Microphysical Characteristics of Raindrop Size Distribution and Implications for Dual-Polarization Radar Quantitative Precipitation Estimations in the Tianshan Mountains, China
<p>Location of Zhaosu (the black dot), with shading representing the topography (m) of the Tianshan Mountains.</p> "> Figure 2
<p>Accumulated rain duration (red histogram) and rain amount (blue line) for the six <span class="html-italic">R</span> classes in Zhaosu.</p> "> Figure 3
<p>Mean DSD variations for different <span class="html-italic">R</span> classes (color lines) and all samples (black line) in Zhaosu. The two vertical dashed lines on the left and right distinguish the raindrop spectrum of small and medium-size raindrops, and the raindrop spectrum of medium-size and large raindrops, respectively.</p> "> Figure 4
<p>Variations of the <span class="html-italic">D<sub>m</sub></span> and the log<sub>10</sub><span class="html-italic">N<sub>w</sub></span> in Zhaosu for the six <span class="html-italic">R</span> classes. The line and dot of the box indicate the mean (black line) and median (black dot), respectively. The bottom (top) lines of the box indicate the 25th (75th) percentiles. The bottom (top) lines of the vertical lines out of the box indicate the 5th (95th) percentiles.</p> "> Figure 5
<p>The contribution of small, medium, and large drops to <span class="html-italic">R</span>, <span class="html-italic">Z</span>, <span class="html-italic">LWC</span>, and <span class="html-italic">N<sub>t</sub></span> in Zhaosu.</p> "> Figure 6
<p>Scatterplots of <span class="html-italic">Z<sub>dr</sub></span> versus <span class="html-italic">Z<sub>h</sub></span>, and the <span class="html-italic">Z<sub>dr</sub></span>–<span class="html-italic">Z<sub>h</sub></span> relations represented by black line and equation on the (<b>a</b>) S-band, (<b>c</b>) C-band, and (<b>e</b>) X-band. Scatterplots of <span class="html-italic">K<sub>dp</sub></span> versus <span class="html-italic">Z<sub>h</sub></span>, and the <span class="html-italic">K<sub>dp</sub></span>–<span class="html-italic">Z<sub>h</sub></span> relations represented by black line and equation on the (<b>b</b>) S-band, (<b>d</b>) C-band, and (<b>f</b>) X-band.</p> "> Figure 7
<p>Scatterplot of <span class="html-italic">R</span> calculated from (<b>a</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span>), (<b>b</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span>), (<b>c</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>), and (<b>d</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>) relations versus the <span class="html-italic">R</span> computed from DSD for S-band in Zhaosu.</p> "> Figure 8
<p>Scatterplot of <span class="html-italic">R</span> calculated from (<b>a</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span>), (<b>b</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span>), (<b>c</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>), and (<b>d</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>) relations versus the <span class="html-italic">R</span> computed from DSD for C-band in Zhaosu.</p> "> Figure 9
<p>Scatterplot of <span class="html-italic">R</span> calculated from (<b>a</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span>), (<b>b</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span>), (<b>c</b>) <span class="html-italic">R</span>(<span class="html-italic">Z<sub>h</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>), and (<b>d</b>) <span class="html-italic">R</span>(<span class="html-italic">K<sub>dp</sub></span><sub>,</sub><span class="html-italic">Z<sub>dr</sub></span>) relations versus the <span class="html-italic">R</span> computed from DSD for X-band in Zhaosu.</p> "> Figure 10
<p>Variations of (<b>a</b>) <span class="html-italic">Z<sub>h</sub></span>, (<b>b</b>) <span class="html-italic">Z<sub>dr</sub></span>, and (<b>c</b>) <span class="html-italic">K<sub>dp</sub></span> on the S- (red), C- (green), and X-bands (purple) for the six <span class="html-italic">R</span> classes. The line of the box indicates the mean. The bottom (top) lines of the box indicate the 25th (75th) percentiles. The bottom (top) lines of the vertical lines out of the box indicate the 5th (95th) percentiles.</p> "> Figure 11
