Spatial and Temporal Characteristics of Water Use Efficiency in Typical Ecosystems on the Loess Plateau in the Last 20 Years, with Drivers and Implications for Ecological Restoration
"> Figure 1
<p>The location map of the Loess Plateau.</p> "> Figure 2
<p>(<b>a</b>) Spatial distribution of land cover types in the Loess Plateau in 2001. (<b>b</b>) Spatial distribution of land cover types in the Loess Plateau in 2020.</p> "> Figure 3
<p>Spatial and temporal variations of NDVI values in the Loess Plateau during 2001–2020: (<b>a</b>) spatial distribution of annual mean NDVI values; (<b>b</b>) distribution of spatial characteristics of NDVI variation trends; (<b>c</b>) annual mean NDVI values for different land cover types; (<b>d</b>) statistics of NDVI variation trends for different land cover types.</p> "> Figure 4
<p>Spatial distribution characteristics of WUE rates annual (<b>a</b>) spring (<b>b</b>) summer (<b>c</b>) autumn (<b>d</b>) in the Loess Plateau from 2001 to 2020.The variation pattern of the multi-year average WUE rates with the drought index rates for different vegetation types is shown in <a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>. The data are averaged over the entire Loess Plateau region. From the figure, it can be seen that the WUE rates of the different vegetation types in descending order were forest > scrub > crop > grassland, with forest areas reaching 1.72 g C mm<sup>−1</sup> H<sub>2</sub>O (<a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>a). This paper also found that the WUE rates of all vegetation types decreased with the increase in CWSI, while the response rates of the WUE for each vegetation type to the increase in CWSI were ranked as grassland > crop > forest > shrub (<a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>a). The rate of decline for the grassland WUE with the increase in CWSI was the fastest, indicating that the grassland WUE was the most sensitive to the changes in drought patterns. From the change pattern of the WUE rates with the drought index rates in different seasons, it can be seen that summer had the same response pattern as the whole-year pattern, while crop was the most sensitive to drought change responses in spring (<a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>b); forest was the most sensitive to drought change responses in autumn (<a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>d); and in both spring and autumn, grassland showed lower sensitivity to drought index changes (<a href="#remotesensing-14-05632-f005" class="html-fig">Figure 5</a>b,d).</p> "> Figure 5
<p>The distribution trend of water use efficiency and CWSI rate of different vegetation types in the Loess Plateau in the annual (<b>a</b>) spring (<b>b</b>) summer (<b>c</b>) autumn (<b>d</b>).</p> "> Figure 6
<p>Trend characteristics of WUE changes in the Loess Plateau from 2001 to 2020: (<b>a</b>) year-round; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 7
<p>Trends of WUE with CWSI values for different vegetation types in the Loess Plateau: (<b>a</b>) year-round; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 8
<p>Distribution of NDVI (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>), precipitation (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), temperature(<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>), and WUE correlation coefficients for different influences on the Loess Plateau: (<b>a</b>–<b>c</b>) annual; (<b>d</b>–<b>f</b>) spring; (<b>g</b>–<b>i</b>) summer; (<b>j</b>–<b>k</b>) autumn.</p> "> Figure 9
