The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF
<p>Schematic diagram of bidirectional reflection elements.</p> "> Figure 2
<p>Flow chart of photogrammetry technology.</p> "> Figure 3
<p>Zenith angle and azimuth angle of the observation beam of the camera.</p> "> Figure 4
<p>Position of the Sun: (<b>a</b>) solar altitude and azimuth in horizon coordinate system; (<b>b</b>) declination and time angle in equatorial coordinate system.</p> "> Figure 5
<p>Design diagram for multi angle view: (<b>a</b>) sampling of zenith angle; (<b>b</b>) sampling of azimuth angle.</p> "> Figure 6
<p>Unmanned aerial vehicles used for multi angle reflectivity measurement: (<b>a</b>) DJI P4M remote sensing system; (<b>b</b>) multispectral camera loaded on DJI P4M.</p> "> Figure 7
<p>The Lambertian reference panel (LRP) for reflectance correction: (<b>a</b>) actual image of LRP; (<b>b</b>) spectral reflectance curve of LRP.</p> "> Figure 8
<p>Radiation reference panels for reflectance correction: (<b>a</b>) actual images of RRP; (<b>b</b>) spectral reflectance curves of RRP.</p> "> Figure 9
<p>Position and view-angle of each image corrected. (<b>a</b>) The top view displays the position and viewing angle of each image. (<b>b</b>) The side view displays the position and viewing angle of each image.</p> "> Figure 10
<p>Four objects selected arrange in DOM.</p> "> Figure 11
<p>Spatial distribution of reflectance of four objects (ZA_V is the zenith angle of view, which ranges from 0 to 60 degrees; AA_V is the azimuth angle of view, which ranges from 0 to 360 degrees).</p> "> Figure 12
<p>Correlation of RRP01 inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 13
<p>Correlation of RRP02 inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 14
<p>Correlation of lawn inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 15
<p>Correlation of soil inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 16
<p>BRDF of RRP01 inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 17
<p>BRDF of treetop inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 18
<p>BRDF of lawn inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 19
<p>BRDF of soil inverted with M-Walthall, RPV, RTLSR.</p> "> Figure 20
<p>BRDF profiles at 0–180 degrees.</p> "> Figure 21
<p>BRDF profiles at 90–270 degrees.</p> "> Figure 22
<p>Hot spot effect in the solar principal plane reproduced by three BRDF models.</p> "> Figure 23
<p>Error of mean reflectance and zenith reflectance.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Observational Geometry of the Camera
2.2. Incident Geometry of the Sun
2.3. BRF of the Objects
3. Experiments
3.1. Multi-Angle Observing Route
- (1)
- The flight route rotates with the target object as the center point to achieve sampling at different azimuth angles. Here, eight azimuth angles were planned with a sampling interval of 45° from 0 degrees to 360 degrees.
- (2)
- The radius and height of the rotating path determines the sampling of different zenith angles. Here, five zenith angles were designed with a sampling interval of 15° from 0 degrees to 60 degrees.
- (3)
- During this process, the optical axis of the camera always faces the target object, by adjusting the pitch angle of the sensor and the heading angle of the drone.
3.2. UAV Spectral Remote Sensing System
3.3. Radiation Correction Programme
3.4. BRF Reconstruction
3.4.1. Observational Geometry of the Camera
3.4.2. Incident Direction of the Sun
3.4.3. Reconstructing the Geometric Structure of “Sun-Object-View”
- (1)
- For the smooth RRP01, its bidirectional reflectance factor (BRF) assumes a bowl-shaped form with stronger forward scattering than backscattering.
- (2)
- In contrast, for the rough treetop, lawn, and soil surfaces, their BRFs display greater complexity with stronger backscattering compared to forward scattering.
- (3)
- Furthermore, all of these BRFs demonstrate nearly symmetrical behavior along the principal plane of the sun.
4. Inverting and Validating BRDF
- (1)
- (2)
- (3)
- RTLSR is a nuclear-driven model formed by combining Ross Thick core and LiSparseR core, where the former serves as the volume scattering core in this nuclear-driven model, while the latter acts as the geometrical optics core. It has been widely employed in producing satellite remote sensing BRDF/Albedo products [5,28,29].
