Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR Precipitation Products over the Hindu Kush Mountains of Pakistan, South Asia
"> Figure 1
<p>(<b>a</b>) The geographic extants of the study domain, and (<b>b</b>) topographic map of the study area and locations of the selected meteorological stations.</p> "> Figure 2
<p>Spatial variation of the observed average annual precipitation (from January 2010 to December 2017) over the Hindu Kush Mountains.</p> "> Figure 3
<p>Comparison of the spatial variation of average daily precipitation acquired from the reference stations and four SPPs (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) from 2010 to 2017.</p> "> Figure 4
<p>Comparison of the temporal variability of average daily precipitation acquired from the reference meteorological stations and four SPPs. ((<b>a</b>) PERSIANN-CDR, (<b>b</b>) SM2Rain-ASCAT, (<b>c</b>) TRMM-3B42V7, and (<b>d</b>) IMERG-V06) over the Hindu Kush range from 2010 to 2017.</p> "> Figure 5
<p>Taylor diagram demonstrating the performances of PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06 at a monthly scale. The values of RMSE are denoted by semi-circular lines (shown in green color) and values of CC are shown by the straight blue lines.</p> "> Figure 6
<p>Box plots of evaluation indices (<b>a</b>) CC, (<b>b</b>) BIAS, (<b>c</b>) RMSE), and (<b>d</b>) rBIAS at monthly scale for four satellite-based products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) over the Hindu Kush range of Pakistan. Small squares denote the mean values and the horizontal lines inside the boxes indicate the median. The blue lines show the linear trend of the mean values.</p> "> Figure 7
<p>Taylor diagram displaying the performance of the daily precipitation estimates from TRMM-3B42V7, PERSIANN-CDR, SM2Rain-ASCAT, and IMERG-V06. Root mean square difference (RMSD) values are denoted by the semi-circular green line. The values of CC are represented by the straight (blue) lines.</p> "> Figure 8
<p>Box plots of evaluation indices (<b>a</b>) CC, (<b>b</b>) BIAS, (<b>c</b>) RMSE), and (<b>d</b>) rBIAS at daily scale for four precipitation products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) over the Hindu Kush Mountains of Pakistan. Small squares denote the mean values and horizontal lines inside the boxes indicate the median values.</p> "> Figure 9
<p>Scatter plots between the evaluation indices (CC, BIAS, rBIAS, and RMSE) on daily time scales versus elevation. Red markers represent the meteorological stations and dotted lines indicate the linear regression fitting lines.</p> "> Figure 10
<p>Scatter plots between the evaluations indices (CC, BIAS, rBIAS, and RMSE) versus precipitation. Blue markers represent the meteorological stations and the dotted lines indicate the linear regression fitting lines.</p> "> Figure 11
<p>Spatial distribution of statistical performance evaluation measures calculated for four SPPs, at a daily scale.</p> "> Figure 12
<p>Box plots of the seasonal values of (<b>a</b>) CC, (<b>b</b>) BIAS, and (<b>c</b>) RMSE for four precipitation products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) over the Hindu Kush Mountains of Pakistan. Small squares denote the mean values and the horizontal lines inside the boxes indicate the median.</p> "> Figure 13
<p>Relative Bias (rBias: %) at seasonal scale for four satellite precipitation products for the entire study area. Horizontal dashed lines are used to represent the threshold (±10%) of rBias.</p> "> Figure 14
<p>Performance diagram for representing the ability of four satellite products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) in capturing the daily precipitation over the study area. The straight line indicates BIAS and the curved line indicates the critical success index (CSI).</p> "> Figure 15
<p>Performance diagram for the precipitation detection ability of four satellite products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) at the seasonal basis ((<b>a</b>) Spring, (<b>b</b>) Summer, (<b>c</b>) Autumn, and (<b>d</b>) Winter) for the entire study area. The straight line indicates BIAS and the curved line indicates the critical success index (CSI).</p> "> Figure 16
<p>Probability density function (PDF) calculated for precipitation data acquired from the in-situ gauges and four satellite precipitation products (PERSIANN-CDR, SM2Rain-ASCAT, TRMM-3B42V7, and IMERG-V06) at different intensities. (<b>a</b>) Daily precipitation in the entire study period, (<b>b</b>) winter daily precipitation, (<b>c</b>) spring daily precipitation, (<b>d</b>) summer daily precipitation, and (<b>e</b>) autumn daily precipitation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. Skill of SPPs to Track the Spatio-Temporal Variability of Precipitation
3.2. Performance of SPPs at Monthly Scale
3.3. Performance of the Satellite-Based Products at Daily Scale
3.4. Performance of Satellite Products at Seasonal Scale
3.5. Ability of SPPs to Detect Occurrence of Precipitation
4. Discussion
5. Conclusions
- Two of the considered SPPs (IMERG and PERSIANN) were capable of characterizing the spatial variability of precipitation over the Hindu Kush Mountains of Pakistan. However, SM2Rain and TRMM products were unsuitable for understanding the spatial variation of precipitation over the said spatial domain.
