Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data
<p>Location map of Pea Island study site and assessment units (areas of interest).</p> "> Figure 2
<p>Example of the hyperspectral imagery (<b>A</b>), digital elevation model (<b>B</b>), canopy height model (<b>C</b>), normalized difference vegetation index (<b>D</b>), vegetation density (<b>E</b>), and leaf area index (<b>F</b>) within the Pea Island South assessment area.</p> "> Figure 3
<p>Means and trends of digital elevation model (<b>A</b>), canopy height model (<b>B</b>), normalized difference vegetation index (<b>C</b>), and leaf area index (<b>D</b>) within Pea Island assessment units from 2016 to 2019.</p> "> Figure 4
<p>Elevation and normalized difference vegetation index regression (per-pixel rate of change from 2016 to 2019) within the Pea Island North (<b>A</b>,<b>C</b>) and Pea Island South (<b>B</b>,<b>D</b>) assessment units.</p> "> Figure 5
<p>Multi-metric (canopy height, leaf area, and normalized difference vegetation index) vegetation analysis using Getis–Ord Gi* statistics within the Pea Island North (<b>A</b>) and South (<b>B</b>) assessment units. Colors represent areas of statistically significantly high levels of decreasing (orange to red) and increasing (light to dark blue) vegetation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Metric Extraction
2.2.1. Airborne Hyperspectral Imagery and LiDAR Data
2.2.2. Dune Vegetation Metric Extraction
2.2.3. Vegetation Metric: Normalized Difference Vegetation Index (NDVI)
2.2.4. Vegetation Metric: Density Estimation (Vegetation Cover)
2.2.5. Vegetation Metric: Leaf Area Index (LAI)
2.2.6. Vegetation Metric: Canopy Height Model
2.2.7. Vegetation Metric: Statistical Analysis
2.3. Pilot Study: Multi-Temporal Trend Analysis
Storm Impacts
3. Results
3.1. DuneVeg Toolbox
3.1.1. Dune Vegetation Metric Products
3.1.2. Elevation and Vegetation Metric Accuracy Assessments
3.1.3. Vegetation Metric Summary Statistics
3.2. Multi-Temporal Trend Analysis
3.2.1. Elevation and Vegetation Metrics
3.2.2. Hot Spot Analysis: Vegetation Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charbonneau, B.R.; Wnek, J.P.; Langley, J.A.; Lee, G.; Balsamo, R.A. Above vs. belowground plant biomass along a barrier island: Implications for dune stabilization. J. Environ. Manag. 2016, 182, 126–133. [Google Scholar] [CrossRef]
- Michener, W.K.; Blood, E.R.; Bildstein, K.L.; Brinson, M.M.; Gardner, L.R. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol. Appl. 1997, 7, 770–801. [Google Scholar] [CrossRef]
- Robin, N.; Billy, J.; Castelle, B.; Hesp, P.; Nicolae Lerma, A.; Laporte-Fauret, Q.; Marieu, V.; Rosebery, D.; Bujan, S.; Destribats, B.; et al. 150 Years of foredune initiation and evolution driven by human and natural processes. Geomorphology 2021, 374, 107516. [Google Scholar] [CrossRef]
- U.S. Army Corps of Engineers (USACE). Hurricane Sandy Coastal Projects Performance Evaluation Study: Disaster Relief Appropriations Act 2013; U.S. Army Corps of Engineers, Report submitted to Congress by the Assistant Secretary of the Arm for Civil Works; American Shore and Beach Preservation Association: Redondo Beach, CA, USA, 2013; p. 106. [Google Scholar]
- Wigand, C.; Ardito, T.; Chaffee, C.; Ferguson, W.; Paton, S.; Raposa, K.; Vandemoer, C.; Watson, E. A climate change adaptation strategy for management of coastal marsh systems. Estuaries Coasts 2017, 40, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Sigren, J.M.; Figlus, J.; Armitage, A.R. Coastal sand dunes and dune vegetation: Restoration, erosion, and storm protection. Shore Beach 2014, 82, 5–12. [Google Scholar]
