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Abstract: In recent years, transformers have shown great potential in hyperspectral image processing
and have also been gradually applied in hyperspectral target detection (HTD). Nonetheless, applying
a typical transformer to HTD remains challenging. The heavy computation burden of the multi-head
self-attention (MSA) in transformers limits its efficient HTD, while the limited ability to extract
local spectral features can reduce the discrimination of the learned spectral features. To further
explore the potential of transformers for HTD, for balance of representation ability and computational
efficiency, we propose a dual-branch Fourier-mixing transformer network for hyperspectral target
detection (DBFTTD). First, this work explores a dual-branch Fourier-mixing transformer network.
The transformer-style network replaces the MSA sublayer in the transformer with a Fourier-mixing
sublayer, which shows advantages in improving computational efficiency and learning valuable
spectral information effectively for HTD. Second, this work proposes learnable filter ensembles in
the Fourier domain that are inspired by ensemble learning to improve detection performance. Third,
a simple but efficient dropout strategy is proposed for data augmentation. Sufficient and balanced
training samples are constructed for training the dual-branch network, and training samples for
balanced learning can further improve detection performance. Experiments on four data sets indicate
that our proposed detector is superior to the state-of-the-art detectors.

Keywords: dual-branch network; Fourier-mixing transformer; ensemble method; hyperspectral
target detection

1. Introduction

In hyperspectralimaging, each pixel collects hundreds of spectral bands covering
the visible, near-infrared, and short-wave infrared of the electromagnetic spectrum [1,2].
The narrow and contiguous spectrum provides abundant information, which enables
the characterization of materials at a refined level [3,4]. Therefore, hyperspectral images
develop various remote sensing applications such as classification [5], target detection [6],
anomaly detection [7], and change detection [8]. In these applications, hyperspectral target
detection (HTD) has drawn great attention. HTD focuses on the subtle spectral differences
between materials, aiming to distinguish specific target pixels from the background in
given HSIs with limited reference spectral information about the target. In recent decades,
HTD has played an important role in many fields, such as military and defense [9], urban
target detection [10], environmental monitoring [11], and agriculture [12].

Traditionally, target detection is mainly achieved by simple spectral matching methods.
The spectral angle mapper (SAM) [13] and spectral information divergence (SID) [14] mea-
sure the spectral similarity between the under-test pixel and the target spectral signature to
get matching scores. In their subsequent development, researchers have proposed many
hyperspectral target detectors based on certain assumptions [15,16]. Under the distribution
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assumption, the generalized likelihood ratio test (GLRT) [17] and its variants, such as the
adaptive coherence estimator (ACE) [18] and adaptive matched filter (MF) [19], have been
successfully applied to HTD. Under the energy minimization assumption, the constrained
energy minimization (CEM) [20] and the target-constrained interference minimized filter
(TCIMF) [21] are designed to minimize the response of backgrounds and maximize the
response of targets. The above classical detectors have simple structures and are easy to
implement. However, they always rely on certain assumptions that the practical application
scenarios may not match, placing restrictions on the detection performance.

Recently, due to their impressive representation ability, deep learning-based models
have featured heavily in hyperspectral image processing, such as classification [22–24],
anomaly detection [25,26], and unmixing [27,28]. Deep learning-based methods have
also gained attention and demonstrated their effectiveness for hyperspectral target detec-
tion [29], such as autoencoders (AEs), generative adversarial networks (GANs), convolu-
tional neural networks CNNs [30–33], and transformers [34].

As a mainstream backbone architecture, CNNs have shown their powerful ability
to extract local features with discriminatory characteristics from HSIs. Du et al. [35]
proposed a convolutional neural network-based target detector (CNNTD). Zhang et al. [36]
proposed a hyperspectral target detection framework denoted as HTD-Net. HTD-Net
and CNNTD feed the spectral subtraction of labeled pixel pairs into the designed CNN,
distinguishing between targets and backgrounds by binary classification. Inspired by
the Siamese architecture, Zhu et al. [37] proposed a two-stream convolutional network
(TSCNTD). In TSCNTD, generated targets and selected backgrounds are paired and fed
into the Siamese CNN, then the extracted paired features are subtracted and fed into a fully
connected layer for detection scores. Although the above several CNN-based detectors
provide valuable ideas for target detection, certain limitations remain. First, typical CNNs
possess multiple convolutional layers, resulting in a considerable computational burden.
Another point is that when dealing with sequence information such as spectral curves, the
local receptive field mechanism of 1-D CNNs reduces its sensitivity to global information
that is crucial to the spectral signal [37].

In recent years, transformers have been gradually applied to hyperspectral target
detection (HTD). In transformer-based hyperspectral target detectors, transformers are
utilized to deal with spectral sequences along the spectral dimension, which enables global
feature extraction from long-range dependencies. Qin et al. [38] proposed a method
for spectral-spatial joint hyperspectral target detection with a vision transformer (HTD-
ViT). Rao et al. [39] proposed a Siamese transformer network for hyperspectral image target
detection (STTD). Shen et al. [40] proposed a subspace representation network to adaptively
learn the background subspace, and a multi-scale transformer is proposed for feature
extraction. Although these transformer-based detectors can capture global information,
applying typical transformers to HTD remains challenging for several reasons [41–43]. The
challenges are mainly focused on two dimensions: feature extraction and propagation,
and computational efficiency. First, the limited ability to extract local spectral features
and the loss of important information in propagation from shallow to deep layers can
reduce the discrimination of the learned features. In addition, another primary challenge of
applying transformers to HTD is the considerable computational complexity and memory
footprint of the multi-head self-attention (MSA) blocks, which reduces the efficiency of
target detection. In summary, the main challenges in applying transformers to hyperspectral
images are the considerable computational burden and the complex relationships among
different spectral channels. In this work, we intend to explore a compact and effective
variant of transformer, capturing local features with discriminatory characteristics and
global features from long-range dependencies for HTD.