- The temporal variation of average daily precipitation was captured well by the IMERG and PERSIANN products, while SM2Rain and TRMM products were uncertain to characterize the temporal variability of precipitation.
- The overall performances of all considered SPPs were better at the monthly scale than the daily scale.
- TRMM and SM2Rain showed a significant underestimation (73.95% and 20.89%, respectively) of precipitation magnitude, while IMERG and PERSIANN exhibited a slight underestimation of the precipitation amount by −8.85% and −1.24%, respectively, over the Hindu Kush region.
- The precipitation detection capabilities of PERSIANN and IMERG products were better than the TRMM and SM2Rain products. The IMERG showed the best performance in terms of probability of detection (0.76), followed by PERSIANN (0.70). The performance of TRMM in terms of POD was very poor (<0.30).
- Detection skills of IMERG and PERSIANN in all seasons were good (>0.70). In this area, the overall performance of TRMM was very poor in all seasons.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef] [Green Version]
- Nashwan, M.S.; Shahid, S.; Wang, X. Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sens. 2019, 11, 555. [Google Scholar] [CrossRef] [Green Version]
- Porcù, F.; Milani, L.; Petracca, M. On the uncertainties in validating satellite instantaneous rainfall estimates with raingauge operational network. Atmos. Res. 2014, 144, 73–81. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.R. Special sensor microwave imager derived global rainfall estimates for climatological applications. J. Geophys. Res. 1997, 102, 715–735. [Google Scholar] [CrossRef]
- Susskind, J.; Piranio, P.; Rokke, L.; Iredell, L.; Mehta, A. Characteristics of the TOVS Pathfinder Path A Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 2679–2701. [Google Scholar] [CrossRef]
- Palomino-Ángel, S.; Anaya-Acevedo, J.A.; Botero, B.A. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America. Atmos. Res. 2019, 217, 37–48. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Ahmad, I.; Ijaz, M.W.; Farid, H.U.; Yagoub, Y.E.; Zaman, M.; Adnan, M. Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res. 2018, 205, 134–146. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; et al. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. Geo-Information Sci. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Moazami, S.; Golian, S.; Kavianpour, M.R.; Hong, Y. Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data over Iran. Int. J. Remote Sens. 2013, 34, 8156–8171. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M.; Rutten, M.M. Validation of surface soil moisture from AMSR-E using auxiliary spatial data in the transboundary Indus Basin. J. Hydrol. 2011, 405, 137–149. [Google Scholar] [CrossRef]
- Ghazanfari, S.; Pande, S.; Cheema, M.J.M.; Alizadeh, A.; Farid, A. The role of soil moisture accounting in estimation of soil evaporation and transpiration. J. Hydroinformatics 2016, 18, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Guilloteau, C.; Roca, R.; Gosset, M. A multiscale evaluation of the detection capabilities of high-resolution satellite precipitation products in West Africa. J. Hydrometeorol. 2016, 17, 2041–2059. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef] [Green Version]
- Pellarin, T.; Román-Cascón, C.; Baron, C.; Bindlish, R.; Brocca, L.; Camberlin, P.; Fernández-Prieto, D.; Kerr, Y.H.; Massari, C.; Panthou, G.; et al. The precipitation inferred from soil moisture (PrISM) near real-time rainfall product: Evaluation and comparison. Remote Sens. 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Anagnostou, E.; Berne, A.; Borga, M.; Boudevillain, B.; Buytaert, W.; Chang, C.H.; Delrieu, G.; Hong, Y.; Hsu, Y.C.; et al. Multiregional satellite precipitation products evaluation over complex terrain. J. Hydrometeorol. 2016, 17, 1817–1836. [Google Scholar] [CrossRef]