<p>Plots of NDVI (<b>a</b>,<b>d</b>,<b>g</b>,<b>j</b>), precipitation (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), temperature (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>), and WUE correlation coefficients with the drought index for the Loess Plateau: (<b>a</b>–<b>c</b>) annual; (<b>d</b>–<b>f</b>) spring; (<b>g</b>–<b>i</b>) summer; (<b>j</b>–<b>k</b>) autumn.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Introduction
2.2. Data Sources
2.3. Research Methods
2.3.1. Water Use Efficiency
2.3.2. Calculation of Drought Index
2.4. Analysis Method
2.4.1. Land Use Transfer Matrix
2.4.2. Trend Analysis
2.4.3. Correlation Analysis
3. Result
3.1. Vegetation Cover Changes from 2001 to 2020
3.2. Seasonal Distribution Characteristics of WUE in the Loess Plateau
3.3. Seasonal Variation Characteristics of WUE Rates in the Loess Plateau
3.4. Spatial Distribution Characteristics of WUE and NDVI Rates, Precipitation, and Temperature Correlations in the Loess Plateau
4. Discussion
4.1. Spatial Distribution Characteristics of Spatial and Temporal Variation of the WUE in the Loess Plateau Ecosystem
4.2. Relationship between WUE and Impact Factor with CWSI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keenan, T.F.; Hollinger, D.Y.; Bohrer, G.; Dragoni, D.; Munger, J.W.; Schmid, H.P.; Richardson, A.D. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 2013, 499, 324. [Google Scholar] [CrossRef] [PubMed]
- Tallec, T.; Beziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Liu, M.L.; Zhang, C.; Sun, G.; Lu, C.Q.; Xu, X.F.; Ren, W.; Pan, S.F.; Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Ma, R.X.; Wang, D.C.; Cui, X.M.; Yao, X.J.; Li, S.S.; Wang, H.S.; Liu, B.X. Distribution and Driving Force of Water Use Efficiency under Vegetation Restoration on the Loess Plateau. Remote Sens. 2022, 14, 4513. [Google Scholar] [CrossRef]
- An, Z.S.; Kukla, G.; Porter, S.C.; Xiao, J.L. Late quaternary dust flow on the chinese Loess Plateau. Catena 1991, 18, 125–132. [Google Scholar] [CrossRef]
- Yushan, L. Effects of forest on water circle on the Loess PlateauStudy on the influence of forest vegetation on the terrestrial water cycle in the Loess Plateau. J. Nat. Resour. 2001, 16, 32–37. [Google Scholar]
- Xin, Z.; Xu, J.; Huang, J. Spatial and temporal evolution of vegetation cover in response to climate in the Loess Plateau region. Adv. Nat. Sci. 2007, 17, 9. [Google Scholar]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Cao, S.; Feng, L.; Pei, T. Spatiotemporal patterns of water use efficiency in China and responses to multi-scale drought. Theor. Appl. Climatol. 2020, 140, 559–570. [Google Scholar] [CrossRef]
- Gang, C.C.; Wang, Z.Q.; Chen, Y.Z.; Yang, Y.; Li, J.L.; Cheng, J.M.; Qi, J.G.; Odeh, I. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecol. Indic. 2016, 67, 788–797. [Google Scholar] [CrossRef]
- Gang, C.C.; Zhang, Y.; Guo, L.; Gao, X.R.; Peng, S.Z.; Chen, M.X.; Wen, Z.M. Drought-Induced Carbon and Water Use Efficiency Responses in Dryland Vegetation of Northern China. Front. Plant Sci. 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing soils to achieve greater water use efficiency: A review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Hu, L.Y.; Yue, H.; Zhang, J.Y.; Li, Y.T.S.; Gong, X.Q.; Zhou, K.; Ma, F.W. Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple. J. Integr. Agric. 2022, 21, 1968–1981. [Google Scholar] [CrossRef]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Brmmer, C.; Black, T.A.; Jassal, R.S.; Grant, N.J.; Spittlehouse, D.L.; Chen, B.; Nesic, Z.; Amiro, B.D.; Arain, M.A.; Barr, A.G.; et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 2012, 153, 14–33. [Google Scholar] [CrossRef]
