Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection
<p>Flowchart of the proposed dual-branch Fourier-mixing transformer-based target detector (DBFTTD). In the training stage, data generation provides spectral pairs, <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>−</mo> </msubsup> <mo>)</mo> </mrow> </semantics></math>. Then, two spectral sequences in each spectral pair pass through the dual-branch Fourier-mixing transformer network at the same time. <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>−</mo> </msubsup> </semantics></math> represent the prior spectrum, target training sample with label <math display="inline"><semantics> <mrow> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and background training sample with label <math display="inline"><semantics> <mrow> <msubsup> <mi>y</mi> <mrow> <mi>i</mi> </mrow> <mo>−</mo> </msubsup> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, respectively. In the testing stage, <math display="inline"><semantics> <msub> <mi>S</mi> <mi>i</mi> </msub> </semantics></math> represents the test spectral sequence in the given HSI, which is paired with the prior target spectrum <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> </semantics></math> and the fed into the well-trained network to get the final detection result.</p> "> Figure 2
<p>Illustration of training data generation in the proposed DBFTTD. For a given HSI (with <span class="html-italic">p</span> pixels and <span class="html-italic">n</span> bands) and the single prior spectrum <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> </semantics></math>, <span class="html-italic">p</span> target training samples and <span class="html-italic">p</span> background training samples are obtained. The target training samples <math display="inline"><semantics> <mrow> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mrow> <mi>n</mi> <mo>×</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are obtained by a simple yet efficient dropout strategy, which is applied to <math display="inline"><semantics> <msub> <mi>s</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> </semantics></math> along the spectral dimension. Based on the background dominant assumption, all spectral sequences in the given HSI are considered as background training samples <math display="inline"><semantics> <mrow> <msubsup> <mi>S</mi> <mrow> <mi>i</mi> </mrow> <mo>−</mo> </msubsup> <mo>∈</mo> <msup> <mi mathvariant="double-struck">R</mi> <mrow> <mi>n</mi> <mo>×</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>San Diego-1 scene and detection maps of different comparison methods. (<b>a</b>) False color image, (<b>b</b>) Ground truth, (<b>c</b>) SAM, (<b>d</b>) ACE, (<b>e</b>) CEM, (<b>f</b>) E-CEM, (<b>g</b>) HTD-IRN, (<b>h</b>) SFCTD, (<b>i</b>) TSCNTD, (<b>j</b>) Ours.</p> "> Figure 4
<p>San Diego-2 scene and detection maps of different comparison methods. (<b>a</b>) False color image, (<b>b</b>) Ground truth, (<b>c</b>) SAM, (<b>d</b>) ACE, (<b>e</b>) CEM, (<b>f</b>) E-CEM, (<b>g</b>) HTD-IRN, (<b>h</b>) SFCTD, (<b>i</b>) TSCNTD, (<b>j</b>) Ours.</p> "> Figure 5
<p>Urban-1 scene and detection maps of different comparison methods. (<b>a</b>) False color image, (<b>b</b>) Ground truth, (<b>c</b>) SAM, (<b>d</b>) ACE, (<b>e</b>) CEM, (<b>f</b>) E-CEM, (<b>g</b>) HTD-IRN, (<b>h</b>) SFCTD, (<b>i</b>) TSCNTD, (<b>j</b>) Ours.</p> "> Figure 6