<p>The (<b>a</b>,<b>d</b>,<b>g</b>) CC, (<b>b</b>,<b>e</b>,<b>h</b>) RMSE, and (<b>c</b>,<b>f</b>,<b>i</b>) NMAE of <span class="html-italic">R</span> estimated from the dual-polarization radar QPE estimators against <span class="html-italic">R</span> calculated from the DSD under different <span class="html-italic">R</span> classes and different radar bands, (<b>a</b>–<b>c</b>) for S-band, (<b>d</b>–<b>f</b>) for C-band, and (<b>g</b>–<b>i</b>) for X-band, respectively.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area and Research Data
2.2. Data Quality Control
2.3. DSD and DSD-Based Polarimetric Radar QPE Relations
2.4. Assessing the Accuracy of QPE Estimators
3. Results
3.1. DSD Characteristics under Different Rain Rate Classes
3.2. Dual-Polarization Radar QPE Relations
3.3. QPE Relations under Different Rain Rate Classes
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenfeld, D.; Ulbrich, C.W. Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorol. Monogr. 2003, 30, 237–258. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, J.; Brandes, E.A. Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci. 2006, 63, 1273–1290. [Google Scholar] [CrossRef]
- Mason, B.J. Physics of clouds and precipitation. Nature 1954, 174, 957–959. [Google Scholar] [CrossRef]
- Milbrandt, J.A.; Yau, M.K. A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 2005, 62, 3051–3064. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Dawson, D.T.I.; Xue, M.; Zhang, G. Diagnosing the intercept parameters of the exponential drop size distributions in a single-moment microphysics scheme and impact on supercell storm simulations. J. Appl. Meteorol. Climatol. 2014, 53, 2072–2090. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Hsieh, T.-L.; Freer, M.; Mascio, J.; Jewett, B.F. The characterization of ice hydrometeor gamma size distributions asvolumes in N0–λ–μ phase space: Implications for microphysical process modeling. J. Atmos. Sci. 2015, 72, 892–909. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Rainfall Intensity-Kinetic Energy Relationships for Soil Loss Prediction1. Soil Sci. Soc. Am. J. 1981, 45, 153. [Google Scholar] [CrossRef]
- Steiner, M.; Smith, J.A. Reflectivity, Rain Rate, and Kinetic Energy Flux Relationships Based on Raindrop Spectra. J. Appl. Meteorol. 2000, 39, 1923–1940. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Kalath Unnikrishnan, C.; Lin, P.-L.; Le Loh, J.; Chang, W.-Y.; Kumar, U.; Reddy, K.K.; Lee, D.-I.; Venkatrami Reddy, M. Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sens. 2021, 13, 3178. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Comparison of dual polarization radar estimators of rain. J. Atmos. Ocean. Technol. 1995, 12, 249–256. [Google Scholar] [CrossRef]
- Liao, L.; Meneghini, R.; Tokay, A. Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. J. Appl. Meteor. Climatol. 2014, 53, 2524–2537. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteorol. Soc. Jpn. 2013, 91, 215–227. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural variations in the analytical form of the raindrop size distribution. J. Clim. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteorol. 1996, 35, 355–371. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Konwar, M.; Das, S.K.; Deshpande, S.M.; Chakravarty, K.; Goswami, B.N. Microphysics of clouds and rain over the Western Ghat. J. Geophys. Res. Atmos. 2014, 119, 6140–6159. [Google Scholar] [CrossRef]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop Size Distribution Measurements at 4500 m on the Tibetan Plateau During TIPEX-III. J. Geophys. Res. Atmos. 2017, 12211, 11092–12006. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution between Palau and Taiwan, Two Islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122, 11–787. [Google Scholar] [CrossRef]
