Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of Water Vapor Channel in Yarlung Zangbo Grand Canyon
"> Figure 1
<p>Methodological workflow diagram adopted in this study.</p> "> Figure 2
<p>The locations of Mêdog (black solid dot) and Yarlung Zangbo Grand Canyon (YGC), and topography (m) of the Tibetan Plateau (TP) (<b>a</b>) and the PARSIVEL disdrometer (<b>b</b>). The red arrow indicates water vapor channel in the YGC.</p> "> Figure 3
<p>Accumulated raw particle counts by diameter and fall speed were observed during the four seasons: winter (<b>a</b>), premonsoon (<b>b</b>), monsoon (<b>c</b>) and postmonsoon (<b>d</b>). Solid black lines indicate the empirical fall speed–diameter relationship. Dashed lines denote the ±60% empirical fall speed–diameter relationship.</p> "> Figure 4
<p>Averaged DSDs during the four seasons.</p> "> Figure 5
<p>Averaged DSDs for different rain rate categories. (<b>a</b>) R1: 0.1 ≤ <span class="html-italic">R</span> < 1 mm h<sup>−1</sup>, (<b>b</b>) R2: 1 ≤ <span class="html-italic">R</span> < 2 mm h<sup>−1</sup>, (<b>c</b>) R3: 2 ≤ <span class="html-italic">R</span> < 5 mm h<sup>−1</sup>, (<b>d</b>) R4: 5 ≤ <span class="html-italic">R</span> < 10 mm h<sup>−1</sup>, (<b>e</b>) R5: 10 ≤ <span class="html-italic">R <</span> 20 mm h<sup>−1</sup> and (<b>f</b>) R6: <span class="html-italic">R</span> ≥ 20 mm h<sup>−1</sup>.</p> "> Figure 6
<p>Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the different <span class="html-italic">D</span><sub>m</sub> bins in the four seasons: winter (<b>a</b>), premonsoon (<b>b</b>), monsoon (<b>c</b>) and postmonsoon (<b>d</b>).</p> "> Figure 7
<p>Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the different <span class="html-italic">R</span> bins in the four seasons: winter (<b>a</b>), premonsoon (<b>b</b>), monsoon (<b>c</b>) and postmonsoon (<b>d</b>).</p> "> Figure 8
<p>Percentages of occurrence (bar) and relative contributions to the total rainfall (line) from the different <span class="html-italic">N</span><sub>T</sub> bins in the four seasons: winter (<b>a</b>), premonsoon (<b>b</b>), monsoon (<b>c</b>) and postmonsoon (<b>d</b>).</p> "> Figure 9
<p>The mean DSDs of stratiform rain (<b>a</b>) and convective rain (<b>b</b>) for different seasons.</p> "> Figure 10
<p>Scatterplots of averaged log<sub>10</sub>(<span class="html-italic">N</span><sub>w</sub>) versus <span class="html-italic">D</span><sub>m</sub> (along with <math display="inline"><semantics> <mrow> <mo>±</mo> <mi mathvariant="sans-serif">σ</mi> </mrow> </semantics></math> standard deviation bars) for stratiform (blank symbols) and convective (full symbols) precipitation in Mêdog (circles), SCS (squares), Nanjing (diamond) and Beijing (star) during the winter (green), premonsoon (purple), monsoon (red) and postmonsoon (blue) seasons. The two outlined squares represent (left) the maritime and (right) continental types of convective systems reported by Bringi et al. [<a href="#B34-remotesensing-14-03149" class="html-bibr">34</a>]. The dotted line and dashed lines represent the C–S separation line by Bringi et al. [<a href="#B34-remotesensing-14-03149" class="html-bibr">34</a>] and Thompson et al. [<a href="#B5-remotesensing-14-03149" class="html-bibr">5</a>].</p> "> Figure 11