<p>Urban-2 scene and detection maps of different comparison methods. (<b>a</b>) False color image, (<b>b</b>) Ground truth, (<b>c</b>) SAM, (<b>d</b>) ACE, (<b>e</b>) CEM, (<b>f</b>) E-CEM, (<b>g</b>) HTD-IRN, (<b>h</b>) SFCTD, (<b>i</b>) TSCNTD, (<b>j</b>) Ours.</p> "> Figure 7
<p>Muufl Gulfport scene and detection maps of different comparison methods. (<b>a</b>) False color image, (<b>b</b>) Ground truth, (<b>c</b>) SAM, (<b>d</b>) ACE, (<b>e</b>) CEM, (<b>f</b>) E-CEM, (<b>g</b>) HTD-IRN, (<b>h</b>) SFCTD, (<b>i</b>) TSCNTD, (<b>j</b>) Ours.</p> "> Figure 8
<p>ROC curves of different comparison methods on the five data sets.</p> "> Figure 9
<p>Comparison of detection maps without skip-layer connection and with skip-layer connection for five data sets. (<b>a</b>) San Diego-1. (<b>b</b>) San Diego-2. (<b>c</b>) Urban-1. (<b>d</b>) Urban-2. (<b>e</b>) Muufl Gulfport. First row: without skip-layer connection. Second row: with skip-layer connection.</p> "> Figure 10
<p>Comparison of ROC curves without skip-layer connection and with skip-layer connection for five data sets.</p> "> Figure 11
<p>Comparison of detection maps with attention module and Fourier-mixing module for five data sets. (<b>a</b>) San Diego-1. (<b>b</b>) San Diego-2. (<b>c</b>) Urban-1. (<b>d</b>) Urban-2. (<b>e</b>) Muufl Gulfport. First row: attention-based. Second row: Fourier-based.</p> "> Figure 12
<p>Comparison of ROC curves with attention module and Fourier-mixing module for five data sets.</p> "> Figure 13
<p>The parameters sensitivity analysis of the number of the filter ensembles for four data sets. The default ensemble number in our proposed DBFTTD is 4.</p> "> Figure 14
<p>AUC values of the DBFTTD with different dropout rate for data augmentation for four data sets. The default dropout rate in our proposed DBFTTD is 0.1.</p> ">
Abstract
:1. Introduction
- This work explores a dual-branch Fourier-mixing transformer network for HTD. The Fourier-mixing sublayer replaces the heavy MSA sublayer in transformer. Benefiting from the dual-branch architecture and the Fourier-mixing sublayer, the proposed detector shows improvements in both representation ability and computational efficiency.
- This work proposes learnable filter ensembles in the Fourier domain, which improve detection performance. The designed filter ensembles is inspired by ensemble learning. Therefore, an improved stability is achieved by the sandwiching of Fourier Transform, element-wise multiplication with learnable filter ensembles, and inverse Fourier Transform;
- This work proposes a simple yet efficient dropout strategy for data augmentation. Based on the hyperspectral image itself and the single prior spectrum, we can construct sufficient and balanced training samples for training the dual-branch network, thus further improving detection performance.
2. Methods
2.1. Overview of the Dual-Branch Fourier-Mixing Transformer Framework
2.2. Construction of Training Samples
2.3. Dual-Branch Fourier-Mixing Transformer
2.3.1. Spectral Embedding
2.3.2. Fourier-Mixing with Filter Ensembles
2.3.3. Skip-Layer Connection
2.3.4. Score Predictor and Target Detection
3. Experimental Settings
3.1. Experimental Data Sets
3.1.1. San Diego Data Set
3.1.2. Airport-Beach-Urban (ABU) Data Set
3.1.3. MUUFL Gulfport Data Set
3.2. Assessment Criteria
3.3. Comparison Methods and Parameter Setup
4. Experimental Results and Analysis
4.1. Detection Performance Comparison
4.1.1. Detection Maps Comparison
4.1.2. ROC Curves Comparison
4.1.3. AUC Values Comparison