- Suh, S.-H.; You, C.-H.; Lee, D.-I. Climatological characteristics of raindrop size distributions in Busan, Republic of Korea. Hydrol. Earth Syst. Sci. 2016, 20, 193–207. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Chen, G. Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res. Atmos. 2018, 123, 6529–6548. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, L.; Chen, H. Characteristics of warm clouds and precipitation in South China during the pre-flood season using datasets from a cloud radar, a ceilometer, and a disdrometer. Remote Sens. 2019, 11, 3045. [Google Scholar] [CrossRef]
- Zhang, A.; Hu, J.; Chen, S. Statistical characteristics of raindrop size distribution in the monsoon season observed in southern China. Remote Sens. 2019, 11, 432. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef]
- Pu, K.; Liu, X.; Wu, Y.; Hu, S.; Liu, L.; Gao, T. A comparison study of raindrop size distribution among five sites at the urban scale during the East Asian rainy season. J. Hydrol. 2020, 590, 125500. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Wang, M. Seasonal variations of observed raindrop size distribution in East China. Adv. Atmos. Sci. 2019, 36, 346–362. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; He, H. Comparison of raindrop size distributions in a midlatitude continental squall line during different stages as measured by Parsivel over East China. J. Appl. Meteorol. Climatol. 2017, 56, 2097–2111. [Google Scholar] [CrossRef]
- Luo, L.; Guo, J.; Chen, H. Microphysical characteristics of rainfall observed by a 2DVD disdrometer during different seasons in Beijing, China. Remote Sens. 2021, 13, 2303. [Google Scholar] [CrossRef]
- Ma, Y.; Ni, G.; Chandra, C.V. Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol. Earth Syst. Sci. 2019, 23, 4153–4170. [Google Scholar] [CrossRef]
- Ji, L.; Chen, H.N.; Li, L.; Chen, B.J.; Xiao, X.; Chen, M.; Zhang, G.F. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, Northern China. Remote Sens. 2019, 11, 1479. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, R.; Zhaxi, S.; Liu, S. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project. Atmos. Res. 2021, 249, 105311. [Google Scholar] [CrossRef]
- Wang, G.; Li, R.; Sun, J. Comparative analysis of the characteristics of rainy season raindrop size distributions in two typical regions of the Tibetan Plateau. Adv. Atmos. Sci. 2022, 39, 1062–1078. [Google Scholar] [CrossRef]
- Zhang, J.B.; Deng, Z.F. A Generality of Rainfall in Xinjiang; Meteorological Press: Beijing, China, 1987; pp. 1–10. (In Chinese) [Google Scholar]
- Yang, L.M.; Li, X.; Zhang, G.X. Some advances and problems in the study of heavy rain in Xinjiang. Clim. Environ. Res. 2011, 16, 188–198. (In Chinese) [Google Scholar]
- Zeng, Y.; Yang, L. Triggering mechanism of an extreme rainstorm process near the Tianshan Mountains in Xinjiang, an arid region in China, based on a numerical simulation. Adv. Meteorol. 2020, 2020, 8828060. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhang, Z.; Tong, Z.; Li, J.; Liu, F.; Zhang, J.; Jiang, Y. Characteristics of clouds and raindrop size distribution in Xinjiang, using cloud radar datasets and a disdrometer. Atmosphere 2020, 11, 1382. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Tong, Z.; Jiang, Y.; Zhang, Z.; Zhang, J.; Zhou, Y.; Li, J.; Liu, F.; Liu, J. Statistical characteristics of raindrop size distribution during rainy seasons in Northwest China. Adv. Meteorol. 2021, 2021, 6667786. [Google Scholar] [CrossRef]
- Zeng, Y.; Tong, Z.; Jiang, Y.; Zhou, Y. Microphysical characteristics of seasonal rainfall observed by a Parsivel disdrometer in the Tianshan Mountains, China. Atmos. Res. 2022, 280, 106459. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhou, Y.; Tong, Z.; Jiang, Y. Statistical characteristics of summer season raindrop size distribution in the western and central Tianshan Mountains in China. J. Meteorol. Soc. Jpn. 2022, 100, 855–872. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhou, Y.; Tong, Z.; Jiang, Y.; Chen, P. Characteristics of orographic raindrop size distribution in the Tianshan Mountains, China. Atmos. Res. 2022, 278, 106332. [Google Scholar] [CrossRef]
- Fu, Z.; Dong, X.; Zhou, L.; Cui, W.; Wang, J.; Wan, R.; Leng, L.; Xi, B. Statistical characteristics of raindrop size distributions and parameters in Central China during the Meiyu seasons. J. Geophys. Res. Atmos. 2020, 125, e2019JD031954. [Google Scholar] [CrossRef]