<p>Scatterplots of <span class="html-italic">μ</span> versus <span class="html-italic">Λ</span> and the empirical fitting relationships for samples with rain rates > 5 mm h<sup>−1</sup> and drop counts > 300 during the premonsoon, monsoon and postmonsoon seasons. The colored solid lines are the fitted empirical <span class="html-italic">μ</span>–<span class="html-italic">Λ</span> relationships in different seasons, and the gray solid line represents the empirical <span class="html-italic">μ</span>–<span class="html-italic">Λ</span> relationship of Zhang et al. [<a href="#B38-remotesensing-14-03149" class="html-bibr">38</a>].</p> "> Figure 12
<p>Scatterplots of radar reflectivity factor (<span class="html-italic">Z</span>) and rain rate (<span class="html-italic">R</span>) and fitted <span class="html-italic">Z</span>–<span class="html-italic">R</span> relationships using the least squares method (solid lines) for stratiform rain (<b>a</b>) and convective rain (<b>b</b>).</p> "> Figure 13
<p>The lifting condensation level (LCL), 0 °C isotherm layer height, cloud top height (CTH) and standard deviation (<b>a</b>). TBB probability density function (<b>b</b>). The dashed line in <a href="#remotesensing-14-03149-f013" class="html-fig">Figure 13</a>b denotes the TBB temperature of −32 °C.</p> "> Figure 14
<p>Surface wind speed box diagram (<b>a</b>) and the vertical integral of water vapor flux (<b>b</b>) in different seasons.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Quality Control
2.2. Parameter Calculation
2.3. Different Classes in R, Dm and NT
2.4. Different Precipitation Types
3. Result
3.1. Statistical Characteristics
3.2. Seasonal Variation in DSDs
3.3. Distribution of Dm, R, and NT
3.4. Characteristics of DSDs in Stratiform and Convective Rainfall
3.5. The μ–Λ Relationships
3.6. Quantitative Precipitation Estimation (QPE)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seela, B.K.; Janapati, J.; Lin, P.-L.; Reddy, K.K.; Shirooka, R.; Wang, P.K. A Comparison Study of Summer Season Raindrop Size Distribution Between Palau and Taiwan, Two Islands in Western Pacific. J. Geophys. Res. Atmos. 2017, 122, 11787–11805. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Yun, Y.; Li, J.; Guo, X.; Lv, Y.; Wang, D.; Li, L.; Zhang, Y. Regional variability of summertime raindrop size distribution from a network of disdrometers in Beijing. Atmos. Res. 2021, 257, 105591. [Google Scholar] [CrossRef]
- Sreekanth, T.S.; Varikoden, H.; Sukumar, N.; Mohan Kumar, G. Microphysical characteristics of rainfall during different seasons over a coastal tropical station using disdrometer. Hydrol. Process. 2017, 31, 2556–2565. [Google Scholar] [CrossRef]
- Tang, Q.; Xiao, H.; Guo, C.; Feng, L. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res. 2014, 135–136, 59–75. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M. Drop Size Distributions and Radar Observations of Convective and Stratiform Rain over the Equatorial Indian and West Pacific Oceans. J. Atmos. Sci. 2015, 72, 4091–4125. [Google Scholar] [CrossRef]