4.1. Accuracy of BRDF Fitted
4.2. Structure of BRDF
4.3. Hotspot of BRDFs
4.4. Errors of Reflectance Values Fitted and Measured
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, F.; Jupp, D.L.B.; Thankappan, M.; Lymburner, L.; Mueller, N.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models; IEEE: Manhattan, NY, USA, 2000. [Google Scholar]
- Yan, Y.; Deng, L.; Liu, X.L.; Zhu, L. Application of UAV-based multi-angle hyperspectral remote sensing in fine vegetation classification. Remote Sens. 2019, 11, 2753. [Google Scholar] [CrossRef]
- Lucht, W.; Lewis, P. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int. J. Remote Sens. 2000, 21, 81–98. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Sun, Q.; Liu, Y.; Schaaf, C.; Wang, Z.; Román, M.O. Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS. Remote Sens. Environ. 2016, 175, 52–64. [Google Scholar] [CrossRef]
- Guo, J.; Jiao, Z.; Ding, A.; Dong, Y.; Zhang, X.; Cui, L.; Yin, S.; Chang, Y.; Xie, R. Evaluation of three BRDF models’ performance using spaceborne POLDER snow data. Natl. Remote Sens. Bull. 2022, 26, 2060–2072. [Google Scholar] [CrossRef]
- Roosjen, P.; Bartholomeus, H.; Suomalainen, J.; Clevers, J. Investigating BRDF effects based on optical multi-angular laboratory and hyperspectral UAV measurements. In Hyperspectral Imaging and Sounding of the Environment, HISE 2015; OSA—The Optical Society: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- He, D.; Jiao, Z.; Dong, Y.; Zhang, X.; Zhang, H.; Ding, A. Verification of BRDF archetype inversion algorithm from surface observations of airborne WIDAS. J. Remote Sens. 2019, 23, 620–629. [Google Scholar] [CrossRef]
- Cao, H.; Gu, X.; Wei, X.; Yu, T.; Zhang, H. Lookup table approach for radiometric calibration of miniaturized multispectral camera mounted on an unmanned aerial vehicle. Remote Sens. 2020, 12, 4012. [Google Scholar] [CrossRef]
- Minařík, R.; Langhammer, J. Rapid radiometric calibration of multiple camera array using in situ data for UAV multispectral photogrammetry. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; ISPRS Archives, International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2019; pp. 209–215. [Google Scholar] [CrossRef]
- Grenzdörffer, G.J.; Niemeyer, F. UAV Based BRDF-Measurements of Agricultural Surfaces with Pfiffikus. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-1/C22, 229–234. [Google Scholar] [CrossRef]
- Roosjen, P.P.J.; Suomalainen, J.M.; Bartholomeus, H.M.; Clevers, J.G.P.W. Hyperspectral reflectance anisotropy measurements using a pushbroom spectrometer on an unmanned aerial vehicle-results for barley, winter wheat, and potato. Remote Sens. 2016, 8, 909. [Google Scholar] [CrossRef]
- Tao, B.; Hu, X.; Yang, L.; Zhang, L.; Chen, L.; Xu, N.; Wang, L.; Wu, R.; Zhang, D.; Zhang, P. BRDF feature observation method and modeling of desert site based on UAV platform. Natl. Remote Sens. Bull. 2021, 25, 1964–1977. [Google Scholar] [CrossRef]
- Deng, L.; Chen, Y.; Zhao, Y.; Zhu, L.; Gong, H.-L.; Guo, L.-J.; Zou, H.-Y. An approach for reflectance anisotropy retrieval from UAV-based oblique photogrammetry hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102442. [Google Scholar] [CrossRef]
- Qiu, F.; Huo, J.; Zhang, Q.; Chen, X.; Zhang, Y. Observation and analysis of bidirectional and hotspot reflectance of conifer forest canopies with a multiangle hyperspectral UAV imaging platform. Natl. Remote Sens. Bull. 2021, 25, 1013–1024. [Google Scholar] [CrossRef]
- Li, W.; Jiang, J.; Weiss, M.; Madec, S.; Tison, F.; Philippe, B.; Comar, A.; Baret, F. Impact of the reproductive organs on crop BRDF as observed from a UAV. Remote Sens. Environ. 2021, 259, 112433. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Qi, J.; Pisek, J.; Roosjen, P.; Yan, G.; Huang, H.; Liu, S.; Baret, F. Characterizing reflectance anisotropy of background soil in open-canopy plantations using UAV-based multiangular images. ISPRS J. Photogramm. Remote Sens. 2021, 177, 263–278. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Kedzierski, M.; Fryskowska, A.; Jasinski, J. Quality assessment of the bidirectional reflectance distribution function for NIR imagery Sequences from UAV. Remote Sens. 2018, 10, 1348. [Google Scholar] [CrossRef]
- Walthall, C.L.; Norman, J.M.; Welles, J.M.; Campbell, G.; Blad, B.L. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Appl. Opt. 1985, 24, 383–387. [Google Scholar] [CrossRef]
- Cheng, J. Construction of BRF and Inversion of Land Surface BRDF Using High Spatial Resolution Remote Sensing Image; University of Chinese Academy of Sciences: Beijing, China, 2019. [Google Scholar]