In order to further optimize transformers for efficient HTD, there are some compact
variations of transformers that can bring inspiration. Fourier Transforms have previously
been used to speed up transformers, leading to some conceptually simple yet computa-
tionally efficient transformer-style architectures. The researchers in [44] proposed Fourier
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network (FNet) to simplify and speed up the transformer by replacing MSA blocks with the
Fourier Transform. In FNet, alternating transformer encoders can be viewed as applying
alternating Fourier and inverse Fourier Transforms. Alternating Fourier blocks transform
the input back and forth between the spatial and frequency domains, blending the infor-
mation from different domains. Different from FNet, Rao et al. [45] proposed a Global
Filter Network (GFNet) that replaces the MSA blocks with three key operations: a 2D
discrete Fourier Transform, an element-wise multiplication between a frequency-domain
feature and a learnable global filter, and a 2D inverse Fourier Transform. GFNet draws
motivation from the frequency filters in digital image processing, which is more reasonable
than FNet. In GFNet, however, skip-layer connection by element-wise additions may lead
to inadequate integration of information.

To solve the aforementioned problems, we propose a dual-branch Fourier-mixing
transformer network with learnable filter ensembles for hyperspectral target detection,
supported by a dropout strategy for data augmentation. The proposed transformer-style
detector is designed to balance representation ability and computational efficiency. In
our work, the target detection task is transformed into the similarity metric learning task,
which is realized by the dual-branch architecture. For training the dual-branch network,
sufficient and balanced training samples are constructed based on a simple yet efficient
dropout strategy. Furthermore, a novel Fourier-mixing transformer with filter ensembles is
utilized as the backbone of the dual-branch architecture. We replace the MSA sublayer in
the transformers with a Fourier-mixing sublayer, the sandwiching of Fourier Transforms,
element-wise multiplication with learnable filter ensembles, and inverse Fourier Transforms.
Thanks to the favorable asymptotic complexity and computational efficiency of the Fast
Fourier Transform (FFT) algorithm, we can speed up the transformer-style network and
achieve HTD efficiently. As the learnable filters are able to learn the interactions among
spectral tokens in the Fourier domain and globally cover all frequencies, our model can
capture both long-term and short-term interactions in the spectral curves. In terms of
the learnable filter ensembles, the design is inspired by ensemble learning, which aims to
enhance the nonlinearity and generalization ability by aggregating multiple learners [46].
The main contributions of the proposed method are summarized as follows.

1. This work explores a dual-branch Fourier-mixing transformer network for HTD. The
Fourier-mixing sublayer replaces the heavy MSA sublayer in transformer. Bene-
fiting from the dual-branch architecture and the Fourier-mixing sublayer, the pro-
posed detector shows improvements in both representation ability and computa-
tional efficiency.

2. This work proposes learnable filter ensembles in the Fourier domain, which improve
detection performance. The designed filter ensembles is inspired by ensemble learning.
Therefore, an improved stability is achieved by the sandwiching of Fourier Transform,
element-wise multiplication with learnable filter ensembles, and inverse Fourier
Transform;

3. This work proposes a simple yet efficient dropout strategy for data augmentation.
Based on the hyperspectral image itself and the single prior spectrum, we can construct
sufficient and balanced training samples for training the dual-branch network, thus
further improving detection performance.

2. Methods
2.1. Overview of the Dual-Branch Fourier-Mixing Transformer Framework

Figure 1 shows an overview of our proposed dual-branch Fourier-mixing transformer-
based target detector (DBFTTD). In our work, the target detection task is transformed
into the similarity metric learning task, which is realized by the dual-branch architecture
consisting of two identical networks that share the same parameters. The training process
consists of three main stages: data augmentation, spectral embedding and encoding, and
score prediction. First, sufficient and balanced training samples are generated only using
the prior target spectrum and the hyperspectral image. Furthermore, the training samples
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and the prior target spectrum are paired and fed into the dual-branch Fourier-mixing
transformer network. The basic building blocks of the Fourier-mixing transformer network
consist of spectral embedding, Fourier-mixing with filter ensembles, skip connection, and
score prediction. The detailed implementation of the proposed DBFTTD is described as
follows.
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Figure 1. Flowchart of the proposed dual-branch Fourier-mixing transformer-based target detector
(DBFTTD). In the training stage, data generation provides spectral pairs, (sprior, S+

i ) and (sprior, S−i ).
Then, two spectral sequences in each spectral pair pass through the dual-branch Fourier-mixing
transformer network at the same time. sprior, S+

i and S−i represent the prior spectrum, target training
sample with label y+i = 1, and background training sample with label y−i = 0, respectively. In the
testing stage, Si represents the test spectral sequence in the given HSI, which is paired with the prior
target spectrum sprior and the fed into the well-trained network to get the final detection result.

2.2. Construction of Training Samples

For a given HSI with p pixels and n bands, si ∈ Rn×1(i = 1, 2, . . . , p) denotes the ith

spectral sequence. The given single target prior spectrum is represented by sprior ∈ Rn×1.
Based on the hyperspectral image itself and the single prior spectrum, we construct training
samples, including background samples and target samples. The illustration of training
data generation in the proposed DBFTTD is shown in Figure 2. Based on the background
dominant assumption, all spectral sequences in the given HSI are considered as background
samples S−i ∈ Rn×1(i = 1, 2, . . . , p). Using the given single target prior spectrum, target
samples S+

i ∈ Rn×1(i = 1, 2, . . . , p) can be obtained by data augmentation.
The target sample augmentation is realized by a simple yet efficient dropout strategy,

which is applied to sprior along the spectral dimension for p times. The dropout strategy is
inspired by the cutout in [47]. To be specific, a new target sample is obtained by randomly
masking some bands in sprior in the spectral dimension. The corresponding values of the
masked bands are substituted for zero. After repeating the dropout strategy for p times, the
target samples S+

1 , S+
2 , ...S+

p with the same number of background samples are generated to
balance positive samples and negative samples.

After obtaining the target samples and background samples, sample pairs need to be
constructed for the dual-branch architecture in this work. In the training stage, we generate
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training pairs as input of the dual-branch Fourier-mixing transformer network using the
obtained training samples and the prior target spectrum. Specifically, the input training
pairs include the positive training pairs (sprior, S+

1 ), ..., (sprior, S+
p ) with labels y+i = 1 (i =

1, 2, ...p), and the negative training pairs (sprior, S−1 ), ..., (sprior, S−p ) with labels y−i = 0 (i =
1, 2, ...p). The positive training pairs and the negative training pairs have the same quantity,
leading to balanced data distribution for training. Then the generated training pairs will be
fed into the network for training.