4.1.4. PD under FAR Comparison
4.2. Comparison with the Original Transformer
4.2.1. Analysis of the Skip-Layer Connection
4.2.2. Analysis of the Fourier-Mixing Module and the Self-Attention Module
4.2.3. Time Analysis
4.3. Parameter Sensitivity Analysis
4.3.1. Analysis of Filter Ensembles
4.3.2. Analysis of Dropout for Data Augmentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef]
- Zhong, P.; Gong, Z.; Shan, J. Multiple Instance Learning for Multiple Diverse Hyperspectral Target Characterizations. IEEE Trans. Neural. Netw. Learn Syst. 2020, 31, 246–258. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Nasrabadi, N.M. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Process. Mag. 2013, 31, 34–44. [Google Scholar] [CrossRef]
- Kang, X.; Zhang, X.; Li, S.; Li, K.; Li, J.; Benediktsson, J.A. Hyperspectral anomaly detection with attribute and edge-preserving filters. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5600–5611. [Google Scholar] [CrossRef]
- Liu, S.; Marinelli, D.; Bruzzone, L.; Bovolo, F. A Review of Change Detection in Multitemporal Hyperspectral Images: Current Techniques, Applications, and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 140–158. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral Imaging for Military and Security Applications: Combining Myriad Processing and Sensing Techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Axelsson, M.; Friman, O.; Haavardsholm, T.V.; Renhorn, I. Target detection in hyperspectral imagery using forward modeling and in-scene information. ISPRS J. Photogramm. Remote Sens. 2016, 119, 124–134. [Google Scholar] [CrossRef]
- Kumar, S.; Torres, C.; Ulutan, O.; Ayasse, A.; Roberts, D.; Manjunath, B.S. Deep Remote Sensing Methods for Methane Detection in Overhead Hyperspectral Imagery. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020; pp. 1776–1785. [Google Scholar]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef]
- Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29–43. [Google Scholar] [CrossRef]
- Manolakis, D.; Truslow, E.; Pieper, M.; Cooley, T.; Brueggeman, M. Detection algorithms in hyperspectral imaging systems: An overview of practical algorithms. IEEE Signal Process. Mag. 2013, 31, 24–33. [Google Scholar] [CrossRef]
- Kelly, E. An Adaptive Detection Algorithm. IEEE Trans. Aerosp. Electron. Syst 1986, AES-22, 115–127. [Google Scholar] [CrossRef]
- Kraut, S.; Scharf, L.L.; Butler, R.W. The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic. IEEE Trans. Signal Process. 2005, 53, 427–438. [Google Scholar] [CrossRef]
- Manolakis, D.; Lockwood, R.; Cooley, T.; Jacobson, J. Is there a best hyperspectral detection algorithm? SPIE 2009, 7334, 733402. [Google Scholar]
- Farrand, W.H.; Harsanyi, J.C. Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens. Environ. 1997, 59, 64–76. [Google Scholar] [CrossRef]
- Ren, H.; Chang, C.I. Target-constrained interference-minimized approach to subpixel target detection for hyperspectral images. Opt. Eng. 2000, 39, 3138–3145. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN with multiscale convolution and diversified metric for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Hu, W. Statistical loss and analysis for deep learning in hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 322–333. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral-Spatial Feature Tokenization Transformer for Hyperspectral Image Classification. IEEE Trans. Geosci Remote Sens. 2022, 60, 5522214. [Google Scholar] [CrossRef]
