Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates
"> Figure 1
<p>Map of the Arctic Ocean showing the locations of stations from various datasets.</p> "> Figure 2
<p>This scatter plot illustrates water-type classification according to the level of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>a</mi> </mrow> <mrow> <mi>c</mi> <mi>d</mi> <mi>m</mi> </mrow> </msub> <mo>(</mo> <mn>443</mn> <mo>)</mo> </mrow> </semantics></math> and Chl in the water column.</p> "> Figure 3
<p>Structure of the spectrally and vertically resolved Arctic primary-production model. Yellow, gray, blue, green and magenta frames refer to model inputs, methods described in the literature, intermediate variables, constant values and photosynthesis models, respectively (courtesy of Marcel Babin and Simon Bélanger) [<a href="#B47-remotesensing-16-00892" class="html-bibr">47</a>,<a href="#B50-remotesensing-16-00892" class="html-bibr">50</a>,<a href="#B51-remotesensing-16-00892" class="html-bibr">51</a>,<a href="#B52-remotesensing-16-00892" class="html-bibr">52</a>,<a href="#B53-remotesensing-16-00892" class="html-bibr">53</a>].</p> "> Figure 4
<p>(<b>a</b>) Climatology chlorophyll product in August derived through the blended empirical algorithm; (<b>b</b>) kernel density plot of Chl measurements collected in August from PPARR (red) and Chl climatology product in August (green); (<b>c</b>) climatology primary product in August produced through the Arctic primary-production model using OC-CCI daily reflectance and chlorophyll products; (<b>d</b>) kernel density plot of PP measurements collected in August from PPARR (red) and PP climatology product in August (green).</p> "> Figure 5
<p>Comparisons between measured and estimated Chl using (<b>a</b>) OC3Mv6, (<b>b</b>) OC3V, (<b>c</b>) OC4v6, (<b>d</b>) OC4P, (<b>e</b>) OC4L, (<b>f</b>) AO.emp, (<b>g</b>) GSM01, and (<b>h</b>) AO.GSM in 4 water types (see <a href="#remotesensing-16-00892-t002" class="html-table">Table 2</a> for definition).</p> "> Figure 6
<p>Pair-to-pair comparison between GSM01 and AO.GSM; circles and x symbols refer to the same data pairs derived from GSM01 and AO.GSM, and diamonds refer to the data failed using AO.GSM but succeeding using GSM01.</p> "> Figure 7
<p>Boxplots of percentage difference between measured and estimated Chl (red), between PP derived using measured Chl and PP estimated from algorithm-derived Chl (green) for water type (<b>a</b>) chl.ACDM, (<b>b</b>) CHL.ACDM, (<b>c</b>) chl.acdm, and (<b>d</b>) CHL.acdm (see <a href="#remotesensing-16-00892-t002" class="html-table">Table 2</a> for definition). The labels above boxplots show MAE; those below show the numbers of samples classified as a certain water type.</p> "> Figure 8
<p>Comparisons between PP estimated from in situ Chl and PP estimated from (<b>a</b>) OC3Mv6, (<b>b</b>) OC3V, (<b>c</b>) OC4v6, (<b>d</b>) OC4P, (<b>e</b>) OC4L, (<b>f</b>) AO.emp, (<b>g</b>) GSM01, and (<b>h</b>) AO.GSM-derived Chl for 4 water types (see <a href="#remotesensing-16-00892-t002" class="html-table">Table 2</a> for definition). The black circle in subfigure (<b>g</b>) is used to illustrate the mix of water types in terms of the level of Chl in the water column.</p> "> Figure 9
