The Dynamics and Microphysical Characteristics of the Convection Producing the Record-Breaking Hourly Precipitation on 20 July 2021 in Zhengzhou, China
<p>(<b>a</b>) Distribution map of ground instruments on the digital terrain elevation map around ZZ. Triangles denote the locations of four operational radars. Blue, red, and purple contours indicate the 24-h accumulated rainfall over 100, 250, and 400 mm on 20 July, respectively. The time series of the hourly rainfall from the ZZ national surface station (indicated by a red cross) is also shown in the bottom right corner of the figure. (<b>b</b>) Circulation fields at 0800 LST on 20 July 2021. Gray contours represent geopotential height at 500 hPa, and the bold line indicates the location of the western Pacific subtropical high (WPSH). Vectors are vertically integrated water vapor flux (in the layer of 1000–300 hPa) larger than 150 kg m<sup>−1</sup> s<sup>−1</sup>, and black dots indicate the wind divergence at 200 hPa that is larger than 10<sup>−5</sup> s<sup>−1</sup>. Shading represents the 10.8 μm infrared brightness temperature from FY-4A. The black cross indicates the location of the ZZ national surface station.</p> "> Figure 2
<p>(<b>a</b>) Perturbation temperature (shading) and horizontal wind vectors at 0.6 km MSL in the VDRAS analysis at 1200 LST on 20 July 2021. Yellow contours are the horizontal convergence starting from −1 × 10<sup>−3</sup> s<sup>−1</sup> at an interval of −2 × 10<sup>−3</sup> s<sup>−1</sup>. Black lines are 600 m terrain elevation contours and the purple triangle indicates the location of the record-breaking hourly precipitation rain gauge station in ZZ. (<b>b</b>) As (<b>a</b>) but at 3 km. The curved arrow represents the mesoscale vortex. (<b>c</b>) As (<b>a</b>) but at 1600 LST. (<b>d</b>) 0–3 km moisture fluxes through the 4 borders of a 60 × 60 km box region covering the ZZ city (red box in (<b>a</b>,<b>c</b>)) and net flux into the box (positive into the box), based on the VADRS analysis. (<b>e</b>) Inflow environment sounding located at 150 km southeast of ZZ (yellow X in (<b>a</b>)) extracted from the VDRAS analysis at 1200 LST with the red, green, and black solid lines representing the temperature profile, dew point profile, and the parcel ascent curve, respectively. (<b>f</b>) Perturbation temperature (shading) and wind vectors in the west–east vertical cross section through the center of ZZ city (line AB in (<b>c</b>)) in VADRAS analysis at 1600 LST. Red contours denote 40 dBZ radar reflectivity. (<b>g</b>) Evolution of cold pool density current and low-level easterlies between 0 and 1 km calculated within the red and black boxes in (<b>c</b>). (<b>h</b>) Evolution of the southerly and northerly wind components to the south and north of the storm (see the white boxes in (<b>c</b>)) over ZZ, respectively.</p> "> Figure 3
<p>Observed radar reflectivity (color shading; units: dBZ) and horizontal winds at 600 m MSL at (<b>a</b>) 1200 LST, (<b>b</b>) 1500 LST, (<b>c</b>) 1600 LST, and (<b>d</b>) 1700 LST on 20 July 2021. A terrain height of 200 m is indicated by the bold brown contours. The black line represents the urban area of ZZ, and the triangle indicates the national surface station with the hourly extreme rainfall in ZZ. The blue pluses indicate that the lightning occurred 30 min before and after the radar time. SM indicates the Song Mountain. West–east cross sections of (<b>e</b>) Z<sub>H</sub> (color shading) and Z<sub>DR</sub> (contours) and (<b>f</b>) hydrometer types based on hydrometeor classification algorithm (shading) and K<sub>DP</sub> (contours) across the rainfall center at 1600 LST.</p> "> Figure 4
