rvhvv), (<b>d</b>) Im(Rvhvv), (<b>e</b>) Rhvhv, (<b>f</b>) Rhhhh, (<b>g</b>) Re(Rhhhv), (<b>h</b>) Im(Rhhhv), (<b>i</b>) 2Re(Rvvhv), (<b>j</b>) 2Re(Rvhhh), (<b>k</b>) Re(Rvvhh+Rvhhv), (<b>l</b>) Im(Rhhvv+Rhvvh), (<b>m</b>) 2Im(Rvvhv), (<b>n</b>) 2Im(Rvhhh), (<b>o</b>) Im(Rvvhh+Rvhhv), (<b>p</b>) Re(Rhhvv-Rhvvh).</p> "> Figure 3
<p>Comparison of three different emissivity models. The ordinate is the emissivity of each component. The wind speed is 10 m/s, the SST is 285 K, the frequency is 37 GHz, the observation angle is 45°, the SSS is 35‰, and the ocean wave spectrum is DV2. (<b>a</b>) vertical component, (<b>b</b>) horizontal component, (<b>c</b>) the third component, (<b>d</b>) the fourth component.</p> "> Figure 4
<p>The dependencies of the backscattering NRCSs predicted by the two-scale pBRDF matrix on RWD at a 10 m/s wind speed and the comparisons with other simulations or data. (<b>a</b>) Simulations of <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>v</mi> </mrow> </semantics></math> (solid line) and <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>h</mi> </mrow> </semantics></math> (dotted line) polarizations at the Ku-band. (<b>b</b>) Simulations of <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>h</mi> </mrow> </semantics></math> polarizations at the Ku-band. (<b>c</b>) Simulations of <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>v</mi> </mrow> </semantics></math> (solid line) and <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>h</mi> </mrow> </semantics></math> (dotted line) polarizations at the C-band. (<b>d</b>) Simulations of <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>h</mi> </mrow> </semantics></math> polarizations at the C-band. The Ku-band and C-band simulations are at incidence zenith angles of 45° and 35°, respectively. The black dots’ line, stars’ line, and triangles’ line are the <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>v</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>h</mi> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>h</mi> </mrow> </semantics></math> experimental data, respectively. The SSS is set to 35‰, and the SST is 285 K. The cyan, orange color, and purple colors represent the simulations of the two-scale pBRDF matrix with Kudryatsev, Elfouhaily, and DV2 spectra, respectively. The yellow color represents the classical TSM simulation. The magenta and green colors represent the simulations of the NSCAT4 and CMOD7 simulations, respectively.</p> "> Figure 5
<p>The dependencies of the backscattering NRCSs predicted by the two-scale pBRDF matrix on the incidence angle at the X-band and a 10 m/s wind speed. The results are shown for three different RWDs: (<b>a</b>) RWD = 0°, (<b>b</b>) RWD = 90°, and (<b>c</b>) RWD = 180°. (<b>d</b>) The polarization ratios under different RWDs and the comparisons with other X-band polarization ratio models. The SSS is set to 35‰, the SST is 285 K, and the ocean wave spectrum is DV2.</p> "> Figure 6
<p>The dependencies of the backscattering NRCSs predicted by the two-scale pBRDF matrix on the wind speed at the L-band. The incidence zenith angle is set to 46°, the SSS is set to 35‰, the SST is 285 K, and the ocean wave spectrum is DV2. (<b>a</b>) 5 m/s; (<b>b</b>) 10 m/s; (<b>c</b>) 15 m/s; (<b>d</b>) 20 m/s; (<b>e</b>) 25 m/s; and (<b>f</b>) 30 m/s.</p> "> Figure 7