- Suir, G.M.; Sasser, C.E.; Harris, J.M. Use of Remote Sensing and Field Data to Quantify the Performance and Resilience of Restored Louisiana Wetlands. Wetlands 2020, 40, 2643–2658. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of coastal wetland biomass: An overview. J. Coast. Res. 2013, 29, 1016–1028. [Google Scholar] [CrossRef]
- Davies, J.L. Geographical Variation in Coastal Development, 2nd ed.; Longman: London, UK, 1980; p. 212. [Google Scholar]
- Board, O.S. Understanding the Long-Term Evolution of the Coupled Natural-Human Coastal System: The Future of the US Gulf Coast; National Academies Press: Washington, DC, USA, 2018; p. 156. [Google Scholar] [CrossRef]
- Suir, G.M.; Sasser, C.E. Redistribution and impacts of nearshore berm sediments on the Chandeleur barrier islands, Louisiana. Ocean. Coast. Manag. 2019, 168, 103–116. [Google Scholar] [CrossRef]
- Anderson, M.E.; Smith, J.M.; Bryant, D.B.; McComas, R.W. Laboratory Studies of Wave Attenuation through Artificial and Real Vegetation; ERDC TR-13-11; U.S. Army Corps of Engineers: Washington, DC, USA, 2013; p. 93. [Google Scholar]
- Shuman, C.S.; Ambrose, R.F. A comparison of remote sensing and ground-based methods for monitoring wetland restoration success. Restor. Ecol. 2003, 11, 325–333. [Google Scholar] [CrossRef]
- Rosette, J.; Suárez, J.; Nelson, R.; Los, S.; Cook, B.; North, P. Lidar remote sensing for biomass assessment. In Remote Sensing of Biomass-Principles and Applications; Fatoyinbo, T., Ed.; InTech: Rijeka, Croatia, 2012; p. 322. [Google Scholar]
- Deo, R.K.; Russell, M.B.; Domke, G.M.; Woodall, C.W.; Falkowski, M.J.; Cohen, W.B. Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in northern Minnesota, USA. Can. J. Remote Sens. 2017, 43, 28–47. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Yu, H.; Li, F. Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data. Remote Sens. 2017, 9, 589. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Qian, M.; Peng, D.; Nie, S.; Qin, H.; Lin, Y. Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 107–117. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [Google Scholar] [CrossRef]
- Jaber, R.; Florence, M.; Brilli, N.; Paprocki, J.; Popelka, J.; Stark, N. Geotechnical Investigation of the Intertidal Zone in Duck, North Carolina, during Tropical Storm Melissa and DUNEX. In Proceedings of the American Geophysical Union Meeting on Ocean Sciences, San Diego, CA, USA, 16–21 February 2020. [Google Scholar]
- Bork, B.W.; West, N.E.; Price, K.P. Calibration of broad- and narrow-band spectral variables for rangeland cover component quantification. Int. J. Remote Sens. 1999, 20, 3641–3662. [Google Scholar] [CrossRef]
- Cialone, M.; Elko, N.; Lillycrop, J.; Stockdon, H.; Raubenheimer, B.; Rosati, J. During Nearshore Event Experiment (DUNEX): A Collaborative Community Field Data Collection Effort. In Proceedings of the 9th International Conference on Coastal Sediments, Tampa, FL, USA, 27–31 May 2019; pp. 2958–2966. [Google Scholar] [CrossRef]
- Rey, A.J.; Mulligan, R.P. Influence of Hurricane Wind Field Variability on Real-time Forecast Simulations of the Coastal Environment. J. Geophys. Res. Ocean. 2021, 126, e2020JC016489. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). National Weather Service Event Summaries and Case Studies: Newort/Morehead City, North Carolina. Available online: https://www.weather.gov/mhx/SignificantEvents (accessed on 21 May 2021).
- Kiln, M.S.; U.S. Army Corps of Engineers (USACE). Joint Airborne LiDAR Bathymetry Technical Center of Expertise (JALBTCX). 2020. Available online: www.sam.usace.army.mil/Missions/Spatial-Data-Branch/JALBTCX (accessed on 16 March 2020).