<p>Time series of (<b>a</b>) Z<sub>H</sub>, (<b>b</b>) Z<sub>DR</sub>, and (<b>c</b>) K<sub>DP</sub> fractions in specified bins at 2.0 km MSL in the 30 × 30 km box centered on the CS (labeled in <a href="#remotesensing-15-04511-f003" class="html-fig">Figure 3</a>) from 1200 to 2000 LST. Average profiles of (<b>d</b>) polarimetric radar variables and (<b>e</b>) hydrometer types (shading), LWC (black solid), and IWC (red dashed) for K<sub>DP</sub> values higher than 4° km<sup>−1</sup> near the ZZ national surface station between 1600 and 1700 LST. The label for IWC/LWC is shown at the top of the panel.</p> "> Figure 5
<p>(<b>a</b>) Time series of 1 min DSDs from the OTT disdrometer at the ZZ national surface station. Color shading represents the DSD in logarithmic units of mm<sup>−1</sup> m<sup>−3</sup> and the <span class="html-italic">y</span>-axis indicates the equivalent volume diameter (mm) of raindrops; the instant rain rate is plotted as the red line. (<b>b</b>) Scatters of <span class="html-italic">N<sub>w</sub></span> (<span class="html-italic">D<sub>m</sub></span>) from the ZZ extreme hourly rainfall between 1600 and 1700 LST (red) and DSD samples with an instant rain rate over 20 mm<sup>−1</sup> h<sup>−1</sup> from 1200 to 2000 LST (blue), respectively. The two gray rectangles represent the maritime and continental convective clusters reported by [<a href="#B24-remotesensing-15-04511" class="html-bibr">24</a>]. The blue, green, black, and red crosses represent the mean values of convective rain in different regions from previous studies [<a href="#B50-remotesensing-15-04511" class="html-bibr">50</a>,<a href="#B51-remotesensing-15-04511" class="html-bibr">51</a>,<a href="#B52-remotesensing-15-04511" class="html-bibr">52</a>,<a href="#B53-remotesensing-15-04511" class="html-bibr">53</a>].</p> "> Figure 6
<p>The conceptual model of the maintenance and precipitation microphysics of the convective storm resulting in extreme hourly rainfall in ZZ. The blue line with triangles indicates the cold pool gust front. The red arrows represent the prevalent winds.</p> ">
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Datasets
2.2. Methods
3. Results
3.1. Mesoscale and Convective Dynamical Processes
3.2. Microphysical Processes in the Extreme Rainfall
3.2.1. Vertical Distributions of Hydrometeors
3.2.2. The Raindrop Size Distribution on the Ground
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y. On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment. Acta Meteorol. Sin. 2015, 73, 411–424. [Google Scholar]
- Shi, W.; Li, X.; Zeng, M.; Zhang, B.; Wang, H.; Zhu, K.; Zhuge, X. Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain. Trans. Atmos. Sci. 2021, 44, 688–702. [Google Scholar] [CrossRef]
- Sun, W.; Yu, R.; Li, J.; Yuan, W. Three-Dimensional Circulation Structure of Summer Heavy Rainfall in Central North China. Weather Forecast. 2015, 30, 238–250. [Google Scholar] [CrossRef]
- Tao, S. Rainstorms in China; Science Press: Beijing, China, 1980. [Google Scholar]
- Wu, G. Dynamics of the Formation and Variation of Subtropical Anticyclones; Science Press: Beijing, China, 2002. [Google Scholar]
- Yin, J.; Gu, H.; Liang, X.; Yu, M.; Sun, J.; Xie, Y.; Li, F.; Wu, C. A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021. J. Meteorol. Res. 2021, 36, 6–25. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Lin, Y.; Zhao, P.; Yu, X.; Wang, S.; Kang, H.; Ding, Y. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett. 2013, 40, 1426–1431. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wang, X.; Shen, L.; Wang, d.; Li, H. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Trans. Atmos. Sci. 2021, 44, 672–687. [Google Scholar]