- Medrano, H.; Tomas, M.; Martorell, S.; Flexas, J.; Hernandez, E.; Rossello, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogee, J.; Allard, V.; et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Sheng, W.P.; Ren, S.J.; Yu, G.R.; Fang, H.J.; Jiang, C.M.; Zhang, M. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. J. Geogr. Sci. 2011, 21, 651–665. [Google Scholar] [CrossRef]
- Shi, H.; Shao, M.G. Soil and water loss from the Loess Plateau in China. J. Arid. Environ. 2000, 45, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Jiang, H.; Cheng, M.; Zhang, L.J.; Liu, J.; Yu, K.Y. Estimation of water use efficiency in the terrestrial ecosystems of the Yangtze River Delta region, China. Terr. Atmos. Ocean. Sci. 2019, 30, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.A.; Fu, B.J.; Piao, S.L.; Lu, Y.H.; Ciais, P.; Feng, X.M.; Wang, Y.F. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P.; Zhao, C.Y.; Zhang, X.X. Responses of ecosystem water use efficiency to meteorological drought under different biomes and drought magnitudes in northern China. Agric. For. Meteorol. 2019, 278, 14. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, W.; Liu, Y.; Fang, X.; Feng, Q. The relationships between grasslands and soil moisture on the Loess Plateau of China: A review. Catena 2016, 145, 56–67. [Google Scholar] [CrossRef]
- Zhao, J.X.; Xu, T.R.; Xiao, J.F.; Liu, S.M.; Mao, K.B.; Song, L.S.; Yao, Y.J.; He, X.L.; Feng, H.Z. Responses of Water Use Efficiency to Drought in Southwest China. Remote Sens. 2020, 12, 199. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.J.; Jia, X.X.; Shao, M.A. Loess Thickness Variations across the Loess Plateau of China. Surv. Geophys. 2018, 39, 715–727. [Google Scholar] [CrossRef]
- Rui, G.; Li, F.; He, W.; Yang, S.; Sun, G. Spatial and Temporal Variability of Annual Precipitation during 1958–2007 in Loess Plateau, China. In Proceedings of the Computer & Computing Technologies in Agriculture Iv-ifip Tc 12 Conference, Nanchang, China, 22–25 October 2010. [Google Scholar]
- Jia, X.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Kumari, S.; Nie, J.; Chen, H.S.; Ma, H.; Stewart, R.; Li, X.; Lu, M.Z.; Taylor, W.M.; Wei, H. Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery. PLoS ONE 2012, 7, e50411. [Google Scholar] [CrossRef]
- Feng, W.L.; Zhu, Q.Y.; Zhuang, J.; Yu, S.M. An expert recommendation algorithm based on Pearson correlation coefficient and FP-growth. Cluster Comput. 2019, 22, S7401–S7412. [Google Scholar] [CrossRef]
- Hou, Q.Q.; Pei, T.T.; Yu, X.J.; Chen, Y.; Ji, Z.X.; Xie, B.P. The seasonal response of vegetation water use efficiency to temperature and precipitation in the Loess Plateau, China. Glob. Ecol. Conserv. 2022, 33, 13. [Google Scholar] [CrossRef]
- Hu, Z.M.; Yu, G.R.; Fu, Y.L.; Sun, X.M.; Li, Y.N.; Shi, P.L.; Wangw, Y.F.; Zheng, Z.M. Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob. Chang. Biol. 2008, 14, 1609–1619. [Google Scholar] [CrossRef]
- Kacira, M.; Ling, P.P.; Short, T.H. Establishing crop water stress index (CWSI) threshold values for early, non-contact detection of plant water stress. Trans. ASAE 2002, 45, 775–780. [Google Scholar] [CrossRef]
- Kang, S.Z.; Zhang, L.; Liang, Y.L.; Hu, X.T.; Cai, H.J.; Gu, B.J. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Liang, Z.S.; Yang, H.W.; Shao, H.B.; Han, R.L. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau. Colloid Surf. B-Biointerfaces 2006, 53, 23–28. [Google Scholar] [CrossRef]
- Liu, F.; Qin, T.L.; Girma, A.; Wang, H.; Weng, B.S.; Yu, Z.L.; Wang, Z.L. Dynamics of Land-Use and Vegetation Change Using NDVI and Transfer Matrix: A Case Study of the Huaihe River Basin. Pol. J. Environ. Stud. 2019, 28, 213–223. [Google Scholar] [CrossRef]