- Krishna, U.V.M.; Reddy, K.K.; Seela, B.K.; Shirooka, R.; Lin, P.-L.; Pan, C.-J. Raindrop size distribution of easterly and westerly monsoon precipitation observed over Palau islands in the Western Pacific Ocean. Atmos. Res. 2016, 174–175, 41–51. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An Optical Disdrometer for Measuring Size and Velocity of Hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Nzeukou, A.; Sauvageot, H.; Ochou, A.D.; Kebe, C.M. Raindrop Size Distribution and Radar Parameters at Cape Verde. J. Appl. Meteorol. Climatol. 2004, 43, 90–105. [Google Scholar] [CrossRef]
- Lavanya, S.; Kirankumar, N.V.P. Classification of tropical coastal precipitating cloud systems using disdrometer observations over Thumba, India. Atmos. Res. 2021, 253, 105477. [Google Scholar] [CrossRef]
- Huo, Z.; Ruan, Z.; Wei, M.; Ge, R.; Li, F.; Ruan, Y. Statistical characteristics of raindrop size distribution in south China summer based on the vertical structure derived from VPR-CFMCW. Atmos. Res. 2019, 222, 47–61. [Google Scholar] [CrossRef]
- Radhakrishna, B.; Rao, T.N.; Rao, D.N.; Rao, N.P.; Nakamura, K.; Sharma, A.K. Spatial and seasonal variability of raindrop size distributions in southeast India. J. Geophys. Res. 2009, 114, D04203. [Google Scholar] [CrossRef]
- Pu, K.; Liu, X.; Wu, Y.; Hu, S.; Liu, L.; Gao, T. A comparison study of raindrop size distribution among five sites at the urban scale during the East Asian rainy season. J. Hydrol. 2020, 590, 125500. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Lei, H.; Xie, Y.; Wen, L.; Yang, J. Characteristics of Summer Season Raindrop Size Distribution in Three Typical Regions of Western Pacific. J. Geophys. Res. Atmos. 2019, 124, 4054–4073. [Google Scholar] [CrossRef] [Green Version]
- Hopper, L.J.; Schumacher, C.; Humes, K.; Funk, A. Drop-Size Distribution Variations Associated with Different Storm Types in Southeast Texas. Atmosphere 2019, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Hu, Z.; Liu, L.; Zhang, G. Raindrop Size Distribution Measurements at 4,500 m on the Tibetan Plateau During TIPEX-III. J. Geophys. Res. Atmos. 2017, 122, 11092–11106. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China. Adv. Atmos. Sci. 2017, 34, 727–736. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Tong, Z.; Jiang, Y.; Zhang, Z.; Zhang, J.; Zhou, Y.; Li, J.; Liu, F.; Liu, J.; et al. Statistical Characteristics of Raindrop Size Distribution during Rainy Seasons in Northwest China. Adv. Meteorol. 2021, 2021, 6667786. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhang, Y.; Lei, H.; Xie, Y.; Gao, T.; Zhang, L.; Wang, C.; Huang, Y. Microphysical Characteristics of Precipitation during Pre-monsoon, Monsoon, and Post-monsoon Periods over the South China Sea. Adv. Atmos. Sci. 2019, 36, 1103–1120. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, X.; Wang, Q.; Wang, C.; Zhan, Z.; Chen, L.; Yan, J.; Qu, R. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 2013, 444, 356–362. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Zhou, T. Interannual Variability and the Underlying Mechanism of Summer Precipitation over the Yarlung Zangbo River Badin. Chin. J. Atmos. Sci. 2016, 40, 965–980. (In Chinese) [Google Scholar] [CrossRef]
- Gao, D. Expeditionary studies on the Moisture Passage of the Yarlung Zangbo River. Chin. J. Nat. 2008, 5, 301–303. (In Chinese) [Google Scholar]