- Ralph, F.M.; Dettinger, M.D.; Cairns, M.M.; Galarneau, T.J.; Eylander, J. Defining “Atmospheric River”: How the Glossary of Meteorology Helped Resolve a Debate. Bull. Am. Meteorol. Soc. 2018, 99, 837–839. [Google Scholar] [CrossRef]
- Doswell, C.A.; Brooks, H.E.; Maddox, R.A. Flash Flood Forecasting: An Ingredients-Based Method-ology. Weather Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Konrad, C.E. Synoptic-Scale Features Associated with Warm Season Heavy Rainfall over the Interior Southeastern United States. Weather Forecast. 1997, 12, 557–571. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, M.; Ren, F.; Li, J.; Wong, W.-K. Synoptic Situations of Extreme Hourly Precipitation over China. J. Clim. 2016, 29, 8703–8719. [Google Scholar] [CrossRef]
- Ding, Y. The major advances and development process of the theory of heavy rainfalls in China. Torrential Rain Disasters 2019, 38, 395–406. [Google Scholar]
- Li, Z.; Chen, Y.; Zhang, X.; Wang, Y.; Dai, K.; Zhang, L. Development and thinking of torrential rain forecasting operation in National Meteorological Center. Torrential Rain Disasters 2019, 38, 407–415. [Google Scholar] [CrossRef]
- Schumacher, R.S. Heavy Rainfall and Flash Flooding; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Zhang, M.; Yang, Y.; Meng, Z. Uncertainties and error growth in forecasting the record-breaking rainfall in Zhengzhou, Henan on 19–20 July 2021. Sci. China Earth Sci. 2022, 65, 1903–1920. [Google Scholar] [CrossRef]
- Zhu, K.F.; Zhang, C.; Xue, M.; Yang, N. Predictability and skill of convection-permitting ensemble forecast sys-tems in predicting the record-breaking “21·7” extreme rainfall event in Henan Province, China. Sci. China Earth Sci. 2022, 65, 1879–1902. [Google Scholar] [CrossRef]
- Wei, P.; Xu, X.; Xue, M.; Zhang, C.; Wang, Y.; Zhao, K.; Zhou, A.; Zhang, S.; Zhu, K. On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China. Adv. Atmos. Sci. 2023, 40, 337–349. [Google Scholar] [CrossRef]
- Sun, J.; Li, R.; Zhang, Q.; Trier, S.B.; Ying, Z.; Xu, J. Mesoscale Factors Contributing to the Extreme Rainstorm on 20 July 2021 in Zhengzhou, China, as Revealed by Rapid Update 4DVar Analysis. Mon. Weather Rev. 2023, 151, 2153–2176. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Real-Time Low-Level Wind and Temperature Analysis Using Single WSR-88D Data. Weather Forecast. 2001, 16, 117–132. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Lu, Y.; Zheng, Y.; Xue, M.; Tan, Z.; Xu, X.; Huang, H.; Chen, H.; Xu, F.; et al. Variability of microphysical characteristics in the “21·7” Henan extremely heavy rainfall event. Sci. China Earth Sci. 2022, 65, 1861–1878. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Mao, J.; Jin, S. Analysis on Precipitation Efficiency of the “21.7” Henan Extremely Heavy Rainfall Event. Adv. Atmos. Sci. 2023, 40, 374–392. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Wen, L.; Wang, M.; Huang, H.; Wang, M.; Yang, Z.; Zhang, G.; Zhang, P.; Lee, W.-C. Microphysical Characteristics of Three Convective Events with Intense Rainfall Observed by Polarimetric Radar and Disdrometer in Eastern China. Remote Sens. 2019, 11, 2004. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.L.; Schoenhuber, M. Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Shakti, P.C.; Maki, M.; Shimizu, S.; Maesaka, T.; Kim, D.-S.; Lee, D.-I.; Iida, H. Correction of Reflectivity in the Presence of Partial Beam Blockage over a Mountainous Region Using X-Band Dual Polarization Radar. J. Hydrometeorol. 2013, 14, 744–764. [Google Scholar] [CrossRef]