<p>Relationship between PP absolute error (PP estimated from in situ Chl subtracted from measured PP) and in situ Chl through matchup analyses. Labels refer to percentage errors of Chl estimates. A value of 4.99 means overestimation by 399%, while a value of 0.57 reflects 43% underestimation.</p> "> Figure 10
<p>(<b>a</b>) Relationship between in situ PP and Chl from PPARR; (<b>b</b>) relationship between PP estimates and in situ Chl using the dataset used for algorithm evaluation. The black dashed line is the regression line between in situ PP and Chl from PPARR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Data
2.2. Satellite Products
2.3. Descriptions of Existing Operational Ocean-Color Algorithms
2.3.1. Empirical Algorithms
2.3.2. Semi-Analytical Algorithm—GSM
2.4. Evaluation Criteria
2.5. Primary-Production Model
2.6. Climatology Products
2.7. Matchup Analysis
3. Results
3.1. Overview of Product Performance
3.2. Bio-Optical Algorithm Evaluations
3.3. Impacts on PP Estimates
4. Discussions and Perspectives
4.1. Chl Retrieval Error
4.2. PP Estimatation Error
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.-L.; et al. Freshwater and Its Role in the Arctic Marine System: Sources, Disposition, Storage, Export, and Physical and Biogeochemical Consequences in the Arctic and Global Oceans. J. Geophys. Res. Biogeosciences 2016, 121, 675–717. [Google Scholar] [CrossRef]
- Peterson, B.J.; Holmes, R.M.; McClelland, J.W.; Vörösmarty, C.J.; Lammers, R.B.; Shiklomanov, A.I.; Shiklomanov, I.A.; Rahmstorf, S. Increasing River Discharge to the Arctic Ocean. Science 2002, 298, 2171–2173. [Google Scholar] [CrossRef]
- Raymond, P.A.; McClelland, J.W.; Holmes, R.M.; Zhulidov, A.V.; Mull, K.; Peterson, B.J.; Striegl, R.G.; Aiken, G.R.; Gurtovaya, T.Y. Flux and Age of Dissolved Organic Carbon Exported to the Arctic Ocean: A Carbon Isotopic Study of the Five Largest Arctic Rivers: ARCTIC RIVER DOC. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Babin, M.; Arrigo, K.; Bélanger, S.; Forget, M.-H. Ocean Colour Remote Sensing in Polar Seas; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2015; Available online: https://ioccg.org/wp-content/uploads/2015/10/ioccg-report-16.pdf (accessed on 20 January 2018).
- Matsuoka, A.; Ortega-Retuerta, E.; Bricaud, A.; Arrigo, K.R.; Babin, M. Characteristics of Colored Dissolved Organic Matter (CDOM) in the Western Arctic Ocean: Relationships with Microbial Activities. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 44–52. [Google Scholar] [CrossRef]
- Stedmon, C.; Amon, R.; Rinehart, A.; Walker, S. The Supply and Characteristics of Colored Dissolved Organic Matter (CDOM) in the Arctic Ocean: Pan Arctic Trends and Differences. Mar. Chem. 2011, 124, 108–118. [Google Scholar] [CrossRef]
- Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M. Tracing the Transport of Colored Dissolved Organic Matter in Water Masses of the Southern Beaufort Sea: Relationship with Hydrographic Characteristics. Biogeosciences 2012, 9, 925–940. [Google Scholar] [CrossRef]
- Granskog, M.A.; Stedmon, C.A.; Dodd, P.A.; Amon, R.M.W.; Pavlov, A.K.; de Steur, L.; Hansen, E. Characteristics of Colored Dissolved Organic Matter (CDOM) in the Arctic Outflow in the Fram Strait: Assessing the Changes and Fate of Terrigenous CDOM in the Arctic Ocean. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Demidov, A.B.; Kopelevich, O.V.; Mosharov, S.A.; Sheberstov, S.V.; Vazyulya, S.V. Modelling Kara Sea Phytoplankton Primary Production: Development and Skill Assessment of Regional Algorithms. J. Sea Res. 2017, 125, 1–17. [Google Scholar] [CrossRef]
