Abstract
An extremely heavy rainfall event occurred in Zhengzhou, China, on 20 July 2021 and produced an hourly rainfall rate of 201.9 mm, which broke the station record for mainland China. Based on radar observations and a convection-permitting simulation using the WRF-ARW model, this paper investigates the multiscale processes, especially those at the mesoscale, that support the extreme observed hourly rainfall. Results show that the extreme rainfall occurred in an environment characteristic of warm-sector heavy rainfall, with abundant warm moist air transported from the ocean by an abnormally northward-displaced western Pacific subtropical high and Typhoon In-Fa (2021). However, rather than through back building and echo training of convective cells often found in warm-sector heavy rainfall events, this extreme hourly rainfall event was caused by a single, quasi-stationary storm in Zhengzhou. Scale separation analysis reveals that the extreme-rain-producing storm was supported and maintained by the dynamic lifting of low-level converging flows from the north, south, and east of the storm. The low-level northerly flow originated from a mesoscale barrier jet on the eastern slope of the Taihang Mountain due to terrain blocking of large-scale easterly flows, which reached an overall balance with the southerly winds in association with a low-level meso-β-scale vortex located to the west of Zhengzhou. The large-scale easterly inflows that fed the deep convection via transport of thermodynamically unstable air into the storm prevented the eastward propagation of the weak, shallow cold pool. As a result, the convective storm was nearly stationary over Zhengzhou, resulting in record-breaking hourly precipitation.
摘 要
2021 年 7 月 20 日, 河南郑州发生一次极端降水, 小时降水量高达 201.9 mm, 创造了中国大陆小时降水的新记录. 基于天气雷达观测和 WRF 模式的对流可分辨数值模拟, 本文详细研究了郑州极端小时降水的多尺度动力机制. 结果表明, 本次极端降水的发生环境与暖区暴雨类似, 在异常北抬的西太平洋副热带高压和台风 “烟花” 的共同作用下, 大量暖湿空气由海洋输送至郑州. 然而, 与暖区暴雨中常见的对流单体后向建立和列车效应不同, 本次极端降水由单一的准静止风暴所导致, 来自郑州北侧、 南侧和东侧的低层气流在该地区辐合, 通过动力抬升促进了风暴的维持. 尺度分离结果表明, 低层北风源自于大尺度东风受到太行山阻挡形成的中尺度障碍急流, 与郑州西部中尺度低涡导致的南风达到平衡. 大尺度东风在输送对流所需的热动力不稳定空气的同时, 也有效阻止了较弱浅层冷池的向东移动. 因此, 对流风暴几乎在郑州停滞, 产生了破纪录的极端小时降水.
Similar content being viewed by others
References
Abulikemu, A., X. Xu, Y. Wang, J. F. Ding, S. S. Zhang, and W. Q. Shen, 2016: A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front. Atmospheric Research, 182, 10–19, https://doi.org/10.1016/j.atmosres.2016.07.003.
Abulikemu, A., Y. Wang, R. X. Gao, Y. Wang, and X. Xu, 2019: A numerical study of convection initiation associated with a gust front in Bohai Bay region, North China. J. Geophys. Res., 124, 13 843–13 860, https://doi.org/10.1029/2019JD030883.
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, 60 pp.
Benjamin, S. G., and Coauthors, 2004: An hourly assimilation—forecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.
Chen, G., and Coauthors, 2022: Variability of microphysical characteristics in the “21.7” henan extremely heavy rainfall event. Sci. China Earth Sci., 65, https://doi.org/10.1007/s11430-022-9972-9.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2016: Diurnal variations of the land—sea breeze and its related precipitation over South China. J. Atmos. Sci., 73, 4793–4815, https://doi.org/10.1175/JAS-D-16-0106.1.
Chen, X. C., F. Q. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the mei-yu season coastal rainfall over South China. J. Atmos. Sci., 74, 2835–2856, https://doi.org/10.1175/JAS-D-17-0081.1.
Davis, C. A., and T. J. Galarneau Jr., 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686–704, https://doi.org/10.1175/2008JAS2819.1.
Davis, C. A., and W.-C. Lee, 2012: Mesoscale analysis of heavy rainfall episodes from sowmex/timrex. J. Atmos. Sci., 69, 521–537, https://doi.org/10.1175/JAS-D-11-0120.1.
Ding, Y. H., 2015: On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment. Acta Meteorologica Sinica, 73, 411–424. (in Chinese with English abstract)
Ding, Y. H., Z. Y. Cai, and J. S. Li, 1978: A case study on the excessively severe rainstrom in Henan Province, early in August, 1975. Chinese Journal of Atmospherica Sciences, 2(4), 276–289, https://doi.org/10.3878/j.issn.1006-9895.1978.04.02. (in Chinese with English abstract)
Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.
Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543–565, https://doi.org/10.1175/MWR-D-18-0102.1.
Fu, S.-M., R.-X. Liu, and J.-H. Sun, 2018: On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci., 75, 907–925, https://doi.org/10.1175/JAS-D-17-0294.1.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627, https://doi.org/10.1175/MWR2810.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.
