Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements
<p>The eight climatic sub−regions across China (<b>a</b>), the ground gauge distribution (<b>b</b>), and the southeast coastline area of mainland China (<b>c</b>). Partly cited from Shen et al. [<a href="#B32-remotesensing-15-05622" class="html-bibr">32</a>].</p> "> Figure 2
<p>Flowchart of IMERG intercomparison across scales.</p> "> Figure 3
<p>Spatial distribution of global annual mean precipitation estimated by IMERG V06_FR (<b>a</b>), V07_FR (<b>b</b>), and their differences (<b>c</b>).</p> "> Figure 4
<p>Maps of statistical description, POD (<b>a</b>), FAR (<b>b</b>), CSI (<b>c</b>), RB (<b>d</b>), MAD (<b>e</b>), RMSD (<b>f</b>), normalized RMSD over land (<b>g</b>), and normalized RMSD over ocean (<b>h</b>), of the differences between IMERG V06_FR and V07_FR.</p> "> Figure 5
<p>Boxplot of Means Absolute Difference (MAD) between IMERG V06_FR and V07_FR under ranges of different daily precipitation rates (<b>a</b>) and regions with different wetness (<b>b</b>).</p> "> Figure 6
<p>National-based evaluation of gauges (<b>a</b>), IMERG V06_FR (<b>b</b>), V07_FR (<b>c</b>), and differences between V07_FR and V06_FR (<b>d</b>) in annual mean precipitation estimation.</p> "> Figure 7
<p>Probability density function (PDF) of gauge, IMERG V06_FR, and IMERG V07_FR of daily rainfall intensities from January 2016 to December 2020.</p> "> Figure 8
<p>Spatial distribution of statistical metrics of IMERG V06_FR (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>,<b>m</b>,<b>p</b>), IMERG V07_FR (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>,<b>n</b>,<b>q</b>), and their differences (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>,<b>o</b>,<b>r</b>).</p> "> Figure 9
<p>Taylor diagrams consisting of correlation coefficient, normalized standard deviation, and normalized RMSD for daily precipitation estimates from IMERG V06_FR and V07_FR during all periods (<b>a</b>) and distinct hydrological years (<b>b</b>–<b>f</b>) over mainland China.</p> "> Figure 10
<p>Spatial distribution of statistical metrics for IMERG V06 FR (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>,<b>m</b>,<b>p</b>), IMERG V07 FR (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>,<b>n</b>,<b>q</b>), and their differences (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>,<b>o</b>,<b>r</b>) under extreme precipitation rate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. IMERG
2.2.2. Rain Gauge Dataset
2.2.3. Extreme Precipitation Dataset
2.2.4. Earth Surface Data
2.3. Statistical Analysis
3. Results
3.1. Comparison of IMERG V06_FR and V07_FR at Global Scale
3.1.1. Global Analysis of Annual Precipitation Rate
3.1.2. Statistical Analysis of Daily Precipitation Rate
3.2. Comparison of IMERG 06_FR and 07_FR in Mainland China
3.2.1. Nation-Wide Evaluation
3.2.2. Grid-Based Evaluation
3.3. Spatial–Temporal Comparison of IMERG V06_FR and V07_FR across Mainland China
3.4. Comparison of IMERG V06_FR and V07_FR under Extreme Precipitation
4. Discussion
4.1. Similarities and Differences between IMERG V06_FR and V07_FR
4.2. Varying Performance of IMERG in Different Climatic Regions
4.3. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ham, Y.G.; Kim, J.H.; Min, S.K.; Kim, D.; Li, T.; Timmermann, A.; Stuecker, M.F. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 2023, 622, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Adler, R.F.; Negri, A.; Huffman, G.J. Flood and landslide applications of near real-time satellite rainfall products. Nat. Hazards 2007, 43, 285–294. [Google Scholar] [CrossRef]
