An Improved Altimeter in-Orbit Range Noise-Level Estimation Approach Based on Along-Track Differential Method
<p>Simulation result of experiment 1: (<b>a</b>) the white Gaussian noise (blue curve) and linear fitting results (colored lines); (<b>b</b>) the estimated noise level results under different segment durations.</p> "> Figure 2
<p>Simulation result of experiment 2: (<b>a</b>) the raw SLA extracted form Sentinel-6 (blue curve) and composite low-frequency signal obtained by Butterworth low-pass filtering (red curve); (<b>b</b>) the differential data (blue curve) and linear fitting results when the segment duration is 20 s (red curve).</p> "> Figure 3
<p>The changes in the estimated noise level (NL) with the segment duration using the non-differential method (NDM, blue curve) and differential method (DM, red curve). The small window on the right shows the detailed image of NDM within 6–20 s.</p> "> Figure 4
<p>The data processing flow for estimating the noise level of the satellite altimeter.</p> "> Figure 5
<p>The two-dimensional statistical histograms of the estimated NL and SWH for differential method (<b>a</b>,<b>c</b>) and nondifferential method (<b>b</b>,<b>d</b>) when the segment durations were 1 s (<b>a</b>,<b>b</b>) and 30 s (<b>c</b>,<b>d</b>). The red curves represent the statistical medians.</p> "> Figure 6
<p>The statistical relationships between the NL estimated using (<b>a</b>) differential and (<b>b</b>) nondifferential methods and the segment duration with an SWH of 2–5 m.</p> "> Figure 7
<p>The median curves of different segment durations calculated using the differential method. The black dashed line represents the linear fitting result when the segment duration was 50 s.</p> "> Figure 8
<p>The NL of Sentinel-6 in HR (<b>a</b>,<b>b</b>) and LR (<b>c</b>,<b>d</b>) modes estimated using (<b>a</b>,<b>c</b>) nondifferential and (<b>b</b>,<b>d</b>) differential methods in relation with the segment duration with an SWH of 2–5 m.</p> "> Figure 9
<p>The statistical analysis results of SWH and its changes in the Sentinel-6 dataset: (<b>a</b>) the histograms of SWH in LR mode and HR mode; (<b>b</b>) the STD of SWH under different segment durations. The two thick curves stand for the mean values, and the vertical thin line bars indicate the <math display="inline"><semantics> <mrow> <mn>3</mn> <mi>σ</mi> </mrow> </semantics></math> confidence intervals.</p> "> Figure 10
<p>The average PSD with the SWH of 2–5 m in (<b>a</b>) LR mode and (<b>b</b>) HR mode. In each figure, Diff = 0 represents the PSD result of the nondifferential method, and Diff = 1 represents the PSD result of the differential method. The vertical axis is the power spectrum density, the bottom horizontal axis is the signal frequency, and the top horizontal axis is the wavenumber.</p> "> Figure 11
<p>The enlarged average PSD with the frequency range of 1–10 Hz in (<b>a</b>) LR and (<b>b</b>) HR modes. The legend is the same as in <a href="#remotesensing-14-06250-f010" class="html-fig">Figure 10</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Principle of Along-Track Differential Method to Estimate Noise Level
2.2. Monte Carlo Simulation to Verify the Along-Track Differential Method
2.2.1. Simulation Experiment 1
2.2.2. Simulation Experiment 2
2.3. The Datasets and Edit Criteria of Jason-3 and Sentinel-6 Altimeters
3. Results
3.1. Jason-3 Noise-Level Estimation Based on Raw SSH Measurements
3.2. Sentinel-6 Noise-Level Estimation Based on LR/HR SLA Measurements
3.3. PSD Analysis of Sentinel-6 SLA Data and Noise-Level Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phalippou, L.; Enjolras, V. Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 3533–3536. [Google Scholar]
- Garcia, E.S.; Sandwell, D.T.; Smith, W.H.F. Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophys. J. Int. 2013, 196, 1402–1422. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Lázaro, C.; Nunes, A.L.; Scharroo, R. Atmospheric corrections for altimetry studies over inland water. Remote Sens. 2014, 6, 4952–4997. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Vandemark, D.; Chapron, B.; Labroue, S.; Feng, H.; Beckley, B.; Vincent, P. New models for satellite altimeter sea state bias correction developed using global wave model data. J. Geophys. Res. Oceans 2006, 111, C09009. [Google Scholar] [CrossRef]
- Tourain, C.; Piras, F.; Ollivier, A.; Hauser, D.; Poisson, J.C.; Boy, F.; Thibaut, P.; Hermozo, L.; Tison, C. Benefits of the adaptive algorithm for retracking altimeter nadir echoes: Results from simulations and CFOSAT/SWIM observations. IEEE Trans. Geosci. Remote Sens. 2021, 9, 9927–9940. [Google Scholar] [CrossRef]
- Halimi, A.; Mailhes, C.; Tourneret, J.; Thibaut, P.; Boy, F. A semi-analytical model for Delay/Doppler altimetry and its estimation algorithm. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4248–4258. [Google Scholar] [CrossRef] [Green Version]
- Halimi, A.; Mailhes, C.; Tourneret, J. Cramér-Rao bounds and estimation algorithms for delay/Doppler and conventional altimetry. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Sailor, R.V.; Driscoll, M.L. Comparison of noise models and resolution capabilities for satellite radar altimeters. In Proceedings of the OCEANS 92 Proceedings@m_Mastering the Oceans Through Technology, Newport, RI, USA, 26–29 October 1992; pp. 249–253. [Google Scholar]