Hua, S. F., X. Xu, and B. J. Chen, 2020: Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. J. Geophys. Res., 125, e2019JD031731, https://doi.org/10.1029/2019JD031731.
Huang, H., G. F. Zhang, K. Zhao, and S. E. Giangrande, 2017: A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens., 55, 96–111, https://doi.org/10.1109/TGRS.2016.2596295.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the aer radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959–971, https://doi.org/10.1175/1520-0493(1998)126<0959:BJDT>2.0.CO;2.
Liu, X., Y. L. Luo, Z. Y. Guan, and D.-L. Zhang, 2018: An extreme rainfall event in coastal South China during SCM-REX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res., 123, 9256–9278, https://doi.org/10.1029/2018JD028418.
Luo, L. P., M. Xue, K. F. Zhu, and B. W. Zhou, 2018: Explicit prediction of hail in a long-lasting multicellular convective system in eastern China using multimoment microphysics schemes. J. Atmos. Sci., 75, 3115–3137, https://doi.org/10.1175/JAS-D-17-0302.1.
Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a mei-yu front in East China. Mon. Wea. Rev., 142, 203–221, https://doi.org/10.1175/MWR-D-13-00111.1.
Luo, Y. L., and Coauthors, 2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013, https://doi.org/10.1175/BAMS-D-15-00235.1.
Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115–123, https://doi.org/10.1175/1520-0477-60.2.115.
Meng, Z. Y., F. Q. Zhang, P. Markowski, D. C. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 1182–1207, https://doi.org/10.1175/JAS-D-11-0121.1.
Miranda, P. M. A., and I. N. James, 1992: Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081, https://doi.org/10.1002/qj.49711850803.
Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with super-cells and mesovortices. J. Atmos. Sci., 75, 2983–3009, https://doi.org/10.1175/JAS-D-17-0385.1.
Nielsen, E. R., and R. S. Schumacher, 2020: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159–182, https://doi.org/10.1175/MWR-D-19-0146.1.
Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the mynnedmf scheme and the coupling to other components in WRF-ARW. NOAA. Tech. Memo. OAR. GSD, 61, 37 pp.
Overland, J. E., 1984: Scale analysis of marine winds in straits and along mountainous coasts. Mon. Wea. Rev., 112, 2530–2534, https://doi.org/10.1175/1520-0493(1984)112<2530:SAOMWI>2.0.CO;2.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123, 2934–2941, https://doi.org/10.1175/1520-0493(1995)123<2934:OASAOC>2.0.CO;2.
Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos Sci, 47, 3067–3077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.
Schumacher, R. S., 2017: Heavy rainfall and flash flooding. Oxford Research Encyclopedia of Natural Hazard Science, 24, Oxford University Press, https://doi.org/10.1093/acrefore/9780199389407.013.132.
Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961–976, https://doi.org/10.1175/MWR2899.1.
Schumacher, R. S., and R. H. Johnson, 2006: Characteristics of U. S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 69–85, https://doi.org/10.1175/WAF900.1.
Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075, https://doi.org/10.1002/2013JD020686.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. No. NCAR/TN-475+STR, 113 pp, https://doi.org/10.5065/D68S4MVH. https://doi.org/10.5065/D68S4MVH.
Su, T., and G. Q. Zhai, 2017: The role of convectively generated gravity waves on convective initiation: A case study. Mon. Wea. Rev., 145, 335–359, https://doi.org/10.1175/MWR-D-16-0196.1.
Sun, J. H., Y. C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36, 1299–1307, https://doi.org/10.1007/s00376-019-9021-1.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land-surface model in the WRF model. Proc. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, US, American Meteorological Society, 11–15.
Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.
Trier, S. B., and C. A. Davis, 2002: Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Wea. Rev., 130, 877–899, https://doi.org/10.1175/1520-0493(2002)130<0877:IOB-MOH>2.0.CO;2.
Trier, S. B., C. A. Davis, and W. C. Skamarock, 2000: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 3396–3412, https://doi.org/10.1175/1520-0493(2000)128<3396:LLMVAT>2.0.CO;2.
Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 2437–2461, https://doi.org/10.1175/JAS3768.1.
Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res., 119, 13 206–13 232, https://doi.org/10.1002/2014JD022339.
Wang, Q. W., M. Xue, and Z. M. Tan, 2016: Convective initiation by topographically induced convergence forcing over the dabie mountains on 24 June 2010. Adv. Atmos. Sci., 33, 1120–1136, https://doi.org/10.1007/s00376-016-6024-z.
Wang, Q. W., Y. Zhang, K. F. Zhu, Z. M. Tan, and M. Xue, 2021: A case study of the initiation of parallel convective lines back-building from the south side of a mei-yu front over complex terrain. Adv. Atmos. Sci., 38, 717–736, https://doi.org/10.1007/s00376-020-0216-2.
Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361–382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.
Xia, R. D., and D.-L. Zhang, 2019: An observational analysis of three extreme rainfall episodes of 19–20 July 2016 along the Taihang Mountains in North China. Mon. Wea. Rev., 147, 4199–4220, https://doi.org/10.1175/MWR-D-18-0402.1.