Prior Spectrum

HSI

priors

spectral bands from 1 to n

…
…

…

…

+
1S
+
2S

+
pS

1n

1S 
2S 

pS 

…

iS 

0

Background Training Samples

Mask

All Pixels

0iy label: 1iy label:

+
1S +

2S +
pS

…

Target Training Samples

+
iS

1n 1n

Figure 2. Illustration of training data generation in the proposed DBFTTD. For a given HSI (with p
pixels and n bands) and the single prior spectrum sprior, p target training samples and p background
training samples are obtained. The target training samples S+

i ∈ Rn×1(i = 1, 2, . . . , p) are obtained by
a simple yet efficient dropout strategy, which is applied to sprior along the spectral dimension. Based
on the background dominant assumption, all spectral sequences in the given HSI are considered as
background training samples S−i ∈ Rn×1(i = 1, 2, . . . , p).

2.3. Dual-Branch Fourier-Mixing Transformer

We aim at developing a transformer-style network for HTD that can strike a balance be-
tween representation ability and computational efficiency. To achieve this, a Fourier-mixing
transformer network with learnable filter ensembles for HTD is proposed. This architec-
ture comprises four parts: spectral embedding, Fourier-mixing with filter ensembles, skip
connection, and score prediction. First, the spectral embedding module is designed with
a focus on the spectrometric characteristics, extracting local spectral characteristics from
multiple adjacent bands. Second, the Fourier-mixing sublayer is designed to capture the
contextual relationships between tokens more efficiently, supported by the filter ensembles
to improve performance. Third, the skip connection is utilized by concatenating and fusing,
reducing information loss in propagation from shallow to deep layers. Furthermore, the
score predictor is designed to obtain final prediction scores for training and testing.

2.3.1. Spectral Embedding

A spectral embedding module is utilized with a focus on the spectrometric charac-
teristics, extracting local spectral characteristics from multiple adjacent channels, which
is inspired by [43]. Specifically, we take groups of several adjacent channels as input
tokens, followed by a trainable linear projection to convert the grouped tokens to em-
bedding vectors. First, groups of several adjacent channels are taken as input tokens.
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The overlapping grouping operation g(·) is utilized to decompose the spectral sequence
s = [s1, s2, . . . , sn]

T ∈ Rn×1 into

x = g(s) = [a1, . . . , ai, . . . , an] ∈ Rn×m (1)

where x is the grouped representation of the spectral sequence, which is composed of

n tokens of length m. The ith token is ai =
[
si−bm/2c, . . . , si, . . . , si+bm/2c

]T
∈ Rm×1(i =

1, 2, . . . , n), where b·c indicates the rounding down operation. The scalar n and m are
the number of spectral sequence channels and considered adjacent channels. Then a
learnable linear transformation converts the grouped representation x ∈ Rn×m to the
feature embedding of size n× d. Meanwhile, position embedding with the same size as the
feature embedding is added. Finally, the resulting embedding vector, z0 ∈ Rn×d, serves as
input to the spectral encoder. Note that the scalars n and d serve as the token dimension
and the hidden dimension of the input sequence for the spectral encoder, respectively.

2.3.2. Fourier-Mixing with Filter Ensembles

One primary obstacle in applying a typical transformer to HTD lies in the substantial
computational cost and memory burden imposed by the multi-head self-attention (MSA)
sublayer, leading to less efficient target detection. To improve the computational efficiency,
we replace the heavy MSA sublayer with a simpler and more efficient one. We utilize the
Fourier transform with accelerated linear transformations as an alternate hidden repre-
sentation mixing mechanism. The attention-free Fourier-mixing mechanism is designed
for mixing information globally and extracting sequential features, supported by the filter
ensembles to enhance stability. Specifically, the Fourier-mixing sublayer contains three
key operations: (1) Fourier Transform; (2) element-wise multiplication with learnable filter
ensembles; (3) inverse Fourier Transform.

We start by introducing the Fourier Transform and the inverse Fourier Transform.
The Fourier Transform decomposes a sequence into its constituent frequencies. In terms
of practical applications, discrete Fourier transform (DFT) and the Fast Fourier transform
algorithm (FFT) play important roles in the field of digital signal processing. The DFT
formulation starts with

Xk =
N−1

∑
n=0

xne−j2π nk
N , 0 ≤ k ≤ N − 1, (2)

in which xn represents the input sequence with n ∈ [0, N − 1]. For each k, DFT generates
a new representation Xk as a sum of all of the original input tokens xn. Note that the
FFT refers to a class of algorithms for efficiently computing the DFT, the computation
complexity can be reduced from O(N2) to O(N log N). The inverse Fourier Transformer
can recover the original signal xn from its corresponding frequency-domain representation.
The inverse DFT can be formulated as

xn =
1
N

N−1

∑
k=0

Xkej2π nk
N , 0 ≤ n ≤ N − 1. (3)

The inverse DFT can also be efficiently computed using the inverse fast Fourier
transform (IFFT).

In the Fourier-mixing sublayer, the first step is the Fourier transform, which is per-
formed by the two-dimensional (2D) FFT. Given the input sequence z ∈ Rn×m, with n
tokens of hidden dimension d, the 2D FFT can be achieved by repeating the one-dimensional
(1D) FFT along the corresponding dimensions. The input sequence z can be converted to
the frequency-domain feature Z, which can be formulated as

Z = Ft(Fh(z)), (4)
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Ft and Fh are 1D FFTs that are applied along the token dimension and the hidden di-
mension, respectively. In order to learn the interactions in the frequency domain, we
apply element-wise multiplication between the frequency-domain feature Z and the fil-
ter ensembles.

Z̃ =
1
E

E

∑
i=1

W � Z, (5)

where � is the element-wise multiplication, and Wi is the ith learnable filter, which is
inspired by the digital filters in signal processing [48]. The learnable filter Wi is utilized
to learn interactions among tokens in the frequency domain, which can represent an
arbitrary digital filter in the frequency domain. As the learnable filter is able to interchange
information in the frequency domain and globally cover all frequencies, it can capture both
long-term and short-term interactions. Inspired by ensemble learning, we designed the
learnable filter ensembles with the aim of enhancing their nonlinearity and generalization
ability by aggregating multiple learners [46]. We propose a simple but effective ensemble
method by integrating the results of E learnable filters W1, W2, ..., WE. We simply AVG
the results and get Z̃, the final result of the element-wise multiplication with learnable
filter ensembles. Finally, we adopt the IFFT to transform the spectrum Z̃ back to the
spatial domain.

