Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance
<p>The framework of the hyperprior compression algorithm.</p> "> Figure 2
<p>The framework of the designed compression algorithm.</p> "> Figure 3
<p>The framework of the low-frequency suppression algorithm model.</p> "> Figure 4
<p>The network of the quality-map-guided image compression model.</p> "> Figure 5
<p>SFT feature fusion module.</p> "> Figure 6
<p>Fitting curves. (<b>a</b>) Sentinel-1 image with σ = 6.42; (<b>b</b>) QiLu-1 image with σ = 0.32.</p> "> Figure 7
<p>Loss surface chart results and PDF of <a href="#remotesensing-16-00891-f006" class="html-fig">Figure 6</a> after low-frequency suppression transformation. (<b>a</b>) Loss surface chart results of Sentinel-1; (<b>b</b>) loss surface chart results of QiLu-1; (<b>c</b>) PDF of Sentinel-1; (<b>d</b>) PDF of QiLu-1.</p> "> Figure 8
<p>Preprocessing result of Sentinel-1. (<b>a</b>,<b>d</b>) Traditional linear method; (<b>b</b>,<b>e</b>) traditional power method; (<b>c</b>,<b>f</b>) proposed method.</p> "> Figure 9
<p>Preprocessing result of QiLu-1. (<b>a</b>,<b>d</b>) Traditional linear method; (<b>b</b>,<b>e</b>) traditional power method; (<b>c</b>,<b>f</b>) proposed method.</p> "> Figure 10
<p>Attention feature maps. (<b>a</b>–<b>d</b>) Attention features of raw data, the traditional linear method, the traditional power method, and the proposed method.</p> "> Figure 11
<p>Visual display of compression model results. (<b>a</b>,<b>d</b>) Ground truth and subgraphs; (<b>b</b>,<b>e</b>) JPEG and subgraphs; (<b>c</b>,<b>f</b>) proposed method and subgraphs.</p> ">
Abstract
:1. Introduction
- The paper proposes an SAR image compression model that utilizes two-stage low-frequency suppression and quality map guidance, validated through experiments conducted on Sentinel-1 low-resolution images and QiLu-1 high-resolution images.
- Aiming at the problem of existing huge losses in the input data, the paper constructs two-stage transformation operators to suppress low-frequency input data, achieving both a peak signal-to-noise ratio and a minimized quantization loss in the input data.
- To explore the redundancy between focused and non-focused targets, we establish a compression model guided by a quality map, directing the allocation of compression bit rates. This method results in a higher level of information fidelity in the compressed model focused on target perception.
2. Materials and Methods
3. Proposed Algorithm
3.1. The Two-Stage Low-Frequency Suppression Algorithm
3.1.1. Background and Motivation
3.1.2. Model Design and Construction
3.1.3. Quantitative Loss Analysis
3.1.4. Function Parameter Optimization
3.2. The Quality-Map-Guided Image Compression Model
4. Experimental Results and Analysis
4.1. Dataset and Indicators
4.2. Experimental Results and Analysis of the Low-Frequency Suppression Algorithm
4.3. Experimental Results and Analysis of the Quality-Map-Guided Image Compression Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hahn, J.; Debes, C.; Leigsnering, M.; Zoubir, A.M. Compressive sensing and adaptive direct sampling in hyperspectral imaging. Digit. Signal Process. 2014, 26, 113–126. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J.; Li, L.; Jiao, L.; Hao, H.; Zhang, X. A hybrid method of SAR speckle reduction based on geometric-structural block and adaptive neighborhood. IEEE Trans. Geosci. Remote Sens. 2017, 56, 730–748. [Google Scholar] [CrossRef]
- Guo, T.; Luo, F.; Zhang, L.; Zhang, B.; Tan, X.; Zhou, X. Learning structurally incoherent background and target dictionaries for hyperspectral target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3521–3533. [Google Scholar] [CrossRef]
- DeGraaf, S.R. SAR imaging via modern 2-D spectral estimation methods. IEEE Trans. Image Process. 1998, 7, 729–761. [Google Scholar] [CrossRef]
- Pestel-Schiller, U.; Ostermann, J. Subjective evaluation of compressed SAR images using JPEG and HEVC intra coding: Sometimes, compression improves usability. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 154–157. [Google Scholar]
- Wu, Z.; Hou, B.; Jiao, L. Multiscale CNN with autoencoder regularization joint contextual attention network for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1200–1213. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, C.; Zhao, B.; Xia, Y.; Li, Q.; Chen, Z. Remote sensing image compression: A review. In Proceedings of the 2015 IEEE International Conference on Multimedia Big Data, Beijing, China, 20–22 April 2015; pp. 406–410. [Google Scholar]