- Petrenko, D.; Pozdnyakov, D.; Johannessen, J.; Counillon, F.; Sychov, V. Satellite-Derived Multi-Year Trend in Primary Production in the Arctic Ocean. Int. J. Remote Sens. 2013, 34, 3903–3937. [Google Scholar] [CrossRef]
- Salyuk, P.A.; Stepochkin, I.E.; Bukin, O.A.; Sokolova, E.B.; Mayor, A.Y.; Shambarova, J.V.; Gorbushkin, A.R. Determination of the Chlorophyll a Concentration by MODIS-Aqua and VIIRS Satellite Radiometers in Eastern Arctic and Bering Sea. Izv. Atmos. Ocean. Phys. 2016, 52, 988–998. [Google Scholar] [CrossRef]
- Gonçalves-Araujo, R.; Rabe, B.; Peeken, I.; Bracher, A. High Colored Dissolved Organic Matter (CDOM) Absorption in Surface Waters of the Central-Eastern Arctic Ocean: Implications for Biogeochemistry and Ocean Color Algorithms. PLoS ONE 2018, 13, e0190838. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Fekete, B.M.; Meybeck, M.; Lammers, R.B. Global System of Rivers: Its Role in Organizing Continental Land Mass and Defining Land-to-Ocean Linkages. Glob. Biogeochem. Cycles 2000, 14, 599–621. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Winder, M.; Sommer, U. Phytoplankton Response to a Changing Climate. Hydrobiologia 2012, 698, 5–16. [Google Scholar] [CrossRef]
- Cloern, J.E.; Foster, S.Q.; Kleckner, A.E. Phytoplankton Primary Production in the World’s Estuarine-Coastal Ecosystems. Biogeosciences 2014, 11, 2477–2501. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.; Pabi, S. Impact of a Shrinking Arctic Ice Cover on Marine Primary Production. Geophys. Res. Lett. 2008, 35, L19603. [Google Scholar] [CrossRef]
- Bélanger, S.; Babin, M.; Tremblay, J.-É. Increasing Cloudiness in Arctic Damps the Increase in Phytoplankton Primary Production Due to Sea Ice Receding. Biogeosciences 2013, 10, 4087–4101. [Google Scholar] [CrossRef]
- Kahru, M.; Brotas, V.; Manzano-Sarabia, M.; Mitchell, B.G. Are Phytoplankton Blooms Occurring Earlier in the Arctic? Glob. Chang. Biol. 2011, 17, 1733–1739. [Google Scholar] [CrossRef]
- Lewis, K.M.; Arrigo, K.R. Ocean Color Algorithms for Estimating Chlorophyll a, CDOM Absorption, and Particle Backscattering in the Arctic Ocean. J. Geophys. Res. Ocean. 2020, 125, e2019JC015706. [Google Scholar] [CrossRef]
- Cota, G.F.; Wang, J.; Comiso, J.C. Transformation of Global Satellite Chlorophyll Retrievals with a Regionally Tuned Algorithm. Remote Sens. Environ. 2004, 90, 373–377. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains1. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean Color Chlorophyll Algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.; Strutton, P.; Cota, G.F.; et al. Ocean Color Chlorophyll a Algorithms for SeaWiFS, OC2 and OC4: Version 4. SeaWiFS Postlaunch Calibration Valid. Anal. 2000, 3, 9–23. [Google Scholar]
- Wang, J.; Cota, G.F. Remote-Sensing Reflectance in the Beaufort and Chukchi Seas: Observations and Models. Appl. Opt. 2003, 42, 2754. [Google Scholar] [CrossRef] [PubMed]
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a Semianalytical Ocean Color Model for Global-Scale Applications. Appl. Opt. 2002, 41, 2705. [Google Scholar] [CrossRef]