<p>The dependencies of the backscattering NRCSs predicted by the two-scale pBRDF matrix on the wind speed at the C-band. The incidence zenith angle is set to 45°, the SSS is set to 35‰, the SST is 285 K, and the ocean wave spectrum is DV2. (<b>a</b>) 5 m/s; (<b>b</b>) 10 m/s; (<b>c</b>) 15 m/s; (<b>d</b>) 20 m/s; (<b>e</b>) 25 m/s; and (<b>f</b>) 30 m/s.</p> "> Figure 8
<p>The dependencies of the backscattering NRCSs predicted by the two-scale pBRDF matrix on the wind speed at the Ku-band. The incidence zenith angle is set to 45°, the SSS is set to 35‰, the SST is 285 K, and the ocean wave spectrum is DV2. (<b>a</b>) 5 m/s; (<b>b</b>) 10 m/s; (<b>c</b>) 15 m/s; (<b>d</b>) 20 m/s; (<b>e</b>) 25 m/s; and (<b>f</b>) 30 m/s.</p> "> Figure 9
<p>The dependencies of bistatic-scattering NRCSs on the scattering zenith angle at the L-band with a wind speed of 10 m/s. The incidence zenith angle is set to 45°, and the incidence azimuth angle is 0°. The scattering azimuth angles are set to (<b>a</b>) <math display="inline"><semantics> <mrow> <msup> <mi>φ</mi> <mi>s</mi> </msup> </mrow> </semantics></math> = 0°, (<b>b</b>) <math display="inline"><semantics> <mrow> <msup> <mi>φ</mi> <mi>s</mi> </msup> </mrow> </semantics></math> = 30°, (<b>c</b>) <math display="inline"><semantics> <mrow> <msup> <mi>φ</mi> <mi>s</mi> </msup> </mrow> </semantics></math> = 60°, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msup> <mi>φ</mi> <mi>s</mi> </msup> </mrow> </semantics></math> = 90°, respectively. The SSS is set to 35‰, and the SST is 285 K.</p> "> Figure 10
<p>Comparisons of bistatic NRCSs simulated using the two-scale pBRDF matrix (solid line) and SSA2 (dotted line) at the L-band. The results are obtained for 10 m/s as a function of the RWD, within the plane of incidence, and <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mi>i</mi> </msup> </mrow> </semantics></math> = 45°, <math display="inline"><semantics> <mrow> <msup> <mi>θ</mi> <mi>s</mi> </msup> </mrow> </semantics></math> = 35 °. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>v</mi> <mi>v</mi> </mrow> </semantics></math> (dark cyan line) and <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>h</mi> </mrow> </semantics></math> (orange-red line) polarizations, (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>R</mi> <mi>R</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> circular polarization, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>σ</mi> <mrow> <mi>L</mi> <mi>R</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> circular polarization.</p> "> Figure 11
<p>Density scatter plot from the two-scale pBRDF matrix simulations and ASCAT measurements.</p> "> Figure 12
<p>The dependencies of differences (measurements minus simulations) on wind speed and incidence zenith angle. Color represents the difference value.</p> "> Figure 13
<p>Density scatter plot from the two-scale pBRDF matrix simulations and CYGNSS measurements.</p> "> Figure 14
<p>The dependencies of the differences (measurements minus simulations) on wind speed and incidence zenith angle.</p> "> Figure 15
<p>The plot of circularly polarized bistatic NRCSs came from CYGNSS measurements (blue plus), the two-scale pBRDF matrix (magenta circle), and GO simulations (black circle) versus the wind speed.</p> ">
Abstract
:1. Introduction
2. Model and Method
2.1. Two-Scale pBRDF Matrix
2.2. Relationship between NRCSs and the Two-Scale pBRDF Matrix
3. Results
3.1. Numerical Results of Backscattering NRCS
3.2. Numerical Results of Bistatic NRCS
3.3. Comparison with MetOP-C ASCAT Scatterometer
3.4. Comparison with CYGNSS Reflectometry