- Mohr, C.G.; Vaughan, R.L. An Economical Procedure for Cartesian Interpolation and Display of Reflectivity Factor Data in Three-Dimensional Space. J. Appl. Meteorol. 1979, 18, 661–670. [Google Scholar] [CrossRef]
- Dolan, B.; Rutledge, S.A.; Lim, S.; Chandrasekar, V.; Thurai, M. A Robust C-Band Hydrometeor Identification Algorithm and Application to a Long-Term Polarimetric Radar Dataset. J. Appl. Meteorol. Clim. 2013, 52, 2162–2186. [Google Scholar] [CrossRef]
- Cifelli, R.; Petersen, W.A.; Carey, L.D.; Rutledge, S.A.; Dias, M.A.F.d.S. Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res. Atmos. 2002, 107, LBA 44-1–LBA 44-16. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Mackowski, D.W. T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 535–575. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, K.; Xue, M.; Zhang, G.; Liu, S.; Wen, L.; Chen, G. Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos. 2016, 121, 12415–12433. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, K.; Sun, J.; Zhou, B.; Lee, W.-C. Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci. 2016, 33, 1106–1119. [Google Scholar] [CrossRef]
- Doyle, J.D. The Influence of Mesoscale Orography on a Coastal Jet and Rainband. Mon. Weather Rev. 1997, 125, 1465–1488. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, Y.; Wang, H.; Tang, H.; Li, W.; Sun, J. On the Evolution of a Long-Lived Mesoscale Convective Vortex that Acted as a Crucial Condition for the Extremely Strong Hourly Precipitation in Zhengzhou. J. Geophys. Res. Atmos. 2022, 127, e2021JD036233. [Google Scholar] [CrossRef]
- Xu, W. Thunderstorm Climatologies and Their Relationships to Total and Extreme Precipitation in China. J. Geophys. Res. Atmos. 2020, 125, e2020JD033152. [Google Scholar] [CrossRef]
- Zipser, E.J.; Lutz, K.R. Vertical Profile of Radar Reflectivity of Convective Cells: A Strong Indicator of Storm Intensity and Lightning Probability? Mon. Weather Rev. 1994, 122, 1751–1759. [Google Scholar] [CrossRef]
- Ferrier, B.S.; Simpson, J.; Tao, W.-K. Factors Responsible for Precipitation Efficiencies in Midlatitude and Tropical Squall Simulations. Mon. Weather Rev. 1996, 124, 2100–2125. [Google Scholar] [CrossRef]
- Market, P.; Allen, S.; Scofield, R.; Kuligowski, R.; Gruber, A. Precipitation Efficiency of Warm-Season Midwestern Mesoscale Convective Systems. Weather Forecast. 2003, 18, 1273–1285. [Google Scholar] [CrossRef]
- Parker, M.D.; Johnson, R.H. Simulated Convective Lines with Leading Precipitation. Part II: Evolution and Maintenance. J. Atmos. Sci. 2004, 61, 1656–1673. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations; Academic Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Kumjian, M. Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteorol. 2013, 1, 226–242. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Khain, A.P.; Benmoshe, N.; Ilotoviz, E.; Ryzhkov, A.V.; Phillips, V.T.J. The Anatomy and Physics of ZDR Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model. J. Appl. Meteorol. Clim. 2014, 53, 1820–1843. [Google Scholar] [CrossRef]
- Snyder, J.C.; Ryzhkov, A.V.; Kumjian, M.R.; Khain, A.P.; Picca, J. A ZDR Column Detection Algorithm to Examine Convective Storm Updrafts. Weather Forecast. 2015, 30, 1819–1844. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Lombardo, K.A. Insights into the Evolving Microphysical and Kinematic Structure of Northeastern U.S. Winter Storms from Dual-Polarization Doppler Radar. Mon. Weather Rev. 2017, 145, 1033–1061. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Prat, O.P. The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables. J. Atmos. Sci. 2014, 71, 3052–3067. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, K.; Lee, W.-C.; Zhang, F. Microphysical and Kinematic Structure of Convective-Scale Elements in the Inner Rainband of Typhoon Matmo (2014) after Landfall. J. Geophys. Res. Atmos. 2018, 123, 6549–6564. [Google Scholar] [CrossRef]