- Rusyn, B.; Lutsyk, O.; Lysak, Y.; Lukenyuk, A.; Pohreliuk, L. Lossless image compression in the remote sensing applications. In Proceedings of the 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 23–27 August 2016; pp. 195–198. [Google Scholar]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [Google Scholar] [CrossRef]
- Said, A.; Pearlman, W.A. An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 1996, 5, 1303–1310. [Google Scholar] [CrossRef]
- Huffman, D.A. A method for the construction of minimum-redundancy codes. Resonance 2006, 11, 91–99. [Google Scholar] [CrossRef]
- Wang, H.; Babacan, S.D.; Sayood, K. Lossless hyperspectral-image compression using context-based conditional average. IEEE Trans. Geosci. Remote Sens. 2007, 45, 4187–4193. [Google Scholar] [CrossRef]
- Luo, F.; Zou, Z.; Liu, J.; Lin, Z. Dimensionality reduction and classification of hyperspectral image via multistructure unified discriminative embedding. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Henry, C.; Azimi, S.M.; Merkle, N. Road segmentation in SAR satellite images with deep fully convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1867–1871. [Google Scholar] [CrossRef]
- Pu, W. Shuffle GAN with autoencoder: A deep learning approach to separate moving and stationary targets in SAR imagery. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4770–4784. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, F.; Pei, J.; Wang, C.; Huang, Y.; Yang, J.; Wu, J. An improved faster R-CNN based on MSER decision criterion for SAR image ship detection in harbor. In Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1322–1325. [Google Scholar]
- Wang, P.; Zhang, H.; Patel, V.M. SAR image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 2017, 24, 1763–1767. [Google Scholar] [CrossRef]
- Datcu, M.; Schwarz, G.; Schmidt, K.; Reck, C. Quality evaluation of compressed optical and SAR images: JPEG vs. wavelets. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; Volume 3, pp. 1687–1689. [Google Scholar]
- Rabbani, M.; Joshi, R. An overview of the JPEG 2000 still image compression standard. Signal Process. Image Commun. 2002, 17, 3–48. [Google Scholar] [CrossRef]
- Zhou, P.; Zhao, B. Novel scheme for SAR image compression based on JPEG2000. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 4–206. [Google Scholar]
- Said, A.; Pearlman, W.A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 1996, 6, 243–250. [Google Scholar] [CrossRef]
- Kozhemiakin, R.; Abramov, S.; Lukin, V.; Djurović, B.; Djurović, I.; Simeunović, M. Strategies of SAR image lossy compression by JPEG2000 and SPIHT. In Proceedings of the 2017 6th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 11–15 June 2017; pp. 1–6. [Google Scholar]
- Li, J.; Chang, L. A SAR image compression algorithm based on Mallat tower-type wavelet decomposition. Optik 2015, 126, 3982–3986. [Google Scholar] [CrossRef]
- Zemliachenko, A.N.; Kozhemiakin, R.A.; Abramov, S.K.; Lukin, V.V.; Vozel, B.; Chehdi, K.; Egiazarian, K.O. Prediction of compression ratio for DCT-based coders with application to remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 257–270. [Google Scholar] [CrossRef]
- Jakka, T.K.; Reddy, Y.M.; Rao, B.P. GWDWT-FCM: Change detection in SAR images using adaptive discrete wavelet transform with fuzzy C-mean clustering. J. Indian Soc. Remote Sens. 2019, 47, 379–390. [Google Scholar] [CrossRef]
- Dheepa, B.; Nithya, R.; Nishavithri, N.; Vinoth, K.; Balaji, K. Directional lifting wavelet transform based SAR Image Compression. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 1–8. [Google Scholar]
- Du, Q.; Fowler, J.E. Hyperspectral image compression using JPEG2000 and principal component analysis. IEEE Geosci. Remote Sens. Lett. 2007, 4, 201–205. [Google Scholar] [CrossRef]
- Bai, J.; Liu, B.; Wang, L.; Jiao, L. PolSAR image compression based on online sparse K-SVD dictionary learning. Multimed. Tools Appl. 2017, 76, 24859–24870. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Li, G.; Liu, Z. Remote sensing image compression in visible/near-infrared range using heterogeneous compressive sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4932–4938. [Google Scholar] [CrossRef]
- Ieremeiev, O.; Lukin, V.; Okarma, K.; Egiazarian, K. Full-reference quality metric based on neural network to assess the visual quality of remote sensing images. Remote Sens. 2020, 12, 2349. [Google Scholar] [CrossRef]