2.3.3. Skip-Layer Connection

The proposed dual-branch network consists of two designed Fourier-mixing trans-
former encoders with shared structures and parameters. The Fourier-mixing transformer
encoder is designed for spectral encoding and is referred to as a spectral encoder below.
The spectral encoder is composed of several identical layers, and each layer has two sub-
layers. The first sublayer is a Fourier-mixing mechanism, and the second sublayer is a
fully connected feed-forward network (FFN). The Fourier-mixing sublayer provides the
feed-forward sublayer sufficient access to all tokens. The FFN sublayer consists of two
linear transformations, with a Gaussian error linear unit (GELU) activation between them.
The layernorm is employed before each sublayer. A skip-layer connection is employed
after every layer.

The skip connection plays a crucial role in transformers. However, the simple additive
skip connection operation only occurs within each transformer block, weakening the
connectivity across different layers [43]. To enhance propagation from shallow to deep
layers, we make use of skip connections between connected layers by concatenation and
fusion. Thereby fostering effective propagation of information without introducing
significant loss. The spectral encoder has L layers with identical structures. In the lth layer,
Fl(·) represents a nonlinear mapping that maps the input sequence zl−1 ∈ R1×d to the
output sequence zl ∈ R1×d. The shortcut connection is described as follows. The Fl(zl−1)
obtained by the mapping operation Fl(·) and the identity mapping of the input sequence
zl−1 are combined by concatenation and fusion

zl = Wl [Fl(zl−1), zl−1], (6)

The concatenation operation between sequence vectors is represented by [Fl(zl−1), zl−1],
and Wl can be simply seen as one convolutional layer for fusion. Finally, the output vectors
of the last spectral encoder layer are averaged along the hidden dimension to obtain the
final output vector, which serves as the spectral feature representation. Furthermore, to
avoid ambiguity in symbol representations, it should be noted that by the time l = 1, zl−1
is the initial inputs to the entire spectral encoder.

2.3.4. Score Predictor and Target Detection

Based on the aforementioned construction of the training data, we can obtain sample
pairs as input for the dual-branch architecture in this work. In each sample pair, two
spectral sequences pass through the dual-branch network, finally giving two extracted
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spectral feature representations. After that, the two feature representations are subtracted
and then fed into MLP to obtain the final prediction score.

For i = 1, 2, . . . , p, the positive sample pair (sprior, S+
i ) and the negative sample pair

(sprior, S−i ) are fed into the dual-branch network, which is represented by f (·). Based on
MLP, we can obtain prediction scores including the positive one c+i and the negative one
c−i , where {

c+i = MLP( f (sprior)− f (S+
i )),

c−i = MLP( f (sprior)− f (S−i )).
(7)

Once we forgot the prediction scores of sample pairs, we utilize binary cross entropy
(BCE) to measure the distance between scores and their corresponding labels. Given the
prediction score c+i with label y+i = 1 and c−i with label y−i = 0, the BCE loss is formulated
as follows to supervise the training process:

L = − 1
2b

b

∑
i=1

y+i · log[σ(c+i )] + (1− y−i ) · log[σ(1− c−i )]. (8)

where b is the batch size and σ(·) refers to the sigmoid function. Note that for a batch of size
b, there are b positive sample pairs and b negative sample pairs, which leads to balanced
training.

In the testing stage, each test spectral sequence in the given HSI is paired with the
prior target spectrum. For i = 1, 2, . . . , p, each testing pair (sprior, si) is fed into the well-
trained dual-branch Fourier-mixing transformer network to get the final detection score
MLP( f (sprior)− f (si)).

3. Experimental Settings
3.1. Experimental Data Sets

Five images from three public hyperspectral data sets are used for experiments and
analysis to evaluate the performance of our proposed algorithm. Given a specific hyper-
spectral image, hyperspectral target detection tries to detect and locate the specific target
under a given prior target spectrum [6]. All five images provide groundtruth maps, but
only the Muufl Gulfport data set provides the prior target spectrum. For the Muufl Gulfport
data set, the pure endmember target spectrum with laboratory spectrometer measurements
is provided in [49]. For data sets without a measured prior spectrum, following the method
in [50], we conduct morphological erosion operations on the ground truth maps, and their
average spectra represent the prior target spectrum.

3.1.1. San Diego Data Set

The first data set was captured by AVIRIS over the San Diego airport area, CA, USA.
It has 400× 400 pixels with 224 spectral bands. Two subimages named San Diego-1 and
San Diego-2 are selected from the original HSI data for experiments. In order to maintain
consistency and transparency in comparison experiments, we followed the usage of bands
as in many previous research studies. Precisely, bands no. 1–6, 33–35, 97, 107–113, 153–166,
and 221–224 are considered noisy bands [51]. After removing noisy bands, each of the two
subimages has 100× 100 pixels with 189 bands. San Diego-1 contains 134 pixels of three
aircrafts as targets, and San Diego-2 contains 57 pixels of three aircrafts as targets. The
pseudo-images and the ground-truth maps for San Diego-1 and San Diego-2 are shown in
Figures 3 and 4.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. San Diego-1 scene and detection maps of different comparison methods. (a) False color im-
age, (b) Ground truth, (c) SAM, (d) ACE, (e) CEM, (f) E-CEM, (g) HTD-IRN, (h) SFCTD, (i) TSCNTD,
(j) Ours.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. San Diego-2 scene and detection maps of different comparison methods. (a) False color im-
age, (b) Ground truth, (c) SAM, (d) ACE, (e) CEM, (f) E-CEM, (g) HTD-IRN, (h) SFCTD, (i) TSCNTD,
(j) Ours.

3.1.2. Airport-Beach-Urban (ABU) Data Set

The second data set is the ABU data set, which is publicly available in [7]. Two
images from the urban scene in the ABU data set are used to test our proposed method.
According to the downloaded data, it is available to describe the two urban scene images
named Urban-1 and Urban-2. Each of the two urban images was captured by an Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) with a spatial size of 100× 100 pixels.
Urban-1 has 204 bands, containing 67 pixels of nine buildings as targets. Urban-2 has
207 bands, and 88 pixels of nine buildings were regarded as targets. The pseudo-images
and the ground-truth maps for Urban-1 and Urban-2 are shown in Figures 5 and 6.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Urban-1 scene and detection maps of different comparison methods. (a) False color image,
(b) Ground truth, (c) SAM, (d) ACE, (e) CEM, (f) E-CEM, (g) HTD-IRN, (h) SFCTD, (i) TSCNTD,
(j) Ours.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Urban-2 scene and detection maps of different comparison methods. (a) False color image,
(b) Ground truth, (c) SAM, (d) ACE, (e) CEM, (f) E-CEM, (g) HTD-IRN, (h) SFCTD, (i) TSCNTD,
(j) Ours.