- Maggioni, V.; Meyers, P.C.; Robinson, M.D. A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeorol. 2016, 17, 1101–1117. [Google Scholar] [CrossRef]
- Chen, M.; Nabih, S.; Brauer, N.S.; Gao, S.; Gourley, J.J.; Hong, Z.; Kolar, R.L.; Hong, Y. Can Remote Sensing Technologies Capture the Extreme Precipitation Event and Its Cascading Hydrological Response? A Case Study of Hurricane Harvey Using EF5 Modeling Framework. Remote Sens. 2020, 12, 445. [Google Scholar] [CrossRef]
- Li, Z.; Chen, M.; Gao, S.; Hong, Z.; Tang, G.; Wen, Y.; Gourley, J.J.; Hong, Y. Cross-Examination of Similarity, Difference and Deficiency of Gauge, Radar and Satellite Precipitation Measuring Uncertainties for Extreme Events Using Conventional Metrics and Multiplicative Triple Collocation. Remote Sens. 2020, 12, 1258. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Ruhi, A.; Messager, M.L.; Olden, J.D. Tracking the pulse of the Earth’s fresh waters. Nat. Sustain. 2018, 1, 198–203. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kalar, R.; Braun, S.A.; Huffman, G.T.; Iguchi, T.; et al. The Global Precipitation Measurement (Gpm) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Dijk, A.V.; Levizzani, V.; Schellekens, J.; Miralles, D.G. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 2017, 589–615. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P. Integrated multi-satellite retrievals for GPM (IMERG). Precip. Meas. Mission. Tech. Doc. 2014, 1, 343–353. [Google Scholar]
- Wang, C.; Tang, G.; Han, Z.; Guo, X.; Hong, Y. Global intercomparison and regional evaluation of GPM IMERG Version-03, Version-04 and its latest Version-05 precipitation products: Similarity, difference and improvements. J. Hydrol. 2018, 564, 342–356. [Google Scholar] [CrossRef]
- Li, Z.; Tang, G.; Hong, Z.; Chen, M.; Gao, S.; Kirstetter, P.; Gourley, J.J.; Wen, Y.; Yami, T.; Nabih, S.; et al. Two-decades of GPM IMERG early and final run products intercomparison: Similarity and difference in climatology, rates, and extremes. J. Hydrol. 2021, 594, 125975. [Google Scholar] [CrossRef]
- Hamza, A.; Anjum, M.N.; Masud Cheema, M.J.; Chen, X.; Afzal, A.; Azam, M.; Shafi, M.K.; Gulakhmadov, A. Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR precipitation products over the Hindu Kush Mountains of Pakistan, South Asia. Remote Sens. 2020, 12, 3871. [Google Scholar] [CrossRef]
- Moazami, S.; Najafi, M.R. A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada. J. Hydrol. 2021, 594, 125929. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A comprehensive evaluation of latest GPM IMERG V06 early, late and final precipitation products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Li, X.; Sungmin, O.; Wang, N.; Huang, Y. Evaluation of the GPM IMERG V06 products for light rain over Mainland China. Atmos. Res. 2021, 253, 105510. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, W.; Hu, J.; Du, L.; Du, L. Capability of imerg v6 early, late, and final precipitation products for monitoring extreme precipitation events. Remote Sens. 2021, 13, 689. [Google Scholar] [CrossRef]
- Aksu, H.; Taflan, G.Y.; Yaldiz, S.G.; Akgül, M.A. Evaluation of IMERG for GPM satellite-based precipitation products for extreme precipitation indices over Turkiye. Atmos. Res. 2023, 291, 106826. [Google Scholar] [CrossRef]