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alerskans, E.; Zinck, A.S.P.; Nielsen-Englyst, P.; Høyer, J.L. Exploring machine learning techniques to retrieve sea surface temperatures from passive microwave measurements. Remote Sens. Environ. 2022, 281, 113–220. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.C. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks. GISci. Remote Sens. 2021, 58, 812–830. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Dinnat, E.P. The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space. Remote Sens. 2020, 12, 1381. [Google Scholar] [CrossRef]
- Pospelov, M.N. Surface wind speed retrieval using passive microwave polarimetry: The dependence on atmospheric stability. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1166–1171. [Google Scholar] [CrossRef]
- Weng, F.; Grody, N.C. Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res. Atmos. 1994, 99, 25535–25551. [Google Scholar]
- Tian, Y.; Wen, B.; Zhou, H.; Wang, C.; Yang, J.; Huang, W. Wave Height Estimation from First-Order Backscatter of a Dual-Frequency High Frequency Radar. Remote Sens. 2017, 9, 1186. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Yu, P.; Xu, W.X.; Zhong, X.J.; Johannessen, J.A.; Yan, X.H.; Geng, X.P.; He, Y.R.; Lu, W.F. A Neural Network Method for Retrieving Sea Surface Wind Speed for C-Band SAR. Remote Sens. 2022, 14, 2269. [Google Scholar] [CrossRef]
- Robitaille, P.M. On the validity of Kirchhoff’s law of thermal emission. IEEE Trans. Plasma Sci. 2003, 31, 1263–1267. [Google Scholar] [CrossRef]
- Veysoglu, M.E.; Yueh, H.A.; Shin, R.T.; Kong, J.A. Polarimetric Passive Remote Sensing of Periodic Surfaces. J. Electromagn. Waves Appl. 1991, 5, 267–280. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff’s law. Radio Sci. 1993, 28, 471–480. [Google Scholar] [CrossRef]
- Priest, R.; Meier, S. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces. Opt. Eng. 2002, 41, 988–993. [Google Scholar] [CrossRef]
- Hyde, M.W.; Schmidt, J.D.; Havrilla, M.J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. Opt. Express 2009, 17, 22138–22153. [Google Scholar] [CrossRef] [PubMed]
- Diner, D.J.; Xu, F.; Martonchik, J.V.; Rheingans, B.E.; Geier, S.; Jovanovic, V.M.; Davis, A.; Chipman, R.A.; McClain, S.C. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager. Atmosphere 2012, 3, 591–619. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A. Development of a modified two-scale electromagnetic model simulating both active and passive microwave measurements: Comparison to data remotely sensed over the ocean. Radio Sci. 2002, 37, 1–11. [Google Scholar] [CrossRef]
- Sobieski, P.; Guissard, A.; Baufays, C. Synergic inversion technique for active and passive microwave remote sensing of the ocean. IEEE Trans. Geosci. Remote Sens. 1991, 29, 391–406. [Google Scholar] [CrossRef]
- English, S.; Prigent, C.; Johnson, B.; Yueh, S.; Dinnat, E.; Boutin, J.; Newman, S.; Anguelova, M.; Meissner, T.; Kazumori, M.; et al. Reference-Quality Emission and Backscatter Modeling for the Ocean. Bull. Am. Meteorol. Soc. 2020, 101, E1593–E1601. [Google Scholar] [CrossRef]
- He, L.; Weng, F. Improved Microwave Ocean Emissivity and Reflectivity Models Derived from Two-Scale Roughness Theory. Adv. At. Sci. 2023, 40, 1923–1938. [Google Scholar] [CrossRef]
- Guo, L.X.; Guo, X.Y.; Zhang, L.B. Bidirectional reflectance distribution function modeling of one-dimensional rough surface in the microwave band. Chin. Phys. B 2014, 23, 114102. [Google Scholar] [CrossRef]