- Ma, J.Y.; Jia, X.; Zha, T.S.; Bourque, C.P.A.; Tian, Y.; Bai, Y.J.; Liu, P.; Yang, R.Z.; Li, C.; Li, C.Y.; et al. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agric. For. Meteorol. 2019, 275, 1–10. [Google Scholar] [CrossRef]
- Pei, T.T.; Hou, Q.Q.; Chen, Y.; Ji, Z.X.; Wu, H.W.; Xie, B.P.; Qi, P.X.; Zhang, J.X. Vegetation in Arid Areas of the Loess Plateau Showed More Sensitivity of Water-Use Efficiency to Seasonal Drought. Forests 2022, 13, 634. [Google Scholar] [CrossRef]
- Peng, H.X.; Wang, S.L.; Wang, X.Q. Consistency and asymptotic distribution of the Theil-Sen estimator. J. Stat. Plan. Infer. 2008, 138, 1836–1850. [Google Scholar] [CrossRef]
- Xiao, L.G.; Ding, M.L.; Wei, C.; Zhu, R.M.; Zhao, R.Q. The Impacts of Conservation Agriculture on Water Use and Crop Production on the Loess Plateau: From Know-What to Know-Why. Sustainability 2020, 12, 7449. [Google Scholar] [CrossRef]
- Zhang, S.L.; Sadras, V.; Chen, X.P.; Zhang, F.S. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crop. Res. 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, H.; Zhou, W.J.; Bao, H.; Zhu, X.J.; Jin, Z.; Song, Y.; Wang, Y.Q.; Liu, W.Z.; Tang, Y.K. Revegetation has increased ecosystem water-use efficiency during 2000–2014 in the Chinese Loess Plateau: Evidence from satellite data. Ecol. Indic. 2019, 102, 507–518. [Google Scholar] [CrossRef]
- Zheng, H.; Lin, H.; Zhu, X.J.; Jin, Z.; Bao, H. Divergent spatial responses of plant and ecosystem water-use efficiency to climate and vegetation gradients in the Chinese Loess Plateau. Glob. Planet. Chang. 2019, 181, 11. [Google Scholar] [CrossRef]
Product Model | Surface Parameters | Time Resolution | Spatial Resolution |
---|---|---|---|
PMLV2v0.1.7 | GPP | 8 day | 500 m |
PMLV2v0.1.7 | ET | 8 day | 500 m |
MOD13A2 | NDVI | 16 day | 500 m |
GLC_FC30 | LUCC | 1 year | 30 m |
Year | Land Cover Type | |||
---|---|---|---|---|
Forest | Shrub | Grassland | Crop | |
2001 | 12.07% | 0.59% | 49.12% | 31.73% |
2005 | 12.41% | 0.55% | 50.50% | 30.27% |
2010 | 13.05% | 0.38% | 51.21% | 29.28% |
2015 | 13.58% | 0.37% | 51.12% | 28.69% |
2020 | 14.28% | 0.32% | 50.24% | 28.83% |
Correlation | NDVI | Precipitation | Temperature |
---|---|---|---|
Annual | 0.71 | 0.28 | 0.36 |
Spring | 0.23 | −0.43 | 0.43 |
Summer | 0.46 | 0.32 | −0.16 |
Autumn | 0.28 | −0.46 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Cui, X.; Wang, D.; Wang, S.; Wang, H.; Yao, X.; Li, S. Spatial and Temporal Characteristics of Water Use Efficiency in Typical Ecosystems on the Loess Plateau in the Last 20 Years, with Drivers and Implications for Ecological Restoration. Remote Sens. 2022, 14, 5632. https://doi.org/10.3390/rs14225632
Ma R, Cui X, Wang D, Wang S, Wang H, Yao X, Li S. Spatial and Temporal Characteristics of Water Use Efficiency in Typical Ecosystems on the Loess Plateau in the Last 20 Years, with Drivers and Implications for Ecological Restoration. Remote Sensing. 2022; 14(22):5632. https://doi.org/10.3390/rs14225632
Chicago/Turabian StyleMa, Ruixue, Ximin Cui, Dacheng Wang, Shudong Wang, Hongsen Wang, Xiaojing Yao, and Shenshen Li. 2022. "Spatial and Temporal Characteristics of Water Use Efficiency in Typical Ecosystems on the Loess Plateau in the Last 20 Years, with Drivers and Implications for Ecological Restoration" Remote Sensing 14, no. 22: 5632. https://doi.org/10.3390/rs14225632
APA StyleMa, R., Cui, X., Wang, D., Wang, S., Wang, H., Yao, X., & Li, S. (2022). Spatial and Temporal Characteristics of Water Use Efficiency in Typical Ecosystems on the Loess Plateau in the Last 20 Years, with Drivers and Implications for Ecological Restoration. Remote Sensing, 14(22), 5632. https://doi.org/10.3390/rs14225632