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing, 3rd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Burlington, MA, USA, 2007; p. 515. [Google Scholar]
- Park, J.Y.; Tuell, G. Conceptual design of the CZMIL data processing system (DPS): Algorithms and software for fusing lidar, hyperspectral data, and digital images. In Proceedings of the Society of Photo-optical Instrumentation Engineers Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, 769510, Orlando, FL, USA, 5–9 April 2010. [Google Scholar] [CrossRef]
- Wozencraft, J.; Dunkin, L.; Eisemann, E.; Reif, M. Chapter 7: Applications, Ancillary Systems, and Fusion. In Airborne Laser Hydrography II; Philpot, W., Ed.; eCommons: Ithaca, NY, USA, 2019; pp. 207–230. [Google Scholar]
- Reif, M.K.; Krumwiede, B.S.; Brown, S.E.; Theuerkauf, E.J.; Harwood, J.H. Nearshore Benthic Mapping in the Great Lakes: A Multi-Agency Data Integration Approach in Southwest Lake Michigan. Remote Sens. 2021, 13, 3026. [Google Scholar] [CrossRef]
- Wozencraft, J.M.; Lillycrop, W.J. JALBTCX coastal mapping for the USACE. Int. Hydrogr. Rev. 2006, 7, 28–37. [Google Scholar]
- Malone, K.; Williams, H. Growing Season Definition and Use in Wetland Delineation; ERDC/CRREL CR-10-3; U.S. Army Corps of Engineers: Washington, DC, USA, 2010; p. 48. [Google Scholar]
- Jackson, S.S.; Saltus, C.L.; Reif, M.K.; Suir, G.M. During Nearshore Event Vegetation Gradation (DUNEVEG): Geospatial Tools for Automating Remote Vegetation Extraction; ERDC/EL SR-23-X; U.S. Army Corps of Engineers, Engineer Research and Development Center: Washington, DC, USA, 2023; Special Report; in press. [Google Scholar]
- Suir, G.M.; Sasser, C.E. Use of NDVI and landscape metrics to assess effects of riverine inputs on wetland productivity and stability. Wetlands 2019, 39, 815–830. [Google Scholar] [CrossRef]
- Suir, G.M.; Saltus, C.L.; Reif, M.K. Geospatial Assessments of Phragmites australis Die-Off in South Louisiana: Preliminary Findings; ERDC/EL TR-18-9; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2018. [Google Scholar]
- Weier, J.; Herring, D. Measuring Vegetation: NDVI and EVI. NASA Earth Observatory. 2000. Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php (accessed on 15 March 2023).
- Lan, Y.; Zhang, H.; Lacey, R.; Hoffmann, W.C.; Wu, W. Development of an integrated sensor and instrumentation system for measuring crop conditions. Agric. Eng. J. 2009, 11, 11–15. [Google Scholar]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, J.; Zhao, C.; Liu Tong, S. The spatial continuity study of NDVI based on Kriging and BPNN algorithm. J. Math. Comput. Model. 2011, 54, 1138–1144. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 5th ed.; John Wiley and Sons: New York, NY, USA, 2004; p. 763. [Google Scholar]
- Moreau, S.; Bossenob, R.; Xing, F.G.; Baret, F. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sens. Environ. 2003, 85, 516–529. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S. Leaf area index models. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 2139–2148. [Google Scholar] [CrossRef]
- O’Connell, J.L.; Byrd, K.B.; Kelly, M. A Hybrid Model for Mapping Relative Differences in Belowground Biomass and Root:Shoot Ratios Using Spectral Reflectance, Foliar N and Plant Biophysical Data within Coastal Marsh. Remote Sens. J. 2015, 7, 16480–16503. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R.; Justice, C.; van Leeuwen, W. MODIS Vegetation Index (MOD13): Algorithm Theoretical Basis Document; University of Arizona, Vegetation Index and Phenology Lab: Tucson, AZ, USA, 1999; Volume 3, pp. 295–309. [Google Scholar]
- Gremillion, S.; Wallace, D.; Eisemann, E.; Culver-Miller, E.; Funderburk, W. Washover Volume Analysis of Hatteras and Pea Islands, North Carolina, USA over Centennial Timescales. Authorea Prepr. 2022. [Google Scholar] [CrossRef]
- ASPRS. ASPRS Accuracy Standards for Digital Geospatial Data. 2015. Available online: http://www.asprs.org/a/society/divisions/pad/Accuracy/Draft_ASPRS_Accuracy_Standards_for_Digital_Geospatial_Data_PE&RS.pdf (accessed on 16 July 2022).