- Marshall, J.S.; Palmer, W.M. The distribution of raindrops with size. J. Meteor. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Fulton, R.A.; Breidenbach, J.P.; Seo, D.-J. The WSR-88D Rainfall Algorithm. Weather. Forecast. 1998, 13, 377–395. [Google Scholar] [CrossRef]
- Atlas, D.; Ulbrich, C.W.; Marks, F.D. Systematic variation of drop size and radar-rainfall relations. J. Geophys. Res. 1999, 104, 6155–6169. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Microphysics of raindrop size spectra: Tropical continental and maritime storms. J. Appl. Meteor. Climatol. 2007, 46, 1777–1791. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.-L. Raindrop size distribution characteristics of Indian and Pacific Ocean tropical cyclones observed at India and Taiwan sites. J. Meteorol. Soc. Jpn. 2020, 98, 299–317. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.-L.; Lee, M.-T.; Joseph, E. Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific. Hydrol. Earth Syst. Sci. 2021, 25, 4025–4040. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jung, W.; Suh, S.-H.; Lee, D.-I.; You, C.-H. The Characteristics of raindrop size distribution at windward and leeward side over mountain area. Remote Sens. 2022, 14, 2419. [Google Scholar] [CrossRef]
- Li, R.; Wang, G.; Zhou, R.; Zhang, J.; Liu, L. Seasonal variation in microphysical characteristics of precipitation at the entrance of water vapor channel in Yarlung Zangbo Grand Canyon. Remote Sens. 2022, 14, 3149. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.C.; Wang, Y.; Rutledge, S.A. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean. Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef]
- You, C.-H.; Kang, M.; Lee, D.-I. Rainfall estimation by S-band polarimetric radar in Korea. Part I: Preprocessing and preliminary results. Meteorol. Appl. 2014, 21, 975–983. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, G.; Brandes, E.A. Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteorol. Climatol. 2010, 49, 973–990. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol. 2002, 41, 674–685. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Yin, J.; Qiao, Z.; Cao, J.; Shi, Y. Microphysical characteristics of raindrop size distribution and implications for radar rainfall estimation over the northeastern Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2021JD035575. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Tong, Z.; Jiang, Y.; Chen, P.; Zhou, Y. Characteristics and applications of summer season raindrop size distributions based on a PARSIVEL2 disdrometer in the western Tianshan Mountains (China). Remote Sens. 2022, 14, 3988. [Google Scholar] [CrossRef]
- You, C.-H.; Suh, S.-H.; Jung, W.; Kim, H.-J.; Lee, D.-I. Dual-Polarization Radar-Based Quantitative Precipitation Estimation of Mountain Terrain Using Multi-Disdrometer Data. Remote Sens. 2022, 14, 2290. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Yuter, S.E.; Kingsmill, D.E.; Nance, L.B.; Löffler-Mang, M. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow. J. Appl. Meteorol. 2006, 45, 1450–1464. [Google Scholar] [CrossRef]
- Beard, K.V.; Johnson, D.B.; Baumgardner, D. Aircraft observations of large raindrops in warm, shallow, convective clouds. Geophys. Res. Lett. 1986, 13, 991–994. [Google Scholar] [CrossRef]
- Friedrich, K.; Higgins, S.; Masters, F.J.; Lopez, C.R. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong Winds and heavy rainfall. J. Atmos. Oceanic Technol. 2013, 30, 2063–2080. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Jaffrain, J.; Berne, A. Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. J. Hydrometeorol. 2011, 12, 352–370. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteorol. 1998, 37, 912–923. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E.A.; Meneghini, R.; Kozu, T. The shape-slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Ocean. Technol. 2003, 20, 1106–1119. [Google Scholar] [CrossRef]
