Abstract
The Geometrical Optics (GO) approach and the FAST Emissivity Model (FASTEM) are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations, but their applications are limited in specific conditions. In this study, a two-scale reflectivity model (TSRM) and a two-scale emissivity model (TSEM) are developed from the two-scale roughness theory. Unlike GO which only computes six non-zero elements in the reflectivity matrix, The TSRM includes 16 elements of Stokes reflectivity matrix which are important for improving radiative transfer simulation accuracy in a scattering atmosphere. It covers the frequency range from L- to W-bands. The dependences of all TSRM elements on zenith angle, wind speed, and frequency are derived and analyzed in details. For a set of downwelling radiances in microwave frequencies, the reflected upwelling brightness temperature (BTs) are calculated from both TSRM and GO and compared for analyzing their discrepancies. The TSRM not only includes the effects of GO but also accounts for the small-scale Bragg scattering effect in an order of several degrees in Kelvins in brightness temperature. Also, the third and fourth components of the Stokes vector can only be produced from the TSRM. For the emitted radiation, BT differences in vertical polarization between a TSEM and FASTEM are generally less than 5 K when the satellite zenith angle is less than 40°, whereas those for the horizontal component can be quite significant, greater than 20 K.
摘 要
几何光学(GO)方法和快速发射率模型(FASTEM)被广泛用于估算大气辐射传输模拟中的地表辐射,但其应用在特定条件下受到限制。在这项研究中,从海洋粗糙度理论出发,建立了一个双尺度反射率(TSRM)和发射率模型(TSEM)。与GO只计算反射率矩阵中的6个非零元素不同,TSRM包括所有16个有效元素, 用于提高大气辐射传输模拟精度。特别是,TSRM是首个覆盖从L到W波段频率范围的反射率矩阵模型。本文详细分析了所有TSRM元素对天顶角、风速和频率的依赖性。对于一组微波下行辐亮度,通过TSRM和GO计算出反射的上行亮温(BTs),并对其进行分析比较,以突显它们之间的差异。TSRM不仅包括了GO的影响,而且还考虑了小尺度的布拉格散射效应。在亮温幅度上,两种模式可导致几度的差异。另外,TSRM可以模拟生产斯托克斯矢量第三和第四分量。对于发射辐射,当卫星天顶角小于40°时,TSEM和FASTEM之间的垂直极化BT差异一般小于5K,而水平极化的差异较大,大于20K。
Similar content being viewed by others
References
Bettenhausen, M. H., C. K. Smith, R. M. Bevilacqua, N. Y. Wang, P. W. Gaiser, and S. Cox, 2006: A nonlinear optimization algorithm for windsat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44(3), 597–610, https://doi.org/10.1109/TGRS.2005.862504.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Debye, P., 1929: Polar Molecules. Dover Publications Inc., 172 pp.
Dinnat, E. P., J. Boutin, G. Caudal, J. Etcheto, and P. Waldteufel, 2002: Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. Int. J. Remote Sens., 23(23), 5117–5122, https://doi.org/10.1080/01431160210163119.
Dinnat, E. P., J. Boutin, G. Caudal, and J. Etcheto, 2003: Issues concerning the sea emissivity modeling at L band for retrieving surface salinity. Radio Sci., 38(4), 25–1–25–4, https://doi.org/10.1029/2002RS002637.
Donelan, M. A., and W. J. Pierson, 1987: Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92(C5), 4971–5029, https://doi.org/10.1029/JC092iC05p04971.
Durden, S., and J. Vesecky, 1985: A physical radar cross-section model for a wind-driven sea with swell. IEEE Journal of Oceanic Engineering, 10, 445–451, https://doi.org/10.1109/JOE.1985.1145133.
English, S. J., and T. J. Hewison, 1998: Fast generic millimeter-wave emissivity model. Proceedings of the SPIE 3503, Microwave Remote Sensing of the Atmosphere and Environment, Beijing, China, SPIE, 288–300, https://doi.org/10.1117/12.319490.