- Massicotte, P.; Amon, R.M.W.; Antoine, D.; Archambault, P.; Balzano, S.; Bélanger, S.; Benner, R.; Boeuf, D.; Bricaud, A.; Bruyant, F.; et al. The MALINA Oceanographic Expedition: How Do Changes in Ice Cover, Permafrost and UV Radiation Impact Biodiversity and Biogeochemical Fluxes in the Arctic Ocean? Earth Syst. Sci. Data 2021, 13, 1561–1592. [Google Scholar] [CrossRef]
- Arrigo, K.R. Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment (ICESCAPE). Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 1–6. [Google Scholar] [CrossRef]
- Sunagawa, S.; Acinas, S.G.; Bork, P.; Bowler, C.; Eveillard, D.; Gorsky, G.; Guidi, L.; Iudicone, D.; Karsenti, E.; Lombard, F.; et al. Tara Oceans: Towards Global Ocean Ecosystems Biology. Nat. Rev. Microbiol. 2020, 18, 428–445. [Google Scholar] [CrossRef]
- Massicotte, P.; Amiraux, R.; Amyot, M.-P.; Archambault, P.; Ardyna, M.; Arnaud, L.; Artigue, L.; Aubry, C.; Ayotte, P.; Bécu, G.; et al. Green Edge Ice Camp Campaigns: Understanding the Processes Controlling the Under-Ice Arctic Phytoplankton Spring Bloom. Earth Syst. Sci. Data 2020, 12, 151–176. [Google Scholar] [CrossRef]
- Hooker, S.B.; Morrow, J.H.; Matsuoka, A. Apparent Optical Properties of the Canadian Beaufort Sea—Part 2: The 1% and 1 Cm Perspective in Deriving and Validating AOP Data Products. Biogeosciences 2013, 10, 4511–4527. [Google Scholar] [CrossRef]
- Antoine, D.; Hooker, S.; Bélanger, S.; Matsuoka, A.; Babin, M. Apparent Optical Properties of the Canadian Beaufort Sea—Part 1: Observational Overview and Water Column Relationships. Biogeosciences 2013, 10, 4493–4509. [Google Scholar] [CrossRef]
- Van Heukelem, L.; Thomas, C.S. Computer-Assisted High-Performance Liquid Chromatography Method Development with Applications to the Isolation and Analysis of Phytoplankton Pigments. J. Chromatogr. A 2001, 910, 31–49. [Google Scholar] [CrossRef]
- Ras, J.; Claustre, H.; Uitz, J. Spatial Variability of Phytoplankton Pigment Distributions in the Subtropical South Pacific Ocean: Comparison Between in Situ and Predicted Data. Biogeosciences 2008, 5, 353–369. [Google Scholar] [CrossRef]
- Hooker, S.B.; Zibordi, G. Platform Perturbations in Above-Water Radiometry. Appl. Opt. 2005, 44, 553. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Stramski, D.; Neukermans, G. Optical Backscattering by Particles in Arctic Seawater and Relationships to Particle Mass Concentration, Size Distribution, and Bulk Composition: Particle Backscattering in Arctic Seawater. Limnol. Oceanogr. 2016, 61, 1869–1890. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Claustre, H.; Ras, J.; Tièche, F. Light Absorption Properties and Absorption Budget of Southeast Pacific Waters. J. Geophys. Res. 2010, 115, C08009. [Google Scholar] [CrossRef]
- Lee, Y.J.; Matrai, P.A.; Friedrichs, M.A.M.; Saba, V.S.; Ardyna, M.; Babin, M.; Gosselin, M.; Hirawake, T.; Kang, S.-H.; Lee, S.H. Water Temperature, Primary Productivity-Phytoplankton, Chlorophyll-a Concentration, and Other Data Collected by CTD, Scintillation Counter, Fluorometer, and Other Instruments from Arctic Ocean from 1959-08-03 to 2011-10-21 (NCEI Accession 0161176). 2018. Available online: https://catalog.data.gov/dataset/water-temperature-primary-productivity-phytoplankton-chlorophyll-a-concentration-and-other-data (accessed on 10 October 2020).