- Kalogiros, J.; Anagnostou, M.N.; Anagnostou, E.N. Optimum estimation of rain microphysical parameters from X-band dual-polarization radar observables. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3063–3076. [Google Scholar] [CrossRef]
- Leinonen, J. High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Opt. Express 2014, 22, 1655–1660. [Google Scholar] [CrossRef]
- Waterman, P.C. Matrix formulation of electromagnetic scattering. Proc. IEEE 1965, 53, 805–812. [Google Scholar] [CrossRef]
- Tokay, A.; Bashor, P.G.; Habib, E.; Kasparis, T. Raindrop size distribution measurements in tropical cyclones. Mon. Weather. Rev. 2008, 136, 1669–1685. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, S.; Liu, X.; Chen, X.; Zhang, H.; Qi, T.; Zeng, G. Improving S-band polarimetric radar monsoon rainfall estimation with two-dimensional video disdrometer observations in South China. Atmosphere 2021, 12, 831. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V. The quantitative precipitation estimation system for Dallas-Fort Worth (DFW) urban remote sensing network. J. Hydrol. 2015, 531, 259–271. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Bechini, R. An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. J. Hydrometeorol. 2017, 18, 917–937. [Google Scholar] [CrossRef]
Parameters | No. of Samples | R (mm h−1) | D0 (mm) | LWC (g m−3) | Z (dBZ) | Nt (m−3) |
---|---|---|---|---|---|---|
C1 | 5970 | 0.26 | 0.90 | 0.02 | 14.67 | 188 |
C2 | 3030 | 0.72 | 1.00 | 0.05 | 20.66 | 222 |
C3 | 2563 | 1.43 | 1.13 | 0.09 | 25.04 | 237 |
C4 | 2109 | 3.07 | 1.34 | 0.17 | 30.25 | 249 |
C5 | 612 | 6.91 | 1.72 | 0.32 | 36.21 | 254 |
C6 | 325 | 16.85 | 2.30 | 0.66 | 43.03 | 260 |
Band | R(Zh) | R(Kdp) | R(Zh,Zdr) | R(Kdp,Zdr) |
---|---|---|---|---|
S | R(Zh) = 0.096 Zh0.468 | R(Kdp) = 27.831 Kdp0.639 | R(Zh,Zdr) = 0.013 Zh0.82410−0.352Zdr | R(Kdp,Zdr) = 75.719 Kdp0.84510−0.172Zdr |
C | R(Zh) = 0.098 Zh0.457 | R(Kdp) = 16.914 Kdp0.641 | R(Zh,Zdr) = 0.010 Zh0.90010−0.556Zdr | R(Kdp,Zdr) = 51.816 Kdp0.89010−0.251Zdr |
X | R(Zh) = 0.070 Zh0.497 | R(Kdp) = 13.053 Kdp0.668 | R(Zh,Zdr) = 0.018 Zh0.74410−0.294Zdr | R(Kdp,Zdr) = 23.265 Kdp0.81610−0.147Zdr |
Band | Zh (dBZ) | Zdr (10−1 dB) | Kdp (10−3 km−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C1 | C2 | C3 | C4 | C5 | C6 | C1 | C2 | C3 | C4 | C5 | C6 | |
S | 15.82 | 21.73 | 26.08 | 31.27 | 37.47 | 44.69 | 10.47 | 10.71 | 11.05 | 11.71 | 12.93 | 15.17 | 1.4 | 4.5 | 11.3 | 32.8 | 110.1 | 426.7 |
C | 15.93 | 21.89 | 26.31 | 31.64 | 38.03 | 45.51 | 10.48 | 10.72 | 11.09 | 11.79 | 12.90 | 14.71 | 2.9 | 9.5 | 24.2 | 71.5 | 241.7 | 933.6 |
X | 16.09 | 22.10 | 26.58 | 31.94 | 38.18 | 45.22 | 10.49 | 10.73 | 11.07 | 11.70 | 12.75 | 14.69 | 4.7 | 15.5 | 39.8 | 116.2 | 379.9 | 1394.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Li, J.; Yang, L.; Li, H.; Li, X.; Tong, Z.; Jiang, Y.; Liu, J.; Zhang, J.; Zhou, Y. Microphysical Characteristics of Raindrop Size Distribution and Implications for Dual-Polarization Radar Quantitative Precipitation Estimations in the Tianshan Mountains, China. Remote Sens. 2023, 15, 2668. https://doi.org/10.3390/rs15102668
Zeng Y, Li J, Yang L, Li H, Li X, Tong Z, Jiang Y, Liu J, Zhang J, Zhou Y. Microphysical Characteristics of Raindrop Size Distribution and Implications for Dual-Polarization Radar Quantitative Precipitation Estimations in the Tianshan Mountains, China. Remote Sensing. 2023; 15(10):2668. https://doi.org/10.3390/rs15102668
Chicago/Turabian StyleZeng, Yong, Jiangang Li, Lianmei Yang, Haoyang Li, Xiaomeng Li, Zepeng Tong, Yufei Jiang, Jing Liu, Jinru Zhang, and Yushu Zhou. 2023. "Microphysical Characteristics of Raindrop Size Distribution and Implications for Dual-Polarization Radar Quantitative Precipitation Estimations in the Tianshan Mountains, China" Remote Sensing 15, no. 10: 2668. https://doi.org/10.3390/rs15102668
APA StyleZeng, Y., Li, J., Yang, L., Li, H., Li, X., Tong, Z., Jiang, Y., Liu, J., Zhang, J., & Zhou, Y. (2023). Microphysical Characteristics of Raindrop Size Distribution and Implications for Dual-Polarization Radar Quantitative Precipitation Estimations in the Tianshan Mountains, China. Remote Sensing, 15(10), 2668. https://doi.org/10.3390/rs15102668