- Su, H.; Wu, Z.; Zhang, H.; Du, Q. Hyperspectral anomaly detection: A survey. IEEE Geosci. Remote Sens. Mag. 2021, 10, 64–90. [Google Scholar] [CrossRef]
- Hu, M.; Wu, C.; Zhang, L.; Du, B. Hyperspectral Anomaly Change Detection Based on Autoencoder. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 3750–3762. [Google Scholar] [CrossRef]
- Han, Z.; Hong, D.; Gao, L.; Zhang, B.; Chanussot, J. Deep half-siamese networks for hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1996–2000. [Google Scholar] [CrossRef]
- Qu, Y.; Qi, H. UDAS: An untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1698–1712. [Google Scholar] [CrossRef]
- Chen, B.; Liu, L.; Zou, Z.; Shi, Z. Target Detection in Hyperspectral Remote Sensing Image: Current Status and Challenges. Remote Sens. 2023, 15, 3223. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shshroudy, A.; Shuai, B.; Liu, I.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Wang, C.; Liu, Y.; Fu, K. PBNet: Part-based convolutional neural network for complex composite object detection in remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 50–65. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.; Zhang, M.; Li, W. COCO-Net: A Dual-Supervised Network With Unified ROI-Loss for Low-Resolution Ship Detection From Optical Satellite Image Sequences. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5519416. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; Volume 30. [Google Scholar]
- Du, J.; Li, Z.; Sun, H. CNN-based target detection in hyperspectral imagery. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 2761–2764. [Google Scholar]
- Zhang, G.; Zhao, S.; Li, W.; Du, Q.; Ran, Q.; Tao, R. HTD-net: A deep convolutional neural network for target detection in hyperspectral imagery. Remote Sens. 2020, 12, 1489. [Google Scholar] [CrossRef]
- Zhu, D.; Du, B.; Zhang, L. Two-Stream Convolutional Networks for Hyperspectral Target Detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6907–6921. [Google Scholar] [CrossRef]
- Qin, H.; Xie, W.; Li, Y.; Du, Q. HTD-VIT: Spectral-Spatial Joint Hyperspectral Target Detection with Vision Transformer. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1967–1970. [Google Scholar]
- Rao, W.; Gao, L.; Qu, Y.; Sun, X.; Zhang, B.; Chanussot, J. Siamese Transformer Network for Hyperspectral Image Target Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5526419. [Google Scholar] [CrossRef]
- Shen, D.; Ma, X.; Kong, W.; Liu, J.; Wang, J.; Wang, H. Hyperspectral Target Detection Based on Interpretable Representation Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Yu, W.; Luo, M.; Zhou, P.; Si, C.; Zhou, Y.; Wang, X.; Feng, J.; Yan, S. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 10819–10829. [Google Scholar]
- Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.-S.; Khan, F.S. Transformers in Remote Sensing: A Survey. Remote Sens. 2023, 15, 1860. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking hyperspectral image classification with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5518615. [Google Scholar] [CrossRef]
- Lee-Thorp, J.; Ainslie, J.; Eckstein, I.; Ontanon, S. FNet: Mixing tokens with fourier transforms. In Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Seattle, WA, USA, 10–15 July 2022. [Google Scholar]
- Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; Zhou, J. Global filter networks for image classification. Adv. Neural Inf. Process. Syst. 2021, 34, 980–993. [Google Scholar]