- Carr, N.; Kirstetter, P.E.; Gourley, J.J.; Hong, Y. Polarimetric Signatures of Midlatitude Warm-Rain Precipitation Events. J. Appl. Meteorol. Clim. 2017, 56, 697–711. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Khain, A.P. Polarimetric Radar Characteristics of Melting Hail. Part I: Theoretical Simulations Using Spectral Microphysical Modeling. J. Appl. Meteorol. Clim. 2013, 52, 2849–2870. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Zhang, L.; Lei, H.; Wu, Z. Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar. Adv. Atmos. Sci. 2020, 38, 65–80. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Ulbrich, C.W. Cloud microphysical properties, processes, and rainfall estimation opportunities. In Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas; Springer: Berlin/Heidelberg, Germany, 2003; pp. 237–258. [Google Scholar]
- Dolan, B.; Fuchs, B.; Rutledge, S.A.; Barnes, E.A.; Thompson, E.J. Primary Modes of Global Drop Size Distributions. J. Atmos. Sci. 2018, 75, 1453–1476. [Google Scholar] [CrossRef]
- Ji, L.; Chen, H.; Li, L.; Chen, B.; Xiao, X.; Chen, M.; Zhang, G. Raindrop Size Distributions and Rain Characteristics Observed by a PARSIVEL Disdrometer in Beijing, Northern China. Remote Sens. 2019, 11, 1479. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Chen, G.; Wang, M.; Zhou, B.; Huang, H.; Hu, D.; Lee, W.-C.; Hu, H. Drop Size Distribution Characteristics of Seven Typhoons in China. J. Geophys. Res. Atmos. 2018, 123, 6529–6548. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, K.; Zhang, G.; Xue, M.; Zhou, B.; Liu, S.; Chen, X. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos. 2016, 121, 2265–2282. [Google Scholar] [CrossRef]
- Wen, J.; Zhao, K.; Huang, H.; Zhou, B.; Yang, Z.; Chen, G.; Wang, M.; Wen, L.; Dai, H.; Xu, L.; et al. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res. Atmos. 2017, 122, 8033–8050. [Google Scholar] [CrossRef]
- Miranda, P.M.A.; James, I.N. Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Q. J. R. Meteorol. Soc. 1992, 118, 1057–1081. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, K.; Xu, X.; Xue, M.; Tan, Z.-M.; Huang, H.; Zhou, A.; Fan, X.; Liu, Q.; Wang, C.; Fang, J.; et al. The Dynamics and Microphysical Characteristics of the Convection Producing the Record-Breaking Hourly Precipitation on 20 July 2021 in Zhengzhou, China. Remote Sens. 2023, 15, 4511. https://doi.org/10.3390/rs15184511
Zhao K, Xu X, Xue M, Tan Z-M, Huang H, Zhou A, Fan X, Liu Q, Wang C, Fang J, et al. The Dynamics and Microphysical Characteristics of the Convection Producing the Record-Breaking Hourly Precipitation on 20 July 2021 in Zhengzhou, China. Remote Sensing. 2023; 15(18):4511. https://doi.org/10.3390/rs15184511
Chicago/Turabian StyleZhao, Kun, Xin Xu, Ming Xue, Zhe-Min Tan, Hao Huang, Ang Zhou, Xueqi Fan, Qiqing Liu, Chenli Wang, Juan Fang, and et al. 2023. "The Dynamics and Microphysical Characteristics of the Convection Producing the Record-Breaking Hourly Precipitation on 20 July 2021 in Zhengzhou, China" Remote Sensing 15, no. 18: 4511. https://doi.org/10.3390/rs15184511
APA StyleZhao, K., Xu, X., Xue, M., Tan, Z. -M., Huang, H., Zhou, A., Fan, X., Liu, Q., Wang, C., Fang, J., Lee, W. -C., Zhang, Q., Zhang, F., Chen, G., & Yang, J. (2023). The Dynamics and Microphysical Characteristics of the Convection Producing the Record-Breaking Hourly Precipitation on 20 July 2021 in Zhengzhou, China. Remote Sensing, 15(18), 4511. https://doi.org/10.3390/rs15184511