- Ang, R.; Kinouchi, T.; Zhao, W. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. J. Hydrol. Reg. Stud. 2022, 42, 101135. [Google Scholar] [CrossRef]
- Su, J.; Lü, H.; Zhu, Y.; Cui, Y.; Wang, X. Evaluating the hydrological utility of latest IMERG products over the Upper Huaihe River Basin, China. Atmos. Res. 2019, 225, 17–29. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, Z.; Zhang, C.; Song, C.; Zhou, H. Exploring the potential of satellite precipitation after bias correction in streamflow simulation in a semi-arid watershed in northeastern China. J. Hydrol. Reg. Stud. 2022, 43, 101192. [Google Scholar] [CrossRef]
- Hu, M.; Ma, R.; Xiong, J.; Wang, M.; Cao, Z.; Xue, K. Eutrophication state in the Eastern China based on Landsat 35-year observations. Remote Sens. Environ. 2022, 277, 113057. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the morphing algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.; Tan, J. On the Verge of IMERG Version 07. Presented at 2021 Fall Meeting, AGU, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Nelkin, E.; Tan, J. Lessons Learned in V07 IMERG; UMBC Faculty Collection: Vienna, Austria, 2023. [Google Scholar]
- Zhang, J.; Lin, Z. Climate in China; Shanghai Scientific and Technical Publishers: Shanghai, China, 1985. (In Chinese) [Google Scholar]
- Xiao, M.; Zhang, Q.; Singh, V.P.; Chen, X. Regionalization-based spatiotemporal variations of precipitation regimes across China. Theor. Appl. Climatol. 2013, 114, 203–212. [Google Scholar] [CrossRef]
- Sui, X.; Li, Z.; Ma, Z.; Xu, J.; Zhu, S.; Liu, H. Ground validation and error sources identification for GPM IMERG product over the southeast coastal regions of China. Remote Sens. 2020, 12, 4154. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Singh, V.P.; Sun, P.; He, C.; Cheng, C. Station-based non-linear regression downscaling approach: A new monthly precipitation downscaling technique. Int. J. Climatol. 2021, 41, 5879–5898. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Joyce, R.; Nelkin, E.J.; Tan, J.; Braithwaite, D.; Hsu, K.; Kelley, O.A.; Nguyen, P.; Sorooshian, S.; et al. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version, 7. 2023. Available online: https://gpm.nasa.gov/taxonomy/term/947 (accessed on 28 November 2023).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Stocker, E.F.; Tan, J. V06 IMERG Release Notes; NASA/GSFC: Greenbelt, MD, USA, 2020.
- Catto, J.L.; Jakob, C.; Nicholls, N. Can the CMIP5 models represent winter frontal precipitation? Geophys. Res. Lett. 2015, 42, 8596–8604. [Google Scholar] [CrossRef]
- Wei, G.; Lü, H.; Crow, W.T.; Zhu, Y.; Su, J.; Ren, L. Comprehensive evaluation and error-component analysis of four satellite-based precipitation estimates against gauged rainfall over Mainland China. Adv. Meteorol. 2022, 2022, 9070970. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Bogerd, L.; Leijnse, H.; Overeem, A.; Uijlenhoet, R. Assessing sampling and retrieval errors of GPROF precipitation estimates over The Netherlands. EGUsphere 2023, 2023, 1–22. [Google Scholar]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Hong, Y.; Gao, J.; Wan, W. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sens. Environ. 2018, 208, 82–96. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Kumar, M.; Hodnebrog, Ø.; Daloz, A.S.; Sen, S.; Badiger, S.; Krishnaswamy, J. Measuring precipitation in Eastern Himalaya: Ground validation of eleven satellite, model and gauge interpolated gridded products. J. Hydrol. 2021, 599, 126252. [Google Scholar] [CrossRef]