- Makarichev, V.; Vasilyeva, I.; Lukin, V.; Vozel, B.; Shelestov, A.; Kussul, N. Discrete atomic transform-based lossy compression of three-channel remote sensing images with quality control. Remote Sens. 2021, 14, 125. [Google Scholar] [CrossRef]
- Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimized image compression. arXiv 2016, arXiv:1611.01704. [Google Scholar]
- Ballé, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. arXiv 2018, arXiv:1802.01436. [Google Scholar]
- Minnen, D.; Ballé, J.; Toderici, G.D. Joint autoregressive and hierarchical priors for learned image compression. Adv. Neural Inf. Process. Syst. 2018, 31, 1–10. [Google Scholar]
- Li, J.; Liu, Z. Multispectral transforms using convolution neural networks for remote sensing multispectral image compression. Remote Sens. 2019, 11, 759. [Google Scholar] [CrossRef]
- Xu, Q.; Xiang, Y.; Di, Z.; Fan, Y.; Feng, Q.; Wu, Q.; Shi, J. Synthetic aperture radar image compression based on a variational autoencoder. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, T.; Huang, Y.; Qu, L.; Liu, Y. SAR image compression using discretized Gaussian adaptive model and generalized subtractive normalization. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Di, Z.; Chen, X.; Wu, Q.; Shi, J.; Feng, Q.; Fan, Y. Learned compression framework with pyramidal features and quality enhancement for SAR images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Fu, C.; Du, B.; Zhang, L. SAR Image Compression Based on Multi-Resblock and Global Context. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Fu, C.; Du, B. Remote Sensing Image Compression Based on the Multiple Prior Information. Remote Sens. 2023, 15, 2211. [Google Scholar] [CrossRef]
- Ross, T.D.; Worrell, S.W.; Velten, V.J.; Mossing, J.C.; Bryant, M.L. Standard SAR ATR evaluation experiments using the MSTAR public release data set. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery V, Orlando, FL, USA, 14–17 April 1998; Volume 3370, pp. 566–573. [Google Scholar]
- Sun, Y.; Li, L.; Ding, Y.; Bai, J.; Xin, X. Image compression algorithm based on variational autoencoder. In Proceedings of the Journal of Physics: Conference Series, University of Al-Qadisiyah, Diwaniyah, Iraq, 21–22 April 2021; Volume 2066, p. 012008. [Google Scholar]
- Wu, C.P.; Kuo, C.C.J. Efficient multimedia encryption via entropy codec design. In Proceedings of the Security and Watermarking of Multimedia Contents III, San Jose, CA, USA, 22–25 January 2001; Volume 4314, pp. 128–138. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- McLachlan, G.J.; Rathnayake, S. On the number of components in a Gaussian mixture model. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2014, 4, 341–355. [Google Scholar] [CrossRef]
- Ortega, A.; Ramchandran, K. Rate-distortion methods for image and video compression. IEEE Signal Process. Mag. 1998, 15, 23–50. [Google Scholar] [CrossRef]
- Berger, T. Rate-Distortion Theory. In Wiley Encyclopedia of Telecommunications; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, M.; Xu, Z.; Wang, M.; Zhang, B.; Wu, Y. Azimuth Ambiguities Suppression Using Group Sparsity and Nonconvex Regularization for Sliding Spotlight Mode: Results on QILU-1 SAR Data. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA; pp. 1660–1663. [Google Scholar]
- Geng, Z.; Xu, Y.; Wang, B.N.; Yu, X.; Zhu, D.Y.; Zhang, G. Target Recognition in SAR Images by Deep Learning with Training Data Augmentation. Sensors 2023, 23, 941. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516. [Google Scholar]
- Song, M.; Choi, J.; Han, B. Variable-rate deep image compression through spatially-adaptive feature transform. In Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 2380–2389. [Google Scholar]
Algorithm | Sentienl-1/PSNR | QiLu-1/PSNR |
---|---|---|
Traditional linear method | 42.93 | 68.32 |
Traditional power method | 58.92 | 87.46 |
Proposed method | 65.38 | 90.53 |
Algorithm | Para/M | FLOPs/G |
---|---|---|
Proposed method | 5.06 | 133.28 |
Algorithm | Sentienl-1/PSNR |
---|---|
JPEG | 18.58 |
Proposed method | 21.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Huang, L. Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance. Remote Sens. 2024, 16, 891. https://doi.org/10.3390/rs16050891
Deng J, Huang L. Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance. Remote Sensing. 2024; 16(5):891. https://doi.org/10.3390/rs16050891
Chicago/Turabian StyleDeng, Jiawen, and Lijia Huang. 2024. "Synthetic Aperture Radar Image Compression Based on Low-Frequency Rejection and Quality Map Guidance" Remote Sensing 16, no. 5: 891. https://doi.org/10.3390/rs16050891