- Matsuoka, A.; Hooker, S.B.; Bricaud, A.; Gentili, B.; Babin, M. Estimating Absorption Coefficients of Colored Dissolved Organic Matter (CDOM) Using a Semi-Analytical Algorithm for Southern Beaufort Sea Waters: Application to Deriving Concentrations of Dissolved Organic Carbon from Space. Biogeosciences 2013, 10, 917–927. [Google Scholar] [CrossRef]
- Jackson, T.; Grant, M. Ocean Colour Climate Change Iniative (OC-CCI) Algorithm Theoretical Baseline Document (Ocean Colour Algorithm Blending). 2016. Available online: http://www.esa-oceancolour-cci.org/?q=webfm_send/587 (accessed on 19 December 2019).
- Lewis, K.; Van Dijken, G.; Arrigo, K. Bio-Optical Database of the Arctic Ocean. Dryad 2020. Available online: https://datadryad.org/stash/dataset/doi:10.5061/dryad.cnp5hqc17 (accessed on 10 October 2023).
- Garver, S.A.; Siegel, D.A. Inherent Optical Property Inversion of Ocean Color Spectra and Its Biogeochemical Interpretation: 1. Time Series from the Sargasso Sea. J. Geophys. Res. Ocean. 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef]
- Legendre, P. Model II Regression User’s Guide, r Edition. R Vignette 1998, 14. Available online: https://cran.r-project.org/web/packages/lmodel2/vignettes/mod2user.pdf (accessed on 2 April 2018).
- Pabi, S.; van Dijken, G.L.; Arrigo, K.R. Primary Production in the Arctic Ocean, 19982006. J. Geophys. Res. 2008, 113, C08005. [Google Scholar] [CrossRef]
- Perrette, M.; Yool, A.; Quartly, G.D.; Popova, E.E. Near-Ubiquity of Ice-Edge Blooms in the Arctic. Biogeosciences Discuss. 2010, 7, 8123–8142. [Google Scholar] [CrossRef]
- Ardyna, M.; Babin, M.; Gosselin, M.; Devred, E.; Bélanger, S.; Matsuoka, A.; Tremblay, J.-É. Parameterization of Vertical Chlorophyll a in the Arctic Ocean: Impact of the Subsurface Chlorophyll Maximum on Regional, Seasonal, and Annual Primary Production Estimates. Biogeosciences 2013, 10, 4383–4404. [Google Scholar] [CrossRef]
- Babin, M.; Bélanger, S.; Ellingsen, I.; Forest, A.; Le Fouest, V.; Lacour, T.; Ardyna, M.; Slagstad, D. Estimation of Primary Production in the Arctic Ocean Using Ocean Colour Remote Sensing and Coupled Physicalbiological Models: Strengths, Limitations and How They Compare. Prog. Oceanogr. 2015, 139, 197–220. [Google Scholar] [CrossRef]
- Morel, A. Available Usable and Stored Radiant Energy in Relation to Marine Photosynthesis. Deep Sea Res. 1978, 25, 673–688. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef]
- Lee, Z.-P.; Du, K.; Arnone, R. A Model for the Diffuse Attenuation Coefficient of Downwelling Irradiance. Estuar. Coast. Shelf Sci. 2005, 110, C02016. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Worthen, D.; Schnell, A.; Lizotte, M.P. Primary Production in Southern Ocean Waters. J. Geophys. Res. Ocean. 1998, 103, 15587–15600. [Google Scholar]