- Li, C.; Tang, G.; Hong, Y. Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: Applicability of the Triple Collocation method across Mainland China. J. Hydrol. 2018, 562, 71–83. [Google Scholar] [CrossRef]
- Jiang, L.; Bauer-Gottwein, P. How do GPM IMERG precipitation estimates perform as hydrological model forcing? Evaluation for 300 catchments across Mainland China. J. Hydrol. 2019, 572, 486–500. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
Metrics | Formula | Best Value | |
---|---|---|---|
Categorical index | Probability of Detection (POD) | 1 | |
False Alarm Rate (FAR) | 0 | ||
Critical Success Index (CSI) | 1 | ||
Continuous index | |||
Relative Bias (RB) | 0 | ||
Mean Absolute Difference (MAD) | 0 | ||
Root mean squared difference (RMSD) | 0 | ||
Normalized root mean squared difference (normalized RMSD) | 0 |
Region | Product | POD | FAR | CSI | RB | MAD mm/day | RMSD mm/day |
---|---|---|---|---|---|---|---|
WAS | V06_FR | 0.41 | 0.73 | 0.18 | 0.90 | 0.029 | 0.096 |
V07_FR | 0.42 | 0.72 | 0.19 | 0.89 | 0.028 | 0.091 | |
QT | V06_FR | 0.57 | 0.50 | 0.36 | 0.36 | 0.10 | 0.27 |
V07_FR | 0.57 | 0.50 | 0.36 | 0.27 | 0.095 | 0.24 | |
EA | V06_FR | 0.58 | 0.58 | 0.32 | 1.9 | 0.16 | 0.58 |
V07_FR | 0.59 | 0.56 | 0.34 | 2.1 | 0.16 | 0.56 | |
NE | V06_FR | 0.60 | 0.55 | 0.34 | 0.38 | 0.15 | 0.47 |
V07_FR | 0.60 | 0.52 | 0.37 | 0.36 | 0.14 | 0.45 | |
N | V06_FR | 0.59 | 0.60 | 0.31 | 5.1 | 0.34 | 1.3 |
V07_FR | 0.61 | 0.58 | 0.33 | 5.5 | 0.33 | 1.3 | |
C | V06_FR | 0.66 | 0.47 | 0.42 | 0.40 | 0.70 | 1.9 |
V07_FR | 0.70 | 0.46 | 0.44 | 0.43 | 0.67 | 1.8 | |
SW | V06_FR | 0.59 | 0.49 | 0.37 | 0.36 | 0.56 | 1.6 |
V07_FR | 0.62 | 0.49 | 0.39 | 0.38 | 0.54 | 1.5 | |
S | V06_FR | 0.67 | 0.40 | 0.46 | 0.29 | 0.66 | 1.8 |
V07_FR | 0.68 | 0.38 | 0.48 | 0.30 | 0.63 | 1.7 |
Event Name | Start Date | End Date | Maximum Rainfall Amount (mm/day) | Product | POD | FAR | CSI | RB | MAD (mm/day) | RMSD (mm/day) |
---|---|---|---|---|---|---|---|---|---|---|
MERANTI | 2016/9/9 | 2016/9/10 | 12,835.9 | V06_FR | 0.34 | 0.64 | 0.24 | 0.45 | 1.87 | 3.04 |
V07_FR | 0.33 | 0.64 | 0.24 | 0.35 | 1.73 | 2.83 | ||||
HAIMA | 2016/10/14 | 2016/10/15 | 7743.6 | V06_FR | 0.34 | 0.70 | 0.19 | 0.70 | 1.42 | 2.46 |
V07_FR | 0.36 | 0.63 | 0.23 | 0.54 | 1.38 | 2.34 | ||||
MERBOK | 2017/6/10 | 2017/6/11 | 9316.1 | V06_FR | 0.31 | 0.52 | 0.24 | 1.58 | 1.51 | 2.23 |
V07_FR | 0.39 | 0.45 | 0.31 | 1.29 | 1.40 | 2.03 | ||||
HAITANG | 2017/7/27 | 2017/7/28 | 6953.6 | V06_FR | 0.25 | 0.44 | 0.19 | 0.73 | 0.97 | 1.69 |
V07_FR | 0.31 | 0.55 | 0.21 | 1.24 | 1.04 | 1.79 | ||||
KHANUN | 2017/10/11 | 2017/10/12 | 6320.6 | V06_FR | 0.26 | 0.80 | 0.13 | 0.59 | 1.15 | 1.90 |
V07_FR | 0.22 | 0.80 | 0.12 | 0.84 | 1.15 | 1.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Z.; Gao, L.; Zhong, Y.; Peng, X. Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sens. 2023, 15, 5622. https://doi.org/10.3390/rs15235622
Wang Y, Li Z, Gao L, Zhong Y, Peng X. Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sensing. 2023; 15(23):5622. https://doi.org/10.3390/rs15235622
Chicago/Turabian StyleWang, Yaji, Zhi Li, Lei Gao, Yong Zhong, and Xinhua Peng. 2023. "Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements" Remote Sensing 15, no. 23: 5622. https://doi.org/10.3390/rs15235622
APA StyleWang, Y., Li, Z., Gao, L., Zhong, Y., & Peng, X. (2023). Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sensing, 15(23), 5622. https://doi.org/10.3390/rs15235622