3.1.3. MUUFL Gulfport Data Set

The third data set is the MUUFL Gulfport data set [49], which was acquired using
a Compact Airborne Spectrographic Imager (CASI-1500) over the Gulf Park Campus
of the University of Southern Mississippi. The original MUUFL Gulfport data set has
325 × 337 pixels with 72 spectral bands, and the scene and scene labels are publicly available
in [49,52]. The lower right corner of the original image contains an invalid area; thus, only
the first 220 columns were used, and the first four and last four bands were removed due to
noise. Thus, the size of the cropped MUUFL Gulfport is 325 × 220 × 64, containing 269 pixels
of several cloth panels as targets to be detected, and the pure endmember target spectrum
with laboratory spectrometer measurements is provided in [49]. The pseudo-image and the
ground-truth map for Muufl Gulfport are shown in Figure 7.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Muufl Gulfport scene and detection maps of different comparison methods. (a) False
color image, (b) Ground truth, (c) SAM, (d) ACE, (e) CEM, (f) E-CEM, (g) HTD-IRN, (h) SFCTD,
(i) TSCNTD, (j) Ours.

3.2. Assessment Criteria

Three criteria are utilized to evaluate the performance of our proposed target detection
method, including the receiver operating characteristic (ROC) curve, the area under the
ROC curve (AUC) value, and the probability of detection under the false alarm rate (PD
under FAR). The ROC curve is a plot based on probability of detection (PD) versus false
alarm rate (FAR) under different threshold settings on the detection probability map [53].
FAR and PD are formulated as

PD =
Nd
Nt

, FAR =
N f

Nb
. (9)

where Nd is the number of correctly detected target pixels, Nt is the number of real tar-
get pixels, N f is the number of falsely detected target pixels, and Nb is the number of
background pixels.

The area under the ROC curve of PD and FAR, AUCPD−FAR, is utilized to quantitatively
evaluate the detection performance of a detector [54].

AUCPD−FAR =
∫ +∞

−∞
PD(τ)dFAR(τ) =

∫ +∞

−∞
PD(τ)FAR(τ)dτ (10)

According to [55,56], apart from AUCPD−FAR, another two AUC indicators including
AUCPD−τ and AUCFAR−τ are calculated as follows:

AUCPD−τ =
∫ +∞

−∞
PD(τ)dτ, AUCFAR−τ =

∫ +∞

−∞
FAR(τ)dτ (11)

In addition, AUCPD−FAR, AUCPD−τ , and AUCFAR−τ can further be used to design
some other quantitative detection indicators, including AUCBS for background suppress-
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ibility, AUCTD for target detectability, AUCOD for overall detection accuracy and signal-to-
noise probability ratio (SNPR) [55]. Where

AUCBS = AUCPD−FAR −AUCFAR−τ ,
AUCTD = AUCPD−FAR + AUCPD−τ ,
AUCOD = AUCPD−FAR + AUCPD−τ −AUCFAR−τ ,
SNPR = AUCPD−τ/AUCFAR−τ .

(12)

Furthermore, PD under FAR is the specific PD under a fixed, low FAR [57]. A robust
detector should not only highlight targets but also suppress backgrounds, so the PD under
FAR is a valid indicator to show the effectiveness of the detector. In this work, the PD
under FAR = 0.01 of different comparison methods on four data sets is provided. Generally
speaking, the higher the value of PD under a low FAR, the better the detection performance
of the detector.

3.3. Comparison Methods and Parameter Setup

To validate the effectiveness of the proposed DBFTTD, four widely used classical
methods (SAM, ACE, CEM, and E-CEM [46]) and three advanced deep learning-based
methods (Transformer-based HTD-IRN [40], CNN-based TSCNTD [37], and FCNN-based
SFCTD [50]) are adopted for comparison. HTD-IRN is an interpretable representation
network-based target detector with Tranformer and learnable background subspace; TSC-
NTD is a two-stream convolutional network-based target detector; and SFCTD is a siamese
fully connected-based target detector. The settings of deep learning-based methods for
comparison are consistent with the original work.

For the proposed DBFTTD, we utilize the Adam optimizer for all the experiments; the
batch size is 128, the learning rate is 0.0001, and the dropout rate is 0.1. All the experiments
are run on pytorch 1.9.0 with a CPU of Intel (R) Core (TM) i9-10900X @ 3.70 GHz, 32 GB of
RAM, and a GPU of NVIDIA GeForce RTX 3090.

4. Experimental Results and Analysis
4.1. Detection Performance Comparison

In this section, to validate the effectiveness of the proposed DBFTTD, we present and
analyze the detection performance comparisons for different detectors, including detection
maps, ROC curves, AUC values, and PD under FAR.

4.1.1. Detection Maps Comparison

Figures 3–7 show the detection maps of different comparison methods on five data
sets. It can be found that, compared with other detectors, DBFTTD achieves balance in
highlighting targets and suppressing backgrounds. In DBFTTD, the target detection task
is transformed into the similarity metric learning task. The main reason for the good
performance of DBFTTD is that the learnable filters are able to learn the interactions among
tokens in the Fourier domain and globally cover all frequencies, thus capturing both long-
term and short-term spectral features that simple measures in the feature space directly
correspond to spectra similarities.

For San Diego-1, the maps of detection results for different detectors are shown
in Figure 3. For detection of the two upper right aircrafts, SFCTD, TSCNTD, and the
proposed DBFTTD can highlight target pixels and maintain the morphological integrity of
targets, while the first five detectors achieve ambiguous detection results. Although E-CEM
can highlight some target pixels and suppress almost all background pixels, it fails to
describe the shape of the target. For the lower left aircraft, the proposed DBFTTD achieves
high detection scores and retains the integrity of targets, while SFCTD and TSCNTD fail
to. It’s worth noting that ACE suppresses the detection scores of background pixels to
extremely low levels, but only a few target pixels are highlighted. Among all the detectors,
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the proposed DBFTTD is better at highlighting targets, including target margins, and
demonstrates high separability between backgrounds and targets.