- Doran, K.J.; Sallenger, A.H.; Reynolds, B.J.; Wright, C. Accuracy of EAARL Lidar Ground Elevations Using a Bare-Earth Algorithm in Marsh and Beach Grasses on the Chandeleur Islands, Louisiana; U.S. Geological Survey OpenFile Report 2010–1163; USGS Science for a Changing World: Washington, DC, USA, 2010; 9p. [Google Scholar]
- Wang, C.; Menenti, M.; Stoll, M.P.; Feola, A.; Belluco, E.; Marani, M. Separation of Ground and Low Vegetation Signatures in LiDAR Measurements of Salt-Marsh Environments. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2014–2023. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Populus, J.; Barreau, G.; Fazilleau, J.; Kerdreux, M.; L’Yavanc, J. Assessment of the LIDAR topographic technique over a coastal area. In Proceedings of the CoastGIS’01: 4th International Symposium on GIS and Computer Mapping for Coastal Zone Management, Halifax, NS, Canada, 18–20 June 2001. [Google Scholar]
- Rau, G.; Shih, Y.S. Evaluation of Cohen’s kappa and other measures of inter-rater agreement for genre analysis and other nominal data. J. Engl. Acad. Purp. 2021, 53, 101026. [Google Scholar] [CrossRef]
- Wang, P.; Briggs, T.M.R. 2015. Storm-Induced morphology changes along barrier islands and poststorm recovery. In Coastal and Marine Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 271–306. [Google Scholar]
- De Jager, N.R.; Fox, T.J. Curve Fit: A pixel-level raster regression tool for mapping spatial patterns. Methods Ecol. Evol. 2013, 4, 789–792. [Google Scholar] [CrossRef]
- Office for Coastal Management. NOAA’s Coastal Change Analysis Program (C-CAP) 2016 Regional Land Cover Data—Coastal United States from 2010-06-15 to 2010-08-15. NOAA National Centers for Environmental Information. 2022. Available online: https://www.fisheries.noaa.gov/inport/item/48336 (accessed on 15 March 2023).
- Meredith, A.W.; Krabill, W.B.; List, J.H.; Reiss, T.E.; Frederick, E.B. An Assessment of NASA’s Airborne Topographic Mapper Instrument for Beach Topographic Mapping at Duck, North Carolina; Coastal Services Center Technical Report CSC/9-98/001 Version 1.0; National Oceanic and Atmospheric Administration, Coastal Services Center: Charleston, SC, USA, 1998. [Google Scholar]
- Schmid, K.A.; Hadley, B.C.; Wijekoon, N. Vertical accuracy and use of topographic LIDAR data in coastal marshes. J. Coast. Res. 2011, 27, 116–132. [Google Scholar] [CrossRef]
- Suir, G.M.; Saltus, C.L.; Reif, M.K. Remote sensing-based structural and functional assessments of Phragmites australis diebacks in the Mississippi River Delta. Ecol. Indic. 2022, 135, 108549. [Google Scholar] [CrossRef]
- Walters, D.C.; Kirwan, M.L. Optimal hurricane overwash thickness for maximizing marsh resilience to sea level rise. Ecol. Evol. 2016, 6, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Bryant, M.A.; Wamsley, T.V. Wetland buffers: Numerical modeling of wave dissipation by vegetation. Earth Surf. Process. Landf. 2016, 41, 847–854. [Google Scholar] [CrossRef]
- Judah, A.; Hu, B. An Advanced Data Fusion Method to Improve Wetland Classification Using Multi-Source Remotely Sensed Data. Sensors 2022, 22, 8942. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, S.; Bacher, R. A comprehensive review of hyperspectral data fusion with lidar and sar data. Annu. Rev. Control. 2021, 51, 236–253. [Google Scholar] [CrossRef]
Data Type | Collection Date | Location | Purpose |
---|---|---|---|
Hyperspectral (1 m), LiDAR (1 m), RGB (5 cm) | 22 November 2016 | Pea Island, NC, USA | Post-hurricane Matthew |
Hyperspectral (1 m), LiDAR (1 m), RGB (5 cm) | 15 October 2018 | Pea Island, NC, USA | Post-hurricane Florence |