- David, L.; Fawwaz, U. Microwave Radar and Radiometric Remote Sensing; Artech: Morristown, NJ, USA, 2015; Volume 1. [Google Scholar]
- Bettenhausen, M.H.; Smith, C.K.; Bevilacqua, R.M.; Wang, N.Y.; Gaiser, P.W.; Cox, S. A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens. 2006, 44, 597–610. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Boutin, J.; Caudal, G.; Etcheto, J.; Waldteufel, P. Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. Int. J. Remote Sens. 2002, 23, 5117–5122. [Google Scholar] [CrossRef]
- Johnson, J.; Theunissen, W.H.; Ellingson, S.W. A Study of Sea Emission Models for WindSAT. In Proceedings of the IGARSS ’03—2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; pp. 717–719. [Google Scholar]
- Lyzenga, D.R.; Vesecky, J.F. Two-Scale Polarimetric Emissivity Model: Efficiency Improvements and Comparisons with Data. Prog. Electromagn. Res. 2002, 37, 205–219. [Google Scholar] [CrossRef]
- Pierdicca, N.; Marzano, F.S.; Guerriero, L.; Pampaloni, P. On the Effect of Atmospheric Emission Upon the Passive Microwave Polarimetric Response of an Azimuthally Anisotropic Sea Surface. J. Electromagn. Waves Appl. 2000, 14, 355–358. [Google Scholar] [CrossRef]
- Yueh, S.H.; Nghiem, S.V.; Kwok, R. Comparison of a polarimetric scattering and emission model with ocean backscatter and brightness measurements. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 1, pp. 258–260. [Google Scholar]
- Anderson, R. Matrix description of radiometric quantities. Appl. Opt. 1991, 30, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Flynn, D.S.; Alexander, C.J.O.E. Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix. Opt. Eng. 1995, 34, 1646–1650. [Google Scholar]
- Sun, Y. Statistical ray method for deriving reflection models of rough surfaces. J. Opt. Soc. Am. 2007, 24, 724–744. [Google Scholar] [CrossRef] [PubMed]
- Torrance, K.E.; Sparrow, E.M. Theory for Off-Specular Reflection from Roughened Surfaces*. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; American Meteorological Society: Boston, MA, USA, 1994. [Google Scholar]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Kazumori, M.; English, S.J. Use of the ocean surface wind direction signal in microwave radiance assimilation. Q. J. R. Meteorol. Soc. 2014, 141, 1354–1375. [Google Scholar] [CrossRef]
- Kilic, L.; Prigent, C.; Jimenez, C.; Turner, E.; Hocking, J.; English, S.; Thomas, M.; Emmanuel, D. Development of the SURface Fast Emissivity Model for Ocean (SURFEM-Ocean) Based on the PARMIO Radiative Transfer Model. Earth Space Sci. 2023, 10, 11. [Google Scholar] [CrossRef]
- Saunders, R.; Brunel, P.; English, S.; Bauer, P.; O’Keeffe, U.; Francis, P.; Rayer, P. RTTOV-8-Science and Validation Report; Met Office Forecasting and Research Technical Document (Technical Report No. NWPSAF-MO-TV-007); EUMETSAT: Darmstadt, Germany, 2006. [Google Scholar]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Voronovich, A.G.; Zavorotny, V.U. Full-Polarization Modeling of Monostatic and Bistatic Radar Scattering from a Rough Sea Surface. IEEE Trans. Antennas Propag. 2014, 62, 3. [Google Scholar] [CrossRef]
- Liu, Q.; Weng, F.; English, S.J. An Improved Fast Microwave Water Emissivity Model. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1238–1250. [Google Scholar] [CrossRef]
- Stogryn, A. The emissivity of sea foam at microwave frequencies. J. Geophys. Res. (1896–1977) 1972, 77, 1658–1666. [Google Scholar] [CrossRef]