For San Diego-2, the maps of detection results for different detectors are shown in
Figure 4. SAM, ACE, CEM, and HTD-IRN achieve ambiguous detection results and show
low visualization contrast. E-CEM can only highlight several pixels in the middle of
targets. SFCTD, TSCNTD, and DBFTTD can locate and highlight targets and achieve
similar detection results, and TSCNTD and DBFTTD are slightly better at highlighting
target margins than SFCTD.

For Urban-1, the maps of detection results for different detectors are shown in Figure 5.
TSCNTD and DBFTTD show higher visualization contrast than the first six detectors.
However, TSCNTD mistakenly highlights a great deal of background pixels, reflecting
poor background suppression. It should be particularly noted that the proposed DBFTTD
achieves an outstanding balance between target detection and background suppression.

For Urban-2, the maps of detection results for different detectors are shown in Figure 6.
E-CEM, SFCTD, TSCNTD, and ours show better visualization contrast than the first five
detectors. Although E-CEM performs well in suppressing backgrounds, it fails to highlight
the edge of targets. Although SFCTD and TSCNTD perform well in highlighting targets,
they perform poorly in suppressing backgrounds and have high false alarm rates. Among
all the detectors, our DBFTTD not only detects target pixels with excellent scores but also
suppresses backgrounds to an extremely low level.

For Muufl-Gulfport, the maps of detection results for different detectors are shown
in Figure 7. The last four detectors show better visualization contrast than the other four
detectors. However, HTD-IRN achieves poor background suppression and ignores the
taget at bottom right. SFCTD ignores the target on the top right, and TSTNTD ignores the
target on the bottom left. Among all the detectors, our DBFTTD not only detects target
pixels with excellent scores but also suppresses backgrounds to an extremely low level.

4.1.2. ROC Curves Comparison

The ROC curves of comparison methods on five data sets are shown in Figure 8. The
red curves represent the ROC curves of the proposed DBFTTD. Firstly, there is the analysis
of the underperforming curves. The ACE, CEM, and MF always achieve low detection
probability when the false alarm rate reaches 1 for San Diego-1 and the two urban data sets;
TSCNTD gets low detection probability in most false alarm rate; SFCTD is inferior to the
proposed DBFTTD within the surrounding range of the false alarm rate 10−2. Secondly,
there is the analysis of the curves of the proposed DBFTTD. For the two San Diego data sets,
although the proposed DBFTTD gets a lower detection probability at the beginning, it gets
the most rapid rise as the curve grows. For the Urban-1 data set, our curve is lower than
the curve of SFCTD, around 10−4 false alarm rate, but it achieves competitive detection
probability as the growth of the false alarm rate increases. For the Urban-2 data set, our
curve achieves the lowest false rate when the detection probability reaches 1 (detects all
targets). For the Muufl Gulfport data set, our curve is located in the upper left corner
compared to the other three deep learning-based detectors, which indicates its promising
performance.

4.1.3. AUC Values Comparison

In addition, in order to quantitatively evaluate the performance of different methods,
the values of various AUC indicators on the five data sets are shown in Tables 1–5. In these
tables, the optimal values are bolded, and the suboptimal values are underlined.
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Figure 8. ROC curves of different comparison methods on the five data sets.

For the two San Diego data sets, the AUC values are shown in Tables 1 and 2. The
proposed DBFTTD obtains the optimal values except AUCFAR−τ for San Diego-1. Although
ACE obtains the optimal AUCFAR−τ for San Diego-1 because it suppresses background
pixels to very low levels, it performs poorly on other AUC values since it fails to highlight
target pixels. For the two urban data sets, the AUC values are shown in Tables 3 and 4.
The proposed DBFTTD markedly outperforms other comparison methods in terms of
AUCFAR−τ and AUCBS that reflect background suppressibility, as well as AUCPD−FAR and
SNPR for overall performance. SFCTD and TSCNTD achieve superior AUCPD−τ and
AUCTD as they present strong target detectability; however, they falsely highlight an awful
lot of background pixels while highlighting target pixels. Among all the detectors for com-
parison, the proposed DBFTTD achieves competitive performance in various AUC values,
presenting an outstanding balance between target detection and background suppression.
For the Muufl Gulfport data set, the AUC values are shown in Table 5. It is evident that
the proposed DBFTTD produces the most accurate and robust results of the seven metrics
compared to other detectors.

Table 1. AUC Values’ Comparison for San Diego-1.

Methods AUCPD−FAR AUCFAR−τ AUCPD−τ AUCBS AUCTD AUCOD SNPR

SAM 0.9968 0.0253 0.2428 0.9714 1.2395 1.2142 9.5843
ACE 0.9685 0.0018 0.2862 0.9667 1.2547 1.2530 162.6307
CEM 0.9869 0.0738 0.3596 0.9131 1.3465 1.2727 4.8725

E-CEM 0.8918 0.0140 0.4219 0.8778 1.3137 1.2997 30.1171
HTD-IRN 0.9797 0.0153 0.4399 0.9644 1.4195 1.4042 28.7873

SFCTD 0.9906 0.0794 0.6613 0.9111 1.6519 1.5724 8.3249
TSCNTD 0.9387 0.0076 0.5412 0.9311 1.4799 1.4723 70.9253

ours 0.9976 0.0025 0.6868 0.9951 1.6845 1.6819 270.4094
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Table 2. AUC Values’ Comparison for San Diego-2.

Methods AUCPD−FAR AUCFAR−τ AUCPD−τ AUCBS AUCTD AUCOD SNPR

SAM 0.9929 0.0365 0.3818 0.9564 1.3747 1.3382 10.4689
ACE 0.9934 0.0060 0.5207 0.9874 1.5141 1.5081 87.2144
CEM 0.9971 0.1862 0.6831 0.8109 1.6802 1.4940 3.6683

E-CEM 0.7693 0.0097 0.3134 0.7597 1.0827 1.0730 32.4054
HTD-IRN 0.9983 0.0100 0.6010 0.9883 1.5993 1.5893 59.9830

SFCTD 0.9945 0.0063 0.7385 0.9882 1.7329 1.7266 116.4748
TSCNTD 0.9951 0.0024 0.8179 0.9927 1.8130 1.8106 342.2259

ours 0.9971 0.0021 0.8958 0.9950 1.8929 1.8908 422.5377

Table 3. AUC Values’ Comparison for Urban-1.