- Zhao, R.; Shi, Z.; Zou, Z.; Zhang, Z. Ensemble-based cascaded constrained energy minimization for hyperspectral target detection. Remote Sens. 2019, 11, 1310. [Google Scholar] [CrossRef]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv, 2017; arXiv:1708.04552. [Google Scholar]
- Rabiner, L.R.; Gold, B. Theory and Application of Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Paul, G.; Alina, Z.; Ryan, C.; Jen, A.; Grady, T. MUUFL Gulfport hyperspectral and LiDAR Airborne Data Set; Technical Report, REP-2013-570; University Florida: Gainesvill, FL, USA, 2013. [Google Scholar]
- Zhang, X.; Gao, K.; Wang, J.; Hu, Z.; Wang, H.; Wang, P. Siamese Network Ensembles for Hyperspectral Target Detection with Pseudo Data Generation. Remote Sens. 2022, 14, 1260. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. Sparse Transfer Manifold Embedding for Hyperspectral Target Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1030–1043. [Google Scholar] [CrossRef]
- Du, X.; Zare, A. Technical Report: Scene Label Ground Truth Map for MUUFL Gulfport Data Set; Technical Report, 20170417; University Florida: Gainesvill, FL, USA, 2017. [Google Scholar]
- Zou, Z.; Shi, Z. Hierarchical suppression method for hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 2015, 54, 330–342. [Google Scholar] [CrossRef]
- Flach, P.A.; Hernández-Orallo, J.; Ramirez, C.F. A coherent interpretation of AUC as a measure of aggregated classification performance. In Proceedings of the ICML, Bellevue, WA, USA, 28 June–2 July 2011. [Google Scholar]
- Chang, C.I. An Effective Evaluation Tool for Hyperspectral Target Detection: 3D Receiver Operating Characteristic Curve Analysis. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5131–5153. [Google Scholar] [CrossRef]
- Zhu, D.; Du, B.; Dong, Y.; Zhang, L. Target Detection with Spatial-Spectral Adaptive Sample Generation and Deep Metric Learning for Hyperspectral Imagery. IEEE Trans. Multimed, 2022; early access. [Google Scholar]
- Zhu, D.; Du, B.; Zhang, L. Learning Single Spectral Abundance for Hyperspectral Subpixel Target Detection. IEEE Trans. Neural Netw. Learn. Syst, 2023; early access. [Google Scholar]
- Han, D.; Pan, X.; Han, Y.; Song, S.; Huang, G. FLatten Transformer: Vision Transformer using Focused Linear Attention. arXiv 2023, arXiv:2308.00442. [Google Scholar]
Methods | |||||||
---|---|---|---|---|---|---|---|
SAM | 0.9968 | 0.0253 | 0.2428 | 0.9714 | 1.2395 | 1.2142 | 9.5843 |
ACE | 0.9685 | 0.0018 | 0.2862 | 0.9667 | 1.2547 | 1.2530 | 162.6307 |
CEM | 0.9869 | 0.0738 | 0.3596 | 0.9131 | 1.3465 | 1.2727 | 4.8725 |
E-CEM | 0.8918 | 0.0140 | 0.4219 | 0.8778 | 1.3137 | 1.2997 | 30.1171 |
HTD-IRN | 0.9797 | 0.0153 | 0.4399 | 0.9644 | 1.4195 | 1.4042 | 28.7873 |
SFCTD | 0.9906 | 0.0794 | 0.6613 | 0.9111 | 1.6519 | 1.5724 | 8.3249 |
TSCNTD | 0.9387 | 0.0076 | 0.5412 | 0.9311 | 1.4799 | 1.4723 | 70.9253 |
ours | 0.9976 | 0.0025 | 0.6868 | 0.9951 | 1.6845 | 1.6819 | 270.4094 |
Methods | |||||||
---|---|---|---|---|---|---|---|
SAM | 0.9929 | 0.0365 | 0.3818 | 0.9564 | 1.3747 | 1.3382 | 10.4689 |
ACE | 0.9934 | 0.0060 | 0.5207 | 0.9874 | 1.5141 | 1.5081 | 87.2144 |
CEM | 0.9971 | 0.1862 | 0.6831 | 0.8109 | 1.6802 | 1.4940 | 3.6683 |
E-CEM | 0.7693 | 0.0097 | 0.3134 | 0.7597 | 1.0827 | 1.0730 | 32.4054 |
HTD-IRN | 0.9983 | 0.0100 | 0.6010 | 0.9883 | 1.5993 | 1.5893 | 59.9830 |
SFCTD | 0.9945 | 0.0063 | 0.7385 | 0.9882 | 1.7329 | 1.7266 | 116.4748 |