- Matsuoka, A.; Hill, V.; Huot, Y.; Babin, M.; Bricaud, A. Seasonal Variability in the Light Absorption Properties of Western Arctic Waters: Parameterization of the Individual Components of Absorption for Ocean Color Applications. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Hessen, D.O.; Carroll, J.; Kjeldstad, B.; Korosov, A.A.; Pettersson, L.H.; Pozdnyakov, D.; Sørensen, K. Input of Organic Carbon as Determinant of Nutrient Fluxes, Light Climate and Productivity in the Ob and Yenisey Estuaries. Estuar. Coast. Shelf Sci. 2010, 88, 53–62. [Google Scholar] [CrossRef]
- Wang, J.; Cota, G.F.; Ruble, D.A. Absorption and Backscattering in the Beaufort and Chukchi Seas. J. Geophys. Res. 2005, 110, C04014. [Google Scholar] [CrossRef]
- Bélanger, S.; Babin, M.; Larouche, P. An Empirical Ocean Color Algorithm for Estimating the Contribution of Chromophoric Dissolved Organic Matter to Total Light Absorption in Optically Complex Waters. J. Geophys. Res. 2008, 113, C04027. [Google Scholar] [CrossRef]
- Mustapha, S.B.; Bélanger, S.; Larouche, P. Evaluation of Ocean Color Algorithms in the Southeastern Beaufort Sea, Canadian Arctic: New Parameterization Using SeaWiFS, MODIS, and MERIS Spectral Bands. Can. J. Remote Sens. 2012, 38, 535–556. [Google Scholar] [CrossRef]
- Lewis, K.M.; Mitchell, B.G.; van Dijken, G.L.; Arrigo, K.R. Regional Chlorophyll a Algorithms in the Arctic Ocean and Their Effect on Satellite-Derived Primary Production Estimates. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 130, 14–27. [Google Scholar] [CrossRef]
Data | Station | Year | Month | Region | Source |
---|---|---|---|---|---|
MALINA | 37 | 2009 | July–August | Southern Beaufort Sea | SeaBASS |
ICESCAPE2010 | 34 | 2010 | June–July | Chukchi and Beaufort Sea | SeaBASS |
ICESCAPE2011 | 16 | 2011 | June–July | Chukchi and Beaufort Sea | SeaBASS |
TARA | 27 | 2013 | May–November | Polar circle | SeaBASS |
GREEN EDGE | 34 | 2016 | June–July | Baffin Bay | Individual |
PPARR | 973 | 1959–2011 | August | Arctic Ocean | NOAA NCEI |
Water Type | Threshold | Number |
---|---|---|
chl.acdm | ≤ 0.067 m−1 | 48 |
CHL.acdm | ≤ 0.067 m−1 | 26 |
chl.ACDM | > 0.067 m−1 | 26 |
CHL.ACDM | > 0.067 m−1 | 48 |
Algorithms | Blue | Green | |||||
---|---|---|---|---|---|---|---|
OC3Mv6 | 443 > 488 | 547 | 0.2424 | −2.7423 | 1.8017 | 0.0015 | −1.2280 |
OC3V | 443 > 486 | 551 | 0.2228 | −2.4683 | 1.5867 | −0.4275 | −0.7768 |
OC4v6 | 443 > 490 > 510 | 555 | 0.3272 | −2.9940 | 2.7218 | −1.2259 | −0.5683 |
OC4P | 443 > 490 > 510 | 555 | 0.2710 | −6.2780 | 26.29 | −60.94 | 45.31 |
OC4L | 443 > 490 > 510 | 555 | 0.5920 | −3.6070 | - | - | - |