Fan, X. H., H. B. Chen, Z. G. Han, and L. F. Lin, 2010: An improved atmospheric vector radiative transfer model incorporating rough ocean boundaries. Atmos. Ocean. Sci. Lett., 3, 139–144, https://doi.org/10.1080/16742834.2010.11446860.
Germain, K. M. S., G. Poe, and P. Gaiser, 1998: Modeling of the polarimetric microwave signal due to ocean surface wind vector. Proceedings of 1988 IEEE International Geoscience and Remote Sensing Symposium Sensing and Managing the Environment, Seattle, WA, USA, IEEE, https://doi.org/10.1109/IGARSS.1998.702196.
Guillou, C., W. Ellison, L. Eymard, K. Lamkaouchi, C. Prigent, G. Delbos, G. Balana, and S. A. Boukabara, 1998: Impact of new permittivity measurements on sea surface emissivity modeling in microwaves. Radio Sci., 33(3), 649–667, https://doi.org/10.1029/97RS02744.
He, X. Q., Y. Bai, Q. K. Zhu, and F. Gong, 2010: A vector radiative transfer model of coupled ocean-atmosphere system using matrix-operator method for rough sea-surface. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(10), 1426–1448, https://doi.org/10.1016/j.jqsrt.2010.02.014.
Jin, X. C., X. Q. He, P. Shanmugam, Y. Bai, F. Gong, S. J. Yu, 2021: Comprehensive vector radiative transfer model for estimating sea surface salinity from L-Band microwave radiometry. IEEE Trans. Geosci. Remote Sens., 59(6), 4888–4903, https://doi.org/10.1109/TGRS.2020.3007878.
Johnson, J. T., 2006: An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface. IEEE Trans. Geosci. Remote Sens., 44(3), 560–568, https://doi.org/10.1109/TGRS.2005.855999.
Johnson, J. T., W. H. Theunissen, and S. W. Ellingson, 2004: A study of sea emission models for WindSat. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, IEEE, https://doi.org/10.1109/IGARSS.2003.1293894.
Kazumori, M., and S. J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation. Quart. J. Roy. Meteor. Soc., 141(689), 1354–1375, https://doi.org/10.1002/qj.2445.
Kilic, L., C. Prigent, J. Boutin, T. Meissner, S. English, and S. Yueh, 2019: Comparisons of ocean radiative transfer models with SMAP and AMSR2 observations. J. Geophys. Res., 124, 7683–7699, https://doi.org/10.1029/2019JC015493.
Klein, L., and C. Swift, 1977: An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25(1), 104–111, https://doi.org/10.1109/TAP.1977.1141539.
Liebe, H. J., G. A. Hufford, and T. Manabe, 1991: A model for the complex permittivity of water at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves, 12, 659–675, https://doi.org/10.1007/BF01008897.
Liu, Q. H., F. Z. Weng, and S. J. English, 2011: An improved fast microwave water emissivity model. IEEE Trans. Geosci. Remote Sens., 49(4), 1238–1250, https://doi.org/10.1109/TGRS.2010.2064779.
Lyzenga, D. R., and J. F. Vesecky, 2002: Two-scale polarimetric emissivity model: Efficiency improvements and comparisons with data. Progress in Electromagnetics Research, 37, 205–219, https://doi.org/10.2528/PIER02101000.
Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias, V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: The passive and active microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere. Geoscientific Model Development, 13(9), 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020.
Meissner, T., and F. J. Wentz, 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42(9), 1836–1849, https://doi.org/10.1109/TGRS.2004.831888.
Meissner, T., and F. J. Wentz, 2012: The emissivity of the ocean surface between 6 and 90 GHz Over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50(8), 3004–3026, https://doi.org/10.1109/TGRS.2011.2179662.
Monahan, E. C., and I. G. O’Muircheartaigh, 1986: Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens., 7, 627–642, https://doi.org/10.1080/01431168608954716.
Perrin, F., 1942: Polarization of light scattered by isotropic opalescent media. The Journal of Chemical Physics, 10(7), 415–427, https://doi.org/10.1063/1.1723743.