TSCNTD | 0.9951 | 0.0024 | 0.8179 | 0.9927 | 1.8130 | 1.8106 | 342.2259 |
ours | 0.9971 | 0.0021 | 0.8958 | 0.9950 | 1.8929 | 1.8908 | 422.5377 |
Methods | |||||||
---|---|---|---|---|---|---|---|
SAM | 0.9948 | 0.0323 | 0.4567 | 0.9625 | 1.4514 | 1.4192 | 14.1468 |
ACE | 0.9288 | 0.0022 | 0.3029 | 0.9266 | 1.2317 | 1.2295 | 137.6682 |
CEM | 0.9404 | 0.1094 | 0.5064 | 0.8309 | 1.4468 | 1.3373 | 4.6277 |
E-CEM | 0.8815 | 0.0059 | 0.3324 | 0.8756 | 1.2139 | 1.2080 | 56.6269 |
HTD-IRN | 0.9659 | 0.0164 | 0.3341 | 0.9495 | 1.2999 | 1.2836 | 20.3938 |
SFCTD | 0.9918 | 0.0455 | 0.7086 | 0.9463 | 1.7004 | 1.6549 | 15.5873 |
TSCNTD | 0.9813 | 0.0253 | 0.7123 | 0.9560 | 1.6936 | 1.6683 | 28.1335 |
ours | 0.9961 | 0.0006 | 0.6762 | 0.9955 | 1.6723 | 1.6717 | 1146.1186 |
Methods | |||||||
---|---|---|---|---|---|---|---|
SAM | 0.9990 | 0.0051 | 0.2908 | 0.9940 | 1.2898 | 1.2847 | 57.3511 |
ACE | 0.9922 | 0.0034 | 0.3379 | 0.9888 | 1.3301 | 1.3267 | 99.0909 |
CEM | 0.9979 | 0.2003 | 0.6014 | 0.7976 | 1.5993 | 1.3990 | 3.0028 |
E-CEM | 0.8646 | 0.0047 | 0.3808 | 0.8600 | 1.2454 | 1.2408 | 81.8946 |
HTD-IRN | 0.9993 | 0.0747 | 0.7514 | 0.9246 | 1.7508 | 1.6761 | 10.0594 |
SFCTD | 0.9955 | 0.0383 | 0.9149 | 0.9572 | 1.9104 | 1.8721 | 23.8999 |
TSCNTD | 0.9954 | 0.0825 | 1.0964 | 0.9128 | 2.0917 | 2.0092 | 13.2860 |
ours | 0.9994 | 0.0015 | 0.8260 | 0.9979 | 1.8253 | 1.8239 | 561.8707 |
Methods | |||||||
---|---|---|---|---|---|---|---|
SAM | 0.5439 | 0.2970 | 0.2945 | 0.2469 | 0.8383 | 0.5413 | 0.9914 |
ACE | 0.9374 | 0.0381 | 0.2761 | 0.8993 | 1.2135 | 1.1754 | 7.2435 |
CEM | 0.9865 | 0.4029 | 0.6575 | 0.5835 | 1.6440 | 1.2410 | 1.6318 |
E-CEM | 0.6763 | 0.2729 | 0.3037 | 0.4034 | 0.9800 | 0.7071 | 1.1127 |
HTD-IRN | 0.9749 | 0.1940 | 0.7865 | 0.7809 | 1.7614 | 1.5674 | 4.0545 |
SFCTD | 0.9880 | 0.1026 | 0.7245 | 0.8854 | 1.7125 | 1.6099 | 7.0620 |
TSCNTD | 0.9826 | 0.0162 | 0.7155 | 0.9664 | 1.6980 | 1.6818 | 44.1370 |
ours | 0.9939 | 0.0010 | 0.8314 | 0.9929 | 1.8254 | 1.8244 | 839.8182 |
Method | San Diego-1 | San Diego-2 | Urban-1 | Urban-2 | Muufl Gulfport |
---|---|---|---|---|---|
SAM | 0.9189 | 0.7896 | 0.8970 | 0.9886 | 0.0000 |
ACE | 0.8730 | 0.9476 | 0.8223 | 0.8978 | 0.4461 |
CEM | 0.8961 | 0.9476 | 0.8518 | 0.9319 | 0.9484 |
E-CEM | 0.6045 | 0.4036 | 0.4348 | 0.5796 | 0.2416 |
HTD-IRN | 0.8657 | 0.9649 | 0.1045 | 0.9886 | 0.6543 |
SFCTD | 0.7619 | 0.8951 | 0.7476 | 0.8864 | 0.8662 |
TSCNTD | 0.6130 | 0.9310 | 0.4348 | 0.9886 | 0.4461 |
ours | 0.9415 | 0.9662 | 0.9109 | 1.0000 | 0.9486 |
Method | San Diego-1 | San Diego-2 | Urban-1 | Urban-2 |
---|---|---|---|---|
Ours | 215.79 ms | 216.37 ms | 244.94 ms | 246.91 ms |
Attention Based | 335.41 ms | 336.45 ms | 355.99 ms | 363.08 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, J.; Gong, Z.; Zhong, P. Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection. Remote Sens. 2023, 15, 4675. https://doi.org/10.3390/rs15194675
Jiao J, Gong Z, Zhong P. Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection. Remote Sensing. 2023; 15(19):4675. https://doi.org/10.3390/rs15194675
Chicago/Turabian StyleJiao, Jinyue, Zhiqiang Gong, and Ping Zhong. 2023. "Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection" Remote Sensing 15, no. 19: 4675. https://doi.org/10.3390/rs15194675
APA StyleJiao, J., Gong, Z., & Zhong, P. (2023). Dual-Branch Fourier-Mixing Transformer Network for Hyperspectral Target Detection. Remote Sensing, 15(19), 4675. https://doi.org/10.3390/rs15194675