Methods AUCPD−FAR AUCFAR−τ AUCPD−τ AUCBS AUCTD AUCOD SNPR

SAM 0.9948 0.0323 0.4567 0.9625 1.4514 1.4192 14.1468
ACE 0.9288 0.0022 0.3029 0.9266 1.2317 1.2295 137.6682
CEM 0.9404 0.1094 0.5064 0.8309 1.4468 1.3373 4.6277

E-CEM 0.8815 0.0059 0.3324 0.8756 1.2139 1.2080 56.6269
HTD-IRN 0.9659 0.0164 0.3341 0.9495 1.2999 1.2836 20.3938

SFCTD 0.9918 0.0455 0.7086 0.9463 1.7004 1.6549 15.5873
TSCNTD 0.9813 0.0253 0.7123 0.9560 1.6936 1.6683 28.1335

ours 0.9961 0.0006 0.6762 0.9955 1.6723 1.6717 1146.1186

Table 4. AUC Values’ Comparison for Urban-2.

Methods AUCPD−FAR AUCFAR−τ AUCPD−τ AUCBS AUCTD AUCOD SNPR

SAM 0.9990 0.0051 0.2908 0.9940 1.2898 1.2847 57.3511
ACE 0.9922 0.0034 0.3379 0.9888 1.3301 1.3267 99.0909
CEM 0.9979 0.2003 0.6014 0.7976 1.5993 1.3990 3.0028

E-CEM 0.8646 0.0047 0.3808 0.8600 1.2454 1.2408 81.8946
HTD-IRN 0.9993 0.0747 0.7514 0.9246 1.7508 1.6761 10.0594

SFCTD 0.9955 0.0383 0.9149 0.9572 1.9104 1.8721 23.8999
TSCNTD 0.9954 0.0825 1.0964 0.9128 2.0917 2.0092 13.2860

ours 0.9994 0.0015 0.8260 0.9979 1.8253 1.8239 561.8707

Table 5. AUC Values’ Comparison for Muufl Gulfport.

Methods AUCPD−FAR AUCFAR−τ AUCPD−τ AUCBS AUCTD AUCOD SNPR

SAM 0.5439 0.2970 0.2945 0.2469 0.8383 0.5413 0.9914
ACE 0.9374 0.0381 0.2761 0.8993 1.2135 1.1754 7.2435
CEM 0.9865 0.4029 0.6575 0.5835 1.6440 1.2410 1.6318

E-CEM 0.6763 0.2729 0.3037 0.4034 0.9800 0.7071 1.1127
HTD-IRN 0.9749 0.1940 0.7865 0.7809 1.7614 1.5674 4.0545

SFCTD 0.9880 0.1026 0.7245 0.8854 1.7125 1.6099 7.0620
TSCNTD 0.9826 0.0162 0.7155 0.9664 1.6980 1.6818 44.1370

ours 0.9939 0.0010 0.8314 0.9929 1.8254 1.8244 839.8182

4.1.4. PD under FAR Comparison

Moreover, the PD under FAR = 0.01 of different comparison methods on five data sets
are provided to assess the effectiveness and robustness of the DBFTTD, as illustrated in
Table 6. As shown, the proposed DBFTTD achieves the highest PD values under FAR = 0.01
in the first four data sets. Note in particular that the PD value of DBFTTD is up to 1 in the
Urban-2 data set, significantly better than 0.9886 of the suboptimal ones.
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Table 6. PD under FAR = 0.01 of different comparison methods on five data sets.

Method San Diego-1 San Diego-2 Urban-1 Urban-2 Muufl
Gulfport

SAM 0.9189 0.7896 0.8970 0.9886 0.0000
ACE 0.8730 0.9476 0.8223 0.8978 0.4461
CEM 0.8961 0.9476 0.8518 0.9319 0.9484

E-CEM 0.6045 0.4036 0.4348 0.5796 0.2416
HTD-IRN 0.8657 0.9649 0.1045 0.9886 0.6543

SFCTD 0.7619 0.8951 0.7476 0.8864 0.8662
TSCNTD 0.6130 0.9310 0.4348 0.9886 0.4461

ours 0.9415 0.9662 0.9109 1.0000 0.9486

4.2. Comparison with the Original Transformer
4.2.1. Analysis of the Skip-Layer Connection

In Transformer, the simple additive skip connection operation only occurs within
each Transformer block. To enhance propagation from shallow to deep layers, we make
use of skip connections between connected layers by concatenation and fusion. To verify
the effectiveness of the skip-layer connection, ablation experiments were performed on
five datasets. The experimental settings are consistent with the DBFTTD, except for the
component of the ablation study. Figures 9 and 10 display the detection maps and the
corresponding ROC curves on the five datasets, respectively.

According to the detection maps on Muufl Gulfport, the variant without skip-layer
connection has extremely poor performance because it fails to locate and highlight target
pixels. In the case of other images, the variant can locate and maintain the shape of targets,
but it fails to highlight them obviously. Moreover, the variant is inferior in suppressing
backgrounds, and many background pixels are incorrectly detected with high detection
scores. As shown in Figure 10, for all five data sets, the ROC curves of the DBFTTD are
much closer to the upper left than the variant. By comparison, the proposed DBFTTD
outperforms the variant without the skip-layer connection, demonstrating the necessity
and effectiveness of the skip-layer connection.

(b) (c) (d) (e)(a)

Figure 9. Comparison of detection maps without skip-layer connection and with skip-layer connec-
tion for five data sets. (a) San Diego-1. (b) San Diego-2. (c) Urban-1. (d) Urban-2. (e) Muufl Gulfport.
First row: without skip-layer connection. Second row: with skip-layer connection.
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Figure 10. Comparison of ROC curves without skip-layer connection and with skip-layer connection
for five data sets.

4.2.2. Analysis of the Fourier-Mixing Module and the Self-Attention Module

The considerable computation complexity of self-attention has been a persistent chal-
lenge when applying Transformer models to vision tasks [58]. Since the Fourier Transform
has previously been used to speed up transformers [44,45], we replace the attention module
in transformers with the Fourier-mixing module for efficient HTD. To verify the effective-
ness of the Fourier-mixing module, ablation experiments are performed on five datasets.
Figures 11 and 12 display the detection maps and the corresponding ROC curves on the
five datasets, respectively.