Prigent, C., F. Aires, D. Wang, S. Fox, and C. Harlow, 2017: Sea-surface emissivity parametrization from microwaves to millimetre waves. Quart. J. Roy. Meteor. Soc., 14, 596–605, https://doi.org/10.1002/qj.2953.
Pierdicca N., F. S. Marzano, L. Guerriero, P. Pampaloni, 2000: On the Effect of Atmospheric Emission Upon the Passive Microwave Polarimetric Response of an Azimuthally Anisotropic Sea Surface. Journal of Electromagnetic Waves and Applications, 14 (3), 355–358, https://doi.org/10.1163/156939300X00879.
Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125(556), 1407–1425, https://doi.org/10.1002/qj.1999.49712555615.
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geoscientific Model Development, 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018.
Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27(12), 2502–2509, https://doi.org/10.1364/AO.27.002502.
Stogryn, A., 2003: The emissivity of sea foam at microwave frequencies. Proceedings of the 1971 Antennas and Propagation Society International Symposium, Los Angeles, CA, USA, IEEE, https://doi.org/10.1109/APS.1971.1150923.
Van de Hulst, H. C., 1957: Light Scattering by Small Particles. John Wiley and Sons.
Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64(11), 3799–3807, https://doi.org/10.1175/2007JAS2112.1.
Weng, F. Z., and Q. H. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 2633–2646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.
Weng, F. Z., X. W. Yu, Y. H. Duan, J. Yang, and J. J. Wang, 2020: Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37(2), 131–136, https://doi.org/10.1007/s00376-019-9170-2.
Wentz, F. J., 1975: A two-scale scattering model for foam-free sea microwave brightness temperatures. J. Geophys. Res., 80(24), 3441–3446, https://doi.org/10.1029/JC080i02p003441.
Wu, S. T., and A. K. Fung, 1972: A noncoherent model for microwave emissions and backscattering from the sea surface. J. Geophys. Res., 77(30), 5917–5929, https://doi.org/10.1029/JC077i030p05917.
Yin, X. B., J. Boutin, E. Dinnat, Q. T. Song, and A. Martin, 2016: Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach. Remote Sensing of Environment, 180, 221–233, https://doi.org/10.1016/j.rse.2016.02.005.
Yueh, S. H., 1997: Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens., 35(6), 1400–1418, https://doi.org/10.1109/36.649793.
Yueh, S. H., S. V. Nghiem, and R. Kwok, 1994: Comparison of a polarimetric scattering and emission model with ocean backscatter and brightness measurements. Proceedings of the 1994 International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, IEEE, https://doi.org/10.1109/IGARSS.1994.399097.
Zhang, Y., Y. E. Yang, and J. A. Kong, 2002: A composite model for estimation of polarimetric thermal emission FROM foam-covered wind-driven ocean surface. Progress in Electromagnetics Research, 37, 143–190, https://doi.org/10.2528/PIER02040800.
Acknowledgements
This study is funded by the National Key Research and Development Program (Grant No. 2022YFC3004200), the National Key Research and Development Program of China (Grant No. 2021YFB3900400), Hunan Provincial Natural Science Foundation of China (Grant No. 2021JC0009), and the National Natural Science Foundation of China (Grant No. U2142212).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• TSRM is a generic microwave reflectivity matrix model that covers the frequency range from L-band to W-band.
• TSRM allows for computing the reflected upwelling radiances of four Stokes components.
• TSEM is the generic microwave emissivity model and allows for computing the emitted upwelling radiances of four Stokes components.
This paper is a contribution to the special topic on Applications of the New Generation of Fast Radiative Transfer Models (ARMS) in Satellite Data Assimilation and Remote Sensing.
Rights and permissions
About this article
Cite this article
He, L., Weng, F. Improved Microwave Ocean Emissivity and Reflectivity Models Derived from Two-Scale Roughness Theory. Adv. Atmos. Sci. 40, 1923–1938 (2023). https://doi.org/10.1007/s00376-023-2247-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-023-2247-y