Xu, X., M. Xue, and Y. Wang, 2015a: Mesovortices within the 8 May 2009 bow echo over the central United States: Analyses of the characteristics and evolution based on Doppler radar observations and a high-resolution model simulation. Mon. Wea. Rev., 143, 2266–2290, https://doi.org/10.1175/MWR-D-14-00234.1.
Xu, X., M. Xue, and Y. Wang, 2015b: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72, 1963–1986, https://doi.org/10.1175/JAS-D-14-0209.1.
Xu, X., M. Xue, Y. Wang, and H. Huang, 2017: Mechanisms of secondary convection within a mei-yu frontal mesoscale convective system in Eastern China. J. Geophys. Res., 122, 47–64, https://doi.org/10.1002/2016JD026017.
Yang, Y., M. Uddstrom, M. Revell, S. Moore, and R. Turner, 2017: Damaging southerly winds caused by barrier jets in the cook strait and wellington region of New Zealand. Mon. Wea. Rev., 145, 1203–1220, https://doi.org/10.1175/MWR-D-16-0159.1.
Yin, J. F., H. D. Gu, X. D. Liang, M. Yu, J. S. Sun, Y. X. Xie, F. Li, and C. Wu, 2022: A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021. Journal of Meteorological Research, 36, 6–25, https://doi.org/10.1007/s13351-022-1166-7.
Zeng, W. X., G. X. Chen, Y. Du, and Z. P. Wen, 2019: Diurnal variations of low-level winds and precipitation response to large-scale circulations during a heavy rainfall event. Mon. Wea. Rev., 147, 3981–4004, https://doi.org/10.1175/MWR-D-19-0131.1.
Zhang, D. L., Y. H. Lin, P. Zhao, X. D. Yu, S. Q. Wang, H. W. Kang, and Y. H. Ding, 2013: The Beijing extreme rainfall of 21 July 2012: “right results” but for wrong reasons. Geophys. Res. Letters, 40, 1426–1431, https://doi.org/10.1002/grl.50304.
Zhang, M., and D.-L. Zhang, 2012: Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184–201, https://doi.org/10.1175/MWR-D-11-00029.1.
Zhang, M. R., and Z. Y. Meng, 2019: Warm-sector heavy rainfall in Southern China and its WRF simulation evaluation: A low-level-jet perspective. Mon. Wea. Rev., 147, 4461–4480, https://doi.org/10.1175/MWR-D-19-0110.1.
Zhang, S. S., and Coauthors, 2020: A modeling study of an atmospheric bore associated with a nocturnal convective system over China. J. Geophys. Res., 125, e2019JD032279, https://doi.org/10.1029/2019JD032279.
Zhang, X., H. Yang, X. M. Wang, L. Shen, D. Wang, and H. Li, 2021: Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan. Transactions of Atmospheric Sciences, 44, 672–687, https://doi.org/10.13878/j.cnki.dqkxxb.20210907001.
Zhang, Y. C., J. H. Sun, and S. M. Fu, 2017: Main energy paths and energy cascade processes of the two types of persistent heavy rainfall events over the Yangtze River—Huaihe River Basin. Adv. Atmos. Sci., 34, 129–143, https://doi.org/10.1007/s00376-016-6117-8.
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou, 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations. J. Geophys. Res., 124, 2643–2664, https://doi.org/10.1029/2018JD029834.
Zhou, A., K. Zhao, W.-C. Lee, H. Huang, D. M. Hu, and P. L. Fu, 2020: VDRAS and polarimetric radar investigation of a bow echo formation after a squall line merged with a preline convective cell. J. Geophys. Res., 125, e2019JD031719, https://doi.org/10.1029/2019JD031719.
Zhu, K., C. Zhang, M. Xue, and N. Yang, 2022: Predictability and skill of convection-permitting ensemble forecast systems in predicting the record-breaking “21•7” extreme rainfall event in Henan Province, China. Science China Earth Sciences, 65, https://doi.org/10.1007/s11430-022-9961-7.
Acknowledgements
This work is jointly supported by the National Science Foundation of China (Grant No. 42122036), the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0105), the National Key R&D Programs of China (2018YFC1507300), the National Science Foundation of China (Grant No. 91837207), and the Beijing Climate Center (QHMS2021008).
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• The extreme rainfall in Zhengzhou was produced by a single quasi-stationary storm supported by converging flows from three directions.
• The northerly barrier jet which was in balance with the southerly flow of low-level mesovortex prevented the northward movement of storm.
• The eastward propagation of cold-pool outflow was prevented by low-level easterly inflow which also fed the storm with rich moisture.
This paper is a contribution to the special collection on the July 2021 Zhengzhou, Henan Extreme Rainfall Event.
Rights and permissions
About this article
Cite this article
Wei, P., Xu, X., Xue, M. et al. On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China. Adv. Atmos. Sci. 40, 337–349 (2023). https://doi.org/10.1007/s00376-022-2061-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-022-2061-y