- Beaufort, A.; Gibier, F.; Palany, P. Comparison and correction of three satellite precipitation estimates products to improve flood prevention in French Guiana. EGUGA 2017, 19, 8270. [Google Scholar]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado-Casimiro, W.; Aragon, L. Hydrological modeling of the Peruvian-Ecuadorian Amazon basin using GPM-IMERG satellite-based precipitation dataset. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mourre, L.; Condom, T.; Junquas, C.; Lebel, T.; E Sicart, J.; Figueroa, R.; Cochachin, A. Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci. 2016, 20, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Trejo, F.; Barbosa, H.; dos Santos, C.A.C. Evaluation of the performance of SM2RAIN-derived rainfall products over Brazil. Remote Sens. 2019, 11, 1113. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the state-of-the-art gridded precipitation products over mountainous terrain: A regional study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef] [Green Version]
- Forootan, E.; Khandu Awange, J.L.; Schumacher, M.; Anyah, R.O.; van Dijk, A.I.J.M.; Kusche, J. Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia. Remote Sens. Environ. 2016, 172, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.; Cao, Y.; Nan, Z.; Wang, W.; Ge, Y.; Wang, P.; Yu, W. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. J. Hydrol. 2020, 581, 124456. [Google Scholar] [CrossRef]
- Xu, F.; Guo, B.; Ye, B.; Ye, Q.; Chen, H.; Ju, X.; Guo, J.; Wang, Z. Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China. Remote Sens. 2019, 11, 697. [Google Scholar] [CrossRef] [Green Version]
- Mosaffa, H.; Shirvani, A.; Khalili, D.; Nguyen, P.; Sorooshian, S. Post and near real-time satellite precipitation products skill over Karkheh River Basin in Iran. Int. J. Remote Sens. 2020, 41, 6484–6502. [Google Scholar] [CrossRef]
- Ahmed, E.; Al Janabi, F.; Zhang, J.; Yang, W.; Saddique, N.; Krebs, P. Hydrologic assessment of TRMM and GPM-based precipitation products in transboundary river catchment (Chenab River, Pakistan). Water 2020, 12, 1902. [Google Scholar] [CrossRef]
- Anjum, M.N.; Ding, Y.; Shangguan, D.; Tahir, A.A.; Iqbal, M.; Adnan, M. Comparison of two successive versions 6 and 7 of TMPA satellite precipitation products with rain gauge data over Swat Watershed, Hindukush Mountains, Pakistan. Atmos. Sci. Lett. 2016, 17, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. An appraisal of dynamic bayesian model averaging-based merged multi-satellite precipitation datasets over complex topography and the diverse climate of Pakistan. Remote Sens. 2020, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Performance assessment of SM2RAIN-CCI and SM2RAIN-ASCAT precipitation products over Pakistan. Remote Sens. 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Anjum, M.N.; Ahmad, I.; Ding, Y.; Shangguan, D.; Zaman, M.; Ijaz, M.W.; Sarwar, K.; Han, H.; Yang, M. Assessment of IMERG-V06 precipitation product over different hydro-climatic regimes in the Tianshan Mountains, North-Western China. Remote Sens. 2019, 11, 2314. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Song, X.; Ren, G.; Hussain, I.; Han, D.; Zaman, M.H. Evaluation of gridded precipitation data in the Hindu Kush–Karakoram–Himalaya mountainous area. Hydrol. Sci. J. 2017, 62, 2393–2405. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F.; Tayyab, M.; Anjum, M.N.; Zaman, M.; Liu, J.; Farid, H.U.; Saddique, Q. Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos. Res. 2018, 213, 346–360. [Google Scholar] [CrossRef]
- Ur Rahman, K.; Shang, S.; Shahid, M.; Li, J. Developing an ensemble precipitation algorithm from satellite products and its topographical and seasonal evaluations over Pakistan. Remote Sens. 2018, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Q.; Duan, Z.; Zhang, J.; Mo, K.; Li, Z.; Tang, G. Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007. Hydrol. Process. 2011, 25, 1924–1933. [Google Scholar] [CrossRef]