- Wang, J.; De, Q.; Dan, Z.; Wang, Y.; De, J.; Chen, G.; Tian, Y. Characteristic and Causal Analysis of Concentrated and Frequently Occurring Intense Rainfall in Tibet in 2012–2018. Meteorol. Sci. Technol. 2021, 49, 211–217. [Google Scholar]
- Zhou, R.; Wang, G.; Zhaxi, S. Cloud vertical structure measurements from a ground-based cloud radar over the southeastern Tibetan Plateau. Atmos. Res. 2021, 258, 211–217. (In Chinese) [Google Scholar] [CrossRef]
- Wang, G.; Zhou, R.; Zhaxi, S.; Liu, S. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project. Atmos. Res. 2021, 249, 105311. [Google Scholar] [CrossRef]
- Yuter, S.E.; Kingsmill, D.E.; Nance, L.B.; Löffler-Mang, M. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow. J. Appl. Meteorol. Climatol. 2006, 45, 1450–1464. [Google Scholar] [CrossRef] [Green Version]
- Thurai, M.; Petersen, W.A.; Tokay, A.; Schultz, C.; Gatlin, P. Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv. Geosci. 2011, 30, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.V. Terminal Velocity and Shape of Cloud and Precipitation Drops Aloft. J. Atmos. Sci. 1976, 33, 851–864. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Atlas, D.; Srivastava, R.; Sekhon, R. Doppler Radar Characteristics of Precipitation at Vertical Incidence. Rev. Geophys. Space Phys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Liu, S.; Chen, G. Impacts of Instrument Limitations on Estimated Raindrop Size Distribution, Radar Parameters, and Model Microphysics during Mei-Yu Season in East China. J. Atmos. Ocean. Technol. 2017, 34, 1021–1037. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra. J. Appl. Meteorol. Climatol. 1998, 37, 912–923. [Google Scholar] [CrossRef]
- Kozu, T.; Nakamura, K.J.J.A.O.T. Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation. J. Atmos. Ocean. Technol. 1991, 8, 259–270. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Testud, J.; Oury, S.; Black, R.A.; Amayenc, P.; Dou, X. The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteorol. 2001, 40, 1118–1140. [Google Scholar] [CrossRef]
- Smith, P.L. Raindrop Size Distributions: Exponential or Gamma–Does the Difference Matter? J. Appl. Meteorol. 2003, 42, 1031–1034. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Steiner, M.; Waldvogel, A. Peaks in Raindrop Size Distributions. J. Atmos. Sci. 1987, 44, 3127–3134. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Tokay, A.; Short, D.A. Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteorol. Climatol. 1996, 35, 355–371. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Wang, G.; Li, R.; Sun, J.; Xu, X.; Zhou, R.; Liu, L. Comparative Analysis of the Characteristics of Rainy Season Raindrop Size Distributions in Two Typical Regions of the Tibetan Plateau. Adv. Atmos. Sci. 2022, 39, 1062–1078. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E.A.; Meneghini, R.; Kozu, T. The Shape–Slope Relation in Observed Gamma Raindrop Size Distributions: Statistical Error or Useful Information? J. Atmos. Ocean. Technol. 2003, 20, 1106–1119. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhao, K.; Wang, M.; Zhang, G. Seasonal Variations of Observed Raindrop Size Distribution in East China. Adv. Atmos. Sci. 2019, 36, 346–362. [Google Scholar] [CrossRef]