(b) (c) (d) (e)(a)

Figure 11. Comparison of detection maps with attention module and Fourier-mixing module for five
data sets. (a) San Diego-1. (b) San Diego-2. (c) Urban-1. (d) Urban-2. (e) Muufl Gulfport. First row:
attention-based. Second row: Fourier-based.
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Figure 12. Comparison of ROC curves with attention module and Fourier-mixing module for five
data sets.

In Figure 11, the first row is based on the self-attention module, and the second row is
based on the Fourier-mixing module. The detection maps in the two rows generally have
similar visual contrast. Both the attention-based detector and the Fourier-based detector can
highlight targets and describe the shape approximately, as well as suppress backgrounds
to low levels. However, by replacing the self-attention module with the Fourier-mixing
module, the second row is slightly better than the first row for San Diego-1 and Muufl
Gulfport. For San Diego-1, based on the attention module, several pixels at the edge of
airplanes get lower confidence than pixels in the middle of airplanes. For Muufl Gulfport,
based on the Fourier-mixing module, the upper left target becomes clearer and more promi-
nent. As shown in Figure 12, the ROC curves can qualitatively evaluate the performance.
For the first three data sets, the ROC curve based on the Fourier-mixing module is the
closest to the top left corner. For Urban-2, the two ROC curves are almost overlapping,
so both methods can achieve good performance. For Muufl Gulfport, the detection rate
based on the Fourier-mixing module is competitive under the low FPR from 10−3 to 0. By
comparison, the Fourier-based detector performs as well as the attention-based detector
and even slightly better; thus, the Fourier-mixing module is demonstrated effective.

4.2.3. Time Analysis

In our work, the Fourier-mixing sublayer replaces the heavy MSA sublayer in trans-
formers to speed up the transformer-style network for HTD. In this section, we analyze
the time cost of our attention-free DBFTTD and the attention-based variant to illustrate the
efficiency of our proposed method. For fair comparison, the settings are consistent except
for the component of the ablation study, and we analyze their inference time in the test
stage on the four researched data sets. The time costs of the attention-free DBFTTD and the
attention-based variant are listed in Table 7.

San Diego and ABU data sets have a spatial size of 100× 100, and the difference in
time cost between the different data sets is mainly caused by the number of bands. The San
Diego-1 and San Diego-2 have 189 bands, while Urban-1 has 204 bands and Urban-2 has
207 bands. From the perspective of the data size, the image with more bands costs more
time since the designed network needs to extract more features. The proposed DBFTTD
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saves more time than the attention-based variant in all four data sets. The average inference
time of DBFTTD is about 120 ms shorter than that of the attention-based variant. DBFTTD
runs faster than it is capable of speeding up the transformer-style architecture, which
demonstrates the improvement in efficiency.

Table 7. Inference time (in milliseconds) comparison of our attention-free DBFTTD and the attention-
based variant on the four data sets.

Method San Diego-1 San Diego-2 Urban-1 Urban-2

Ours 215.79 ms 216.37 ms 244.94 ms 246.91 ms
Attention Based 335.41 ms 336.45 ms 355.99 ms 363.08 ms

4.3. Parameter Sensitivity Analysis
4.3.1. Analysis of Filter Ensembles

Figure 13 shows the parameter sensitivity analysis of the number of filter ensembles.
For the setting of each number, we repeat ten times and compute the means and standard
deviations of the AUC values. The dark and light color plots represent the AUC value
means and standard deviation, respectively. The results of four data sets are painted with
different colors. As the number increases, the variance represented by the light regions
gradually decreases, indicating improved stability. Moreover, it is obvious that the AUC
values of number 4 are better than the others. Therefore, Filter ensembles enhance the
generalization ability and improve the detection performance, and the default ensemble
number in our proposed DBFTTD is 4.
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Figure 13. The parameters sensitivity analysis of the number of the filter ensembles for four data sets.
The default ensemble number in our proposed DBFTTD is 4.

4.3.2. Analysis of Dropout for Data Augmentation

The AUC values of the DBFTTD with different dropout rates for data augmentation
for four data sets are shown in Figure 14. For San Diego-1, San Diego-2, and Urban-1, the
AUC values of different dropout rates from 0 to 0.5 reveal that the detection performance is
better when the dropout rate is set at 0.1. For Urban-2, the AUC values can prove that the
dropout rate for data augmentation is not sensitive, and the detection performances are
promising under both the six dropout rates. This is because the backgrounds in Urban-2 can
be easily distinguished from targets even by the simplest matching method, SAM, as shown
in the detection map shown in Figure 6. Furthermore, the original prior target spectrum
is sufficient to extract the main information for distinguishing targets and backgrounds.
Therefore, the default dropout rate for data augmentation is 0.1.
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Figure 14. AUC values of the DBFTTD with different dropout rate for data augmentation for four
data sets. The default dropout rate in our proposed DBFTTD is 0.1.

5. Conclusions

In this article, we propose a dual-branch Fourier-mixing transformer network with
learnable filter ensembles for hyperspectral target detection, supported by a simple yet
effective data augmentation method. First, the proposed transformer-style detector utilizes
a Fourier-mixing sublayer to replace the MSA sublayer in the transformer, and adaptive
improvements to the transformer such as spectral embedding and skip-layer connection
are utilized. Second, this work proposes learnable filter ensembles in the Fourier domain
inspired by ensemble learning in E-CEM, which improve detection performance. Moreover,
supported by a dropout strategy for data augmentation, the proposed dual-branch network
is effectively optimized by the sufficient and balanced target and background spectral pairs
generated. Experiments and comparisons with five widely used classical methods and
two advanced deep learning-based methods, conducted quantitatively and qualitatively,
show that the proposed DBFTTD achieves excellent detection performance. The time-cost
comparisons of the attention-free DBFTTD and the attention-based variant show that the
DBFTTD is capable of speeding up the transformer-style architecture, which demonstrates
the improvement in efficiency. Therefore, the proposed transformer-style detector does
well in both detection performance and computational efficiency.

Further research will be conducted for the application of detecting the same targets
appearing in different HSIs under different environmental conditions, as well as balancing
both effectiveness and efficiency.
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