- Meeus, J.; Mahooti, M. Astronomical Algorithms; Association for Computing Machinery: New York, NY, USA, 1998. [Google Scholar]
- Cao, H.; Gu, X.; Sun, Y.; Gao, H.; Tao, Z.; Shi, S. Comparing, validating and improving the performance of reflectance obtention method for UAV-Remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102391. [Google Scholar] [CrossRef]
- Lu, H.; Fan, T.; Ghimire, P.; Deng, L. Experimental evaluation and consistency comparison of UAV multispectral minisensors. Remote Sens. 2020, 12, 2542. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, H.; Min, X.; Xu, Z. Vicarious calibration correction of large FOV sensor using BRDF model based on UAV angular spectrum measurements. J. Appl. Remote Sens. 2020, 14, 027501. [Google Scholar] [CrossRef]
- Beisl, U. New method for correction of bidirectional effects in hyperspectral images. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology; SPIE: Bellingham, WA, USA, 2002; pp. 304–311. [Google Scholar] [CrossRef]
- Roujean, J.; Leroy, M.; Deschamps, P. A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. Earth Surf. 1992, 97, 20455–20468. [Google Scholar] [CrossRef]
- Hakala, T.; Suomalainen, J.; Peltoniemi, J.I. Acquisition of bidirectional reflectance factor dataset using a micro unmanned aerial vehicle and a consumer camera. Remote Sens. 2010, 2, 819–832. [Google Scholar] [CrossRef]
- Chang, Y.; Jiao, Z.; Dong, Y.; Zhang, X.; He, D.; Yin, S.; Cui, L.; Ding, A. Parameterization and correction of hotspot parameters of Ross-Li kernel driven models on POLDER dataset. J. Remote Sens. 2019, 23, 661–672. [Google Scholar] [CrossRef]
- Wanner, W.; Strahler, A.H.; Hu, B.; Lewis, P.; Muller, J.-P.; Li, X.; Schaaf, C.L.B.; Barnsley, M.J. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res. Atmos. 1997, 102, 17143–17161. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef]
- Olsen, D.; Dou, C.; Zhang, X.; Hu, L.; Kim, H.; Hildum, E. Radiometric calibration for AgCam. Remote Sens. 2010, 2, 464–477. [Google Scholar] [CrossRef]
- Yan, G.; Jiang, H.; Yan, K.; Cheng, S.; Song, W.; Tong, Y.; Liu, Y.; Qi, J.; Mu, X.; Zhang, W.; et al. Review of optical multi-angle quantitative remote sensing. Natl. Remote Sens. Bull. 2021, 25, 83–108. [Google Scholar] [CrossRef]
Parameters | Index |
---|---|
Controllable rotation range of PTZ | Pitch: −90° to +30° |
Wave band of filters | Blue: 450 nm ± 16 nm; Green: 560 nm ± 16 nm; Red: 650 nm ± 16 nm; Red edge: 730 nm ± 16 nm; NIR: 840 nm ± 26 nm |
FOV of lens | HFOV62.7° × VFOV50.9° IFOV 0.039° |
focal length of lens | 5.74 mm (fixed) |
Gain | 1×, 2×, 4×, 8× |
Integral time | 1/100–1/10,000 s |
shutter type | Global |
Size of image | 1600 × 1300 (4:3.25) |
Ground sampling distance (GSD) | 15.4 cm@ Relative Altitude = 200 m |
Accuracy Factors | X (m) | Y (m) | Z (m) | Omega (Degree) | Phi (Degree) | Kappa (Degree) |
---|---|---|---|---|---|---|
Mean Error | 0.063 | 0.063 | 0.118 | 0.040 | 0.036 | 0.021 |
RMSE | 0.008 | 0.008 | 0.003 | 0.001 | 0.002 | 0.006 |
Routes of Flight | Duration | Middle Time | Zenith Angle of Sun (Degree) | Azimuth Angle of Sun (Degree) |
---|---|---|---|---|
ZVP | 10:08:40 | 10:08:40 | 39.46 | 112.00 |
Route01 | 10:09:19–10:10:23 | 10:09:46 | 39.36 | 112.31 |
Route02 | 10:11:29–10:12:54 | 10:12:04 | 39.15 | 112.97 |
Route03 | 10:13:48–10:15:31 | 10:14:31 | 38.93 | 113.69 |
Route04 | 10:16:35–10:18:31 | 10:17:23 | 38.69 | 114.54 |
BRDF Model | RRP01 | Treetop | Lawn | Soil |
---|---|---|---|---|
M-Walthall | 0.794 | 0.809 | 0.874 | 0.850 |
RPV | 0.825 | 0.901 | 0.959 | 0.925 |
RTLSR | 0.647 | 0.257 | 0.848 | 0.621 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; You, D.; Ji, D.; Gu, X.; Wen, J.; Wu, J.; Li, Y.; Cao, Y.; Cui, T.; Zhang, H. The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF. Remote Sens. 2023, 15, 5000. https://doi.org/10.3390/rs15205000
Cao H, You D, Ji D, Gu X, Wen J, Wu J, Li Y, Cao Y, Cui T, Zhang H. The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF. Remote Sensing. 2023; 15(20):5000. https://doi.org/10.3390/rs15205000
Chicago/Turabian StyleCao, Hongtao, Dongqin You, Dabin Ji, Xingfa Gu, Jianguang Wen, Jianjun Wu, Yong Li, Yongqiang Cao, Tiejun Cui, and Hu Zhang. 2023. "The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF" Remote Sensing 15, no. 20: 5000. https://doi.org/10.3390/rs15205000
APA StyleCao, H., You, D., Ji, D., Gu, X., Wen, J., Wu, J., Li, Y., Cao, Y., Cui, T., & Zhang, H. (2023). The Method of Multi-Angle Remote Sensing Observation Based on Unmanned Aerial Vehicles and the Validation of BRDF. Remote Sensing, 15(20), 5000. https://doi.org/10.3390/rs15205000