- Luo, L.; Guo, J.; Chen, H.; Yang, M.; Chen, M.; Xiao, H.; Ma, J.; Li, S. Microphysical Characteristics of Rainfall Observed by a 2DVD Disdrometer during Different Seasons in Beijing, China. Remote Sens. 2021, 13, 2303. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Gao, R.; Zhu, K.; Zou, C.; Gong, Y.; Zhang, R. Vertical Variability of the Raindrop Size Distribution in Typhoons Observed at the Shenzhen 356-m Meteorological Tower. J. Atmos. Sci. 2020, 77, 4171–4187. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Ulbrich, C.W. Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities. Meteorol. Monogr. 2003, 30, 237–258. [Google Scholar] [CrossRef]
- Fulton, R.A.; Breidenbach, J.P.; Seo, D.-J.; Miller, D.A.; O’Bannon, T. The WSR-88D Rainfall Algorithm. Weather Forecast. 1998, 13, 377–395. [Google Scholar] [CrossRef]
- Marshall, J.; Palmer, W. The Distribution of Raindrops with Size. J. Atmos. Sci. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Barber, P.; Yeh, C. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt. 1975, 14, 2864–2872. [Google Scholar] [CrossRef]
- Barnes, S.L. An Empirical Shortcut to the Calculation of Temperature and Pressure at the Lifted Condensation Level. J. Appl. Meteorol. Climatol. 1968, 7, 511. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416–417, 182–205. [Google Scholar] [CrossRef]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. J. Atmos. Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Fujinami, H.; Yasunari, T. The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 1207–1227. [Google Scholar] [CrossRef] [Green Version]
Season | Total Rain Duration (min)/Frequency (%) | Accumulated Rainfall (mm)/Percentage (%) |
---|---|---|
Winter | 6153/8.35 | 48.90/3.95 |
Pre-mon | 24,880/33.75 | 400.76/32.38 |
Monsoon | 35,538/48.22 | 699.92/56.56 |
Post-mon | 7136/9.68 | 87.99/7.11 |
Rain Rate (R) | Mass-Weighted Mean Diameter (Dm) | Total Raindrop Concentration (NT) | |||
---|---|---|---|---|---|
Variable | Range, mm h−1 | Variable | Range, mm | Variable | Range, m−3 |
R1 | 0.1–1 | Dm1 | <1 | NT1 | 10–250 |
R2 | 1–2 | Dm2 | 1–2 | NT2 | 250–500 |
R3 | 2–5 | Dm3 | 2–3 | NT3 | 500–750 |
R4 | 5–10 | Dm4 | 3–4 | NT4 | 750–1000 |
R5 | 10–20 | Dm5 | 4–5 | NT5 | 1000–1500 |
R6 | >20 | Dm6 | >5 | NT6 | >1500 |
Winter | Pre-Mon | Monsoon | Post-Mon | ||
---|---|---|---|---|---|
R (mm h−1) | Max | 7.645 | 56.650 | 43.980 | 24.016 |
Mean | 0.477 | 0.966 | 1.182 | 0.740 | |
SD | 0.563 | 1.668 | 1.733 | 1.184 | |
Dm (mm) | Max | 2.970 | 3.645 | 3.168 | 3.314 |
Mean | 0.976 | 1.021 | 0.900 | 0.923 | |
SD | 0.258 | 0.287 | 0.237 | 0.236 | |
NT (m−3) | Max | 810.352 | 1914.562 | 2401.187 | 1449.321 |
Mean | 96.262 | 156.808 | 279.416 | 176.428 | |
SD | 57.739 | 130.039 | 217.689 | 167.339 |
Class (mm h−1) | Samples | R (mm h−1) | Z (dBZ) | LWC (g m−3) | NT (m−3) | Dm (mm) | log10(Nw) (Nw in m−3 mm−1) | μ | |
---|---|---|---|---|---|---|---|---|---|
Winter | 5546 | 0.332 | 17.110 | 0.019 | 87.880 | 0.923 | 3.297 | 10.037 | |
444 | 1.368 | 27.000 | 0.066 | 161.317 | 1.356 | 3.222 | 4.415 | ||
152 | 2.752 | 33.175 | 0.118 | 192.405 | 1.729 | 3.063 | 2.960 | ||
11 | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
Pre-mon | 17,796 | 0.406 | 17.511 | 0.024 | 112.441 | 0.919 | 3.395 | 11.940 | |
4304 | 1.401 | 25.261 | 0.072 | 221.116 | 1.171 | 3.517 | 7.066 | ||