Hyperspectral (1 m), LiDAR (1 m), RGB (5 cm) | 1 October 2019 | DUNEX Extent | DUNEX |
Metric | NCMP Data Product | NCMP Collection Year |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | HSI | 2016, 2018, 2019 |
Vegetation Cover (VC) | HSI | 2016, 2018, 2019 |
Leaf Area Index (LAI) | HSI | 2016, 2018, 2019 |
Digital Elevation Model (DEM) | LiDAR | 2016, 2018, 2019 |
Digital Surface Model (DSM) | LiDAR | 2016, 2018, 2019 |
Canopy Height Model (CHM) | LiDAR | 2016, 2018, 2019 |
Hurricane | Date (Landfall) | Wind Speed (Landfall) | Maximum Surge |
---|---|---|---|
Hermine | 3 September 2016 | 20.6 ms−1 | 1.06 m |
Matthew | 9 October 2016 | 21.9 ms−1 | 1.09 m |
Florence | 14 September 2018 | 11.6 ms−1 | 0.90 m |
Michael | 12 October 2018 | 23.2 ms−1 | 1.65 m |
Dorian | 6 September 2019 | 20.1 ms−1 | 1.33 m |
Observed | ||||||
---|---|---|---|---|---|---|
HIS Derived | Class | Sparse | Moderate | Dense | Total | User’s acc. |
Sparse | 58 | 4 | 1 | 63 | 0.92 | |
Moderate | 2 | 51 | 4 | 57 | 0.89 | |
Dense | 0 | 5 | 55 | 60 | 0.92 | |
Total | 60 | 60 | 60 | 180 | 0.00 | |
Producer’s acc. | 0.97 | 0.85 | 0.92 | 0.00 | 0.87 |
Location | Overwash | Date | Total Area | Veg Cover | Elevation (m) | CHM (m) | NDVI | LAI (m2/m2) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Km2 | Percent | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |||
North | Low | 2016 | 0.47 | 10.52 | 3.91 | 2.09 | 0.77 | 1.21 | 0.52 | 0.18 | 5.07 | 3.61 |
North | Low | 2018 | 0.47 | 57.36 | 3.85 | 2.09 | 0.23 | 0.61 | 0.37 | 0.16 | 2.94 | 1.49 |
North | Low | 2019 | 0.47 | 22.03 | 3.84 | 2.14 | 0.42 | 1.03 | 0.45 | 0.23 | 3.08 | 1.72 |
South | Moderate | 2016 | 0.27 | 10.61 | 4.68 | 2.16 | 0.28 | 0.45 | 0.45 | 0.15 | 4.15 | 2.32 |
South | Moderate | 2018 | 0.27 | 48.29 | 4.66 | 2.19 | 0.17 | 0.29 | 0.39 | 0.14 | 2.94 | 1.50 |
South | Moderate | 2019 | 0.27 | 23.29 | 4.69 | 2.26 | 0.12 | 0.36 | 0.38 | 0.18 | 2.53 | 1.25 |
Cluster Type | CHM | LAI | NDVI | Multi-Metric | Gi* Bin | Z-Score | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Number | Area (ha) | Number | Area (ha) | Number | Area (ha) | Number | Area (ha) | (Single, Combined) | |||
Hot Spot | 251 | 2.51 | 149 | 1.49 | 274 | 2.74 | 13 | 0.13 | (−3, −7–−9) | −4.97 | p < 0.001 |
Hot Spot | 128 | 1.28 | 74 | 0.74 | 128 | 1.28 | 141 | 1.41 | (−2,− 4–−6) | −2.27 | p < 0.01 |
Hot Spot | 97 | 0.97 | 62 | 0.62 | 119 | 1.19 | 778 | 7.78 | (−1, −1–−3) | −1.81 | p < 0.05 |
Not Significant | 7167 | 71.67 | 7554 | 75.54 | 6629 | 66.29 | 6152 | 61.52 | (0, 0, 0) | 0.02 | |
Cold Spot | 35 | 0.35 | 17 | 0.17 | 157 | 1.57 | 704 | 7.04 | (1, 1–3) | 1.81 | p < 0.05 |
Cold Spot | 53 | 0.53 | 39 | 0.39 | 191 | 1.91 | 140 | 1.40 | (2, 4–6) | 2.26 | p < 0.01 |
Cold Spot | 205 | 2.05 | 41 | 0.41 | 438 | 4.38 | 8 | 0.08 | (3, 7–9) | 5.73 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suir, G.M.; Jackson, S.; Saltus, C.; Reif, M. Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data. Remote Sens. 2023, 15, 2098. https://doi.org/10.3390/rs15082098
Suir GM, Jackson S, Saltus C, Reif M. Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data. Remote Sensing. 2023; 15(8):2098. https://doi.org/10.3390/rs15082098
Chicago/Turabian StyleSuir, Glenn M., Sam Jackson, Christina Saltus, and Molly Reif. 2023. "Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data" Remote Sensing 15, no. 8: 2098. https://doi.org/10.3390/rs15082098
APA StyleSuir, G. M., Jackson, S., Saltus, C., & Reif, M. (2023). Multi-Temporal Trend Analysis of Coastal Vegetation Using Metrics Derived from Hyperspectral and LiDAR Data. Remote Sensing, 15(8), 2098. https://doi.org/10.3390/rs15082098