- Brown, J.E.M. An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sens. Environ. 2006, 101, 63–81. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network. J. Geophys. Res. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Rozante, J.R.; Vila, D.A.; Chiquetto, J.B.; Fernandes, A.D.A.; Alvim, D.S. Evaluation of TRMM/GPM blended daily products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef] [Green Version]
- Hosseini-Moghari, S.M.; Tang, Q. Validation of gpm imerg v05 and v06 precipitation products over iran. J. Hydrometeorol. 2020, 21, 1011–1037. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Duan, Z.; Cracknell, A.P.; Chaplot, V. Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens. 2015, 7, 1504–1528. [Google Scholar] [CrossRef] [Green Version]
- Tarek, M.H.; Hassan, A.; Bhattacharjee, J.; Choudhury, S.H.; Badruzzaman, A.B.M. Assessment of TRMM data for precipitation measurement in Bangladesh. Meteorol. Appl. 2017, 24, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Chiaravalloti, F.; Brocca, L.; Procopio, A.; Massari, C.; Gabriele, S. Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy. Atmos. Res. 2018, 206, 64–74. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Barros, A.P.; Kim, G.; Williams, E.; Nesbitt, S.W. Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci. 2004, 4, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Berg, W.; L’Ecuyer, T.; Kummerow, C. Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteorol. Climatol. 2006, 45, 434–454. [Google Scholar] [CrossRef]
Sr. No. | Station | Longitude | Latitude | Altitude | Average Annual |
---|---|---|---|---|---|
(°) | (°) | (m) | Precipitation (mm) | ||
1 | Amandara | 71.98 | 34.63 | 664 | 753.1 |
2 | Astore | 74.90 | 35.37 | 2394 | 359.7 |
3 | Balakot | 73.35 | 34.38 | 995 | 1301.6 |
4 | Bunji | 74.63 | 35.67 | 1372 | 179.0 |
5 | Chillas | 74.10 | 35.42 | 1251 | 171.2 |
6 | Chitral | 71.83 | 35.85 | 1498 | 432.2 |
7 | Dir | 71.85 | 35.20 | 1425 | 1303.1 |
8 | Drosh | 71.78 | 35.57 | 1464 | 509.9 |
9 | Gilgit | 74.33 | 35.92 | 1460 | 168.1 |
10 | Gupis | 73.40 | 36.17 | 2156 | 176.2 |
11 | Kakul | 73.25 | 34.18 | 1308 | 1273.6 |
12 | Kalam | 72.60 | 35.47 | 2744 | 904.1 |
13 | Khot | 72.58 | 36.52 | 3505 | 541.2 |
14 | Kohistan | 73.19 | 35.32 | 841 | 924.8 |
15 | Lower Dir | 71.82 | 34.83 | 786 | 876.3 |
16 | Naltar | 74.27 | 36.22 | 2810 | 675.7 |
17 | Naran | 73.65 | 34.90 | 2363 | 1824.8 |
18 | Pattan | 73.03 | 35.10 | 752 | 1091.3 |
19 | Peshawar | 71.51 | 33.99 | 362 | 488.0 |
20 | Saidu Sharif | 72.35 | 34.82 | 961 | 985.8 |
21 | Ushkore | 73.36 | 36.02 | 3350 | 286.7 |
22 | Yasin | 73.30 | 36.63 | 3353 | 296.2 |
23 | Zani Post | 72.15 | 36.28 | 3000 | 194.1 |
24 | Ziarat | 74.28 | 36.83 | 3669 | 773.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, A.; Anjum, M.N.; Masud Cheema, M.J.; Chen, X.; Afzal, A.; Azam, M.; Kamran Shafi, M.; Gulakhmadov, A. Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR Precipitation Products over the Hindu Kush Mountains of Pakistan, South Asia. Remote Sens. 2020, 12, 3871. https://doi.org/10.3390/rs12233871
Hamza A, Anjum MN, Masud Cheema MJ, Chen X, Afzal A, Azam M, Kamran Shafi M, Gulakhmadov A. Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR Precipitation Products over the Hindu Kush Mountains of Pakistan, South Asia. Remote Sensing. 2020; 12(23):3871. https://doi.org/10.3390/rs12233871
Chicago/Turabian StyleHamza, Ali, Muhammad Naveed Anjum, Muhammad Jehanzeb Masud Cheema, Xi Chen, Arslan Afzal, Muhammad Azam, Muhammad Kamran Shafi, and Aminjon Gulakhmadov. 2020. "Assessment of IMERG-V06, TRMM-3B42V7, SM2RAIN-ASCAT, and PERSIANN-CDR Precipitation Products over the Hindu Kush Mountains of Pakistan, South Asia" Remote Sensing 12, no. 23: 3871. https://doi.org/10.3390/rs12233871