AO.emp | 443 > 490 > 510 | 555 | 0.1746 | −2.8293 | 0.6592 | - | - |
Algorithm | n | Bias | MAE | Overall Wins (%) | r2 | Slope |
---|---|---|---|---|---|---|
OC3Mv6 | 148 | 2.22 | 2.68 | 48.9 | 0.49 | 0.86 |
OC3V | 148 | 2.17 | 2.64 | 48.0 | 0.49 | 0.83 |
OC4v6 | 148 | 2.32 | 2.75 | 37.2 | 0.52 | 0.83 |
OC4P | 112 | 1.08 | 3.16 | 38.8 | 0.21 | 1.61 |
OC4L | 148 | 2.30 | 2.82 | 43.2 | 0.55 | 1.28 |
AO.emp | 148 | 1.36 | 2.15 | 65.6 | 0.54 | 0.92 |
GSM01 | 141 | 1.59 | 2.08 | 58.6 | 0.62 | 0.97 |
AO.GSM | 124 | 1.24 | 1.73 | 58.0 | 0.79 | 0.77 |
Percent Wins | ||||||||
---|---|---|---|---|---|---|---|---|
Algorithm | OC3Mv6 | OC3V | OC4v6 | OC4P | OC4L | AO.emp | GSM01 | AO.GSM |
OC3Mv6 | - | 46.6 | 27.7 | 39.9 | 41.9 | 72.3 | 66.9 | 62.2 |
OC3V | 53.4 | - | 29.1 | 39.2 | 42.6 | 71.6 | 67.6 | 60.8 |
OC4v6 | 72.3 | 70.9 | - | 39.2 | 46.6 | 73.0 | 73.0 | 64.9 |
OC4P | 60.1 | 60.8 | 60.8 | - | 56.1 | 67.6 | 60.8 | 55.4 |
OC4L | 58.1 | 57.4 | 53.4 | 43.9 | - | 67.6 | 63.5 | 53.4 |
AO.emp | 27.7 | 28.4 | 27.0 | 32.4 | 32.4 | - | 42.6 | 50.0 |
GSM01 | 33.1 | 32.4 | 27.0 | 37.2 | 36.5 | 57.4 | - | 59.5 |
AO.GSM | 37.8 | 39.2 | 35.1 | 39.9 | 46.6 | 50.0 | 35.8 | - |
Overall Wins | 48.9 | 48.0 | 37.2 | 38.8 | 43.2 | 65.6 | 58.6 | 58.0 |
Failure | 36 (24.3%) | 7 (4.7%) | 24 (16.2%) |
Water Type | Algorithm | n | bias | MAE | Wins (%) | Failure | r2 | Slope |
---|---|---|---|---|---|---|---|---|
chl.acdm | GSM01 | 48 | 1.96 | 1.99 | 6.2 | 0.71 | 0.85 | |
AO.GSM | 48 | 1.74 | 1.78 | 93.8 | 0.75 | 0.92 | ||
CHL.acdm | GSM01 | 26 | 0.83 | 1.33 | 69.2 | 0.52 | 1.09 | |
AO.GSM | 26 | 0.74 | 1.41 | 30.8 | 0.50 | 1.11 | ||
chl.ACDM | GSM01 | 24 | 2.10 | 2.72 | 34.6 | 2 (7.7%) | 0.08 | 1.03 |
AO.GSM | 15 | 2.02 | 2.02 | 57.7 | 11 (42.3%) | 0.65 | 1.25 | |
CHL.ACDM | GSM01 | 43 | 1.57 | 2.45 | 47.9 | 5 (10.4%) | 0.27 | 1.03 |
AO.GSM | 35 | 0.92 | 1.81 | 41.7 | 13 (27.1%) | 0.47 | 0.79 | |
Across all | GSM01 * | 124 | 1.47 | 1.81 | 29.0 | 0.80 | 0.81 | |
AO.GSM | 124 | 1.24 | 1.73 | 71.0 | 0.79 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Matsuoka, A.; Pang, X.; Massicotte, P.; Babin, M. Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates. Remote Sens. 2024, 16, 892. https://doi.org/10.3390/rs16050892
Li J, Matsuoka A, Pang X, Massicotte P, Babin M. Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates. Remote Sensing. 2024; 16(5):892. https://doi.org/10.3390/rs16050892
Chicago/Turabian StyleLi, Juan, Atsushi Matsuoka, Xiaoping Pang, Philippe Massicotte, and Marcel Babin. 2024. "Performance of Algorithms for Retrieving Chlorophyll a Concentrations in the Arctic Ocean: Impact on Primary Production Estimates" Remote Sensing 16, no. 5: 892. https://doi.org/10.3390/rs16050892