- Monahan, E.C.; O‘Muircheartaigh, I.G. Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens. 1986, 7, 627–642. [Google Scholar] [CrossRef]
- Yueh, S.H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1400–1418. [Google Scholar] [CrossRef]
- Yueh, S.H.; Wilson, W.J.; Dinardo, S. Polarimetric radar remote sensing of ocean surface wind. IEEE Trans. Geosci. Remote Sens. 2002, 40, 793–800. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Vachon, P.; Li, X.; Pichel, W.; Guo, J.; He, Y. Ocean Vector Winds Retrieval from C-Band Fully Polarimetric SAR Measurements. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4252–4261. [Google Scholar] [CrossRef]
- Donald, J.H.; Thompson, R.; Mouche, A.; Winstead, S.; Sterner, R.; Monaldo, M. Comparison of high-resolution wind fields extracted from TerraSAR-X SAR imagery with predictions from the WRF mesoscale model. J. Geophys. Res. 2012, 117, c2. [Google Scholar]
- Elfouhaily, T.; Thompson, D.R.; Vandemark, D.; Chapron, B. A New Bistatic Model for Electromagnetic Scattering from Perfectly Conducting Random Surfaces. Waves Random Media 2001, 9, 33–43. [Google Scholar] [CrossRef]
- Shao, W.; Li, X.; Lehner, S.; Guanc, C. Development of polarization ratio model for sea surface wind field retrieval from TerraSAR-X HH polarization data. Int. J. Remote Sens. 2014, 35, 11–12. [Google Scholar] [CrossRef]
- Yueh, S.H.; Tang, W.Q.; Fore, G.; Alexander, F.; Neumann, G.; Hayashi, A.; Freedman, A.; Chaubell, J.; Lagerloef, G. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4619–4632. [Google Scholar] [CrossRef]
- Ruf, C.; Lyons, A.; Unwin, M.; Dickinson, J.; Rose, R.; Rose, D.; Vincent, M. CYGNSS: Enabling the Future of Hurricane Prediction [Remote Sensing Satellites]. IEEE Geosci. Remote Sens. Mag. 2013, 1, 52–67. [Google Scholar] [CrossRef]
- Gleason, S.T.; Ruf, C.S.; Clarizia, M.P.; O‘Brien, A.J. Calibration and Unwrapping of the Normalized Scattering Cross Section for the Cyclone Global Navigation Satellite System. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2495–2509. [Google Scholar] [CrossRef]
- Clarizia, M.P. Investigating the Effect of Ocean Waves on GNSS-R Microwave Remote Sensing Measurements. Ph.D. Thesis, University of Southampton, Southampton, UK, 2012; 219p. [Google Scholar]
- Huang, F.; Garrison, J.; Leidner, S.; Annane, B.; Hoffman, R.; Giuseppe, G.; Stoffelen, A. A Forward Model for Data Assimilation of GNSS Ocean Reflectometry Delay-Doppler Maps. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2643–2656. [Google Scholar] [CrossRef]
- Miranda, J.; Vall-llossera, M.; Camps, A.; Duffo, N. Sea surface emissivity at L-band: Swell effects. IEEE Int. Geosci. Remote Sens. Symp. 2002, 5, 2623–2625. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Weng, F.; Wen, J.; Jia, T. Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing. Remote Sens. 2024, 16, 1551. https://doi.org/10.3390/rs16091551
He L, Weng F, Wen J, Jia T. Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing. Remote Sensing. 2024; 16(9):1551. https://doi.org/10.3390/rs16091551
Chicago/Turabian StyleHe, Lingli, Fuzhong Weng, Jinghan Wen, and Tong Jia. 2024. "Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing" Remote Sensing 16, no. 9: 1551. https://doi.org/10.3390/rs16091551
APA StyleHe, L., Weng, F., Wen, J., & Jia, T. (2024). Polarized Bidirectional Reflectance Distribution Function Matrix Derived from Two-Scale Roughness Theory and Its Applications in Active Remote Sensing. Remote Sensing, 16(9), 1551. https://doi.org/10.3390/rs16091551