2338 | 2.905 | 30.741 | 0.138 | 311.241 | 1.394 | 3.508 | 5.732 | ||
352 | 6.420 | 35.292 | 0.287 | 456.934 | 1.574 | 3.626 | 6.271 | ||
63 | 13.795 | 40.876 | 0.574 | 639.370 | 1.864 | 3.667 | 6.528 | ||
27 | 32.590 | 46.225 | 1.211 | 736.530 | 2.336 | 3.525 | 5.495 | ||
Monsoon | 22,605 | 0.423 | 16.254 | 0.028 | 205.271 | 0.797 | 3.729 | 14.108 | |
7248 | 1.418 | 23.496 | 0.079 | 324.584 | 1.021 | 3.787 | 8.802 | ||
4710 | 2.954 | 27.882 | 0.153 | 463.498 | 1.134 | 3.889 | 2.853 | ||
782 | 6.636 | 31.735 | 0.327 | 732.233 | 1.205 | 4.114 | 10.112 | ||
154 | 13.132 | 36.175 | 0.609 | 900.956 | 1.381 | 4.141 | 9.568 | ||
39 | 26.385 | 42.061 | 1.130 | 1095.38 | 1.743 | 4.004 | 6.803 | ||
Post-mon | 5678 | 0.370 | 16.568 | 0.023 | 127.712 | 0.874 | 3.462 | 13.122 | |
968 | 1.378 | 24.120 | 0.076 | 303.602 | 1.069 | 3.701 | 8.052 | ||
412 | 2.844 | 28.385 | 0.147 | 456.403 | 1.165 | 3.848 | 8.263 | ||
62 | 6.664 | 33.567 | 0.320 | 670.792 | 1.330 | 3.981 | 8.917 | ||
13 | - | - | - | - | - | - | - | ||
3 | - | - | - | - | - | - | - |
Rain Types | Samples | R (mm h−1) | Z (dBZ) | LWC (g m−3) | NT (m−3) | Dm (mm) | log10(Nw) (Nw in m−3 mm−1) | μ |
---|---|---|---|---|---|---|---|---|
Winter_Str | 6130 | 0.47 | 21.50 | 0.02 | 95.43 | 0.97 | 3.28 | 9.45 |
Pre-mon_Str | 24,155 | 0.82 | 23.50 | 0.04 | 149.03 | 1.01 | 3.42 | 10.46 |
Monsoon_Str | 33,468 | 0.95 | 21.99 | 0.05 | 258.47 | 0.89 | 3.75 | 12.24 |
Post-mon_Str | 6930 | 0.62 | 20.08 | 0.04 | 166.54 | 0.91 | 3.51 | 12.17 |
Winter_Con | 5 | - | - | - | - | - | - | - |
Pre-mon_Con | 286 | 10.86 | 39.50 | 0.45 | 554.82 | 1.67 | 3.70 | 7.07 |
Monsoon_Con | 763 | 9.11 | 34.44 | 0.43 | 805.81 | 1.26 | 4.14 | 10.14 |
Post-mon_Con | 69 | 9.02 | 37.24 | 0.41 | 646.12 | 1.49 | 3.88 | 8.44 |
Season | Stratiform Rainfall | Convective Rainfall | ||
---|---|---|---|---|
A | b | A | b | |
Winter | 242.22 | 1.61 | - | - |
Pre-mon | 176.48 | 1.47 | 82.80 | 1.76 |
Monsoon | 118.39 | 1.42 | 50.91 | 1.70 |
Post-mon | 139.04 | 1.35 | 65.55 | 1.76 |
Season | Stratiform Rainfall | Convective Rainfall | ||
---|---|---|---|---|
Fitted Z–R | Fitted Z–R | |||
Winter | 7.91 | 21.51 | - | - |
Pre-mon | 9.97 | −1.74 | 7.26 | −12.27 |
Monsoon | 6.14 | −27.24 | 2.98 | −51.38 |
Post-mon | 7.92 | −14.32 | 11.19 | −26.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, G.; Zhou, R.; Zhang, J.; Liu, L. Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of Water Vapor Channel in Yarlung Zangbo Grand Canyon. Remote Sens. 2022, 14, 3149. https://doi.org/10.3390/rs14133149
Li R, Wang G, Zhou R, Zhang J, Liu L. Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of Water Vapor Channel in Yarlung Zangbo Grand Canyon. Remote Sensing. 2022; 14(13):3149. https://doi.org/10.3390/rs14133149
Chicago/Turabian StyleLi, Ran, Gaili Wang, Renran Zhou, Jingyi Zhang, and Liping Liu. 2022. "Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of Water Vapor Channel in Yarlung Zangbo Grand Canyon" Remote Sensing 14, no. 13: 3149. https://doi.org/10.3390/rs14133149
APA StyleLi, R., Wang, G., Zhou, R., Zhang, J., & Liu, L. (2022). Seasonal Variation in Microphysical Characteristics of Precipitation at the Entrance of Water Vapor Channel in Yarlung Zangbo Grand Canyon. Remote Sensing, 14(13), 3149. https://doi.org/10.3390/rs14133149