- Jensen, J.R. On-orbit performance validation plan for the Geosat Follow-on radar altimeter. In Proceedings of the 1995 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Firenze, Italy, 10–14 July 1995; pp. 54–56. [Google Scholar]
- Brammer, R.F.; Sailor, R.V. Preliminary estimates of the resolution capability of the Seasat radar altimeter. Geophys. Res. Lett. 1980, 7, 193–196. [Google Scholar] [CrossRef]
- Dionisio, C.; Levrini, G.; Zelli, C. ERS-1 radar altimeter in-flight performance. In Proceedings of the 1993 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Tokyo, Japan, 18–21 August 1993; pp. 1756–1758. [Google Scholar]
- Le Traon, P.Y.; Stum, J.; Dorandeu, J.; Gaspar, P.; Vincent, P. Global statistical analysis of TOPEX and POSEIDON data. J. Geophys. Res. Oceans 1994, 99, 24619–24631. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.M.; Marple, S.L. Spectrum analysis—A modern perspective. Proc. IEEE 1981, 69, 1380–1419. [Google Scholar] [CrossRef]
- Zanife, O.Z.; Thibaut, P.; Vincent, P.; Bonhoutre, B.; Thouvenot, E.; Dorandeu, J.; Le Traon, P.Y.; Picot, N.; Escudier, P.; Cugny, B.; et al. Performance of POSEIDON-1 radar altimeter. In Proceedings of the 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 9–13 July 2001; pp. 3309–3313. [Google Scholar]
- Fu, L.L.; Christensen, E.J.; Yamarone, C.A.; Lefebvre, M.; Menard, Y.; Dorrer, M.; Escudier, P. TOPEX/POSEIDON mission overview. J. Geophys. Res. 1994, 99, 24369–24381. [Google Scholar] [CrossRef]
- Zanifé, O.Z.; Vincent, P.; Amarouche, L.; Dumont, J.P.; Thibaut, P.; Labroue, S. Comparison of the Ku-band range noise level and the relative sea-state bias of the Jason-1, TOPEX and POSEIDON-1 radar altimeters. Mar. Geod. 2003, 26, 201–238. [Google Scholar] [CrossRef]
- Tran, N.; Vandemark, D.; Zaron, E.D.; Thibaut, P.; Dibarboure, G.; Picot, N. Assessing the effects of sea-state related errors on the precision of high-rate Jason-3 altimeter sea level data. Adv. Space Res. 2021, 68, 963–977. [Google Scholar] [CrossRef]
- Walsh, E.J. Pulse-to-pulse correlation in satellite radar altimeters. Radio Sci. 1982, 17, 786–800. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J.M. Correlation properties of ocean altimeter returns. IEEE Trans. Geosci. Remote Sens. 1994, 32, 553–561. [Google Scholar] [CrossRef]
- Quartly, G.D.; Srokosz, M.A. Analyzing altimeter artifacts: Statistical properties of ocean waveforms. J. Atmos. Ocean. Technol. 2001, 18, 2074–2091. [Google Scholar] [CrossRef]
- Dibarboure, G.; Boy, F.; Desjonqueres, J.D.; Labroue, S.; Lasne, Y.; Picot, N.; Poisson, J.C.; Thibaut, P. Investigating short-wavelength correlated errors on low-resolution mode altimetry. J. Atmos. Ocean. Technol. 2014, 31, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M. Study on the Errors Correction and Ocean-Land Echo Waveforms Processing for HY-2A Radar Altimeter. Ph.D. Thesis, National Space Science Center, Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Tran, N.; Hancock, D.W., III; Hayne, G.S.; Lockwood, D.W.; Vandemark, D.; Driscoll, M.L.; Sailor, R.V. Assessment of the cycle-to-cycle noise level of the Geosat-Follow-on, TOPEX, and POSEIDON altimeters. J. Atmos. Ocean. Technol. 2002, 19, 2095–2107. [Google Scholar] [CrossRef]
- Calafat, F.M.; Cipollini, P.; Bouffard, J.; Snaith, H.; Féménias, P. Evaluation of the new CryoSat-2 products over the ocean. Remote Sens. Environ. 2017, 191, 131–144. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, K.; Xu, X.; Shi, L.; Yu, X.; Liu, P. 2019: Range noise level estimation of the HY-2B radar altimeter and its comparison with Jason-2 and Jason-3 altimeters. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 8312–8315. [Google Scholar]
- Chambers, D.P.; Hayes, S.A.; Ries, J.C.; Urban, T.J. New TOPEX sea state bias models and their effect on global mean sea level. J. Geophys. Res. 2003, 108, 3305. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Kong, W.; Sun, H.; Lu, Y. Performance analysis of Ku/Ka dual-band SAR altimeter from an airborne experiment over South China Sea. Remote Sens. 2022, 14, 2362. [Google Scholar] [CrossRef]
- Liu, Y. Calibration Technology for HY-2 Radar Altimeter Sea Surface Height. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Andersen, O.B.; Knudsen, P. DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res. 2009, 114, C11001. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.J.; Pires, N.; Lazáro, C.; Nunes, A.L. Tropospheric delays from GNSS for application in coastal altimetry. Adv. Space Res. 2013, 51, 1352–1368. [Google Scholar] [CrossRef]
- Liu, X.; Cui, X.; Dong, W.; Sun, H.; Lu, Y. Simulation of wet atmospheric delay correction for interferometric imaging altimeter based on radiometer. In Proceedings of the IET International Radar Conference 2020 (IET IRC 2020), Online Conference, 4–6 November 2020; pp. 511–516. [Google Scholar]
- Huang, X.; Liu, X.; Zhu, J.; Chen, C.; Wang, H.; Zhai, W. Intercomparison and anomaly analysis of wet tropospheric corrections from Jason-3 and Saral. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 7632–7635. [Google Scholar]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Aviso+ CNES Data Center. Available online: https://aviso-data-center.cnes.fr/ (accessed on 19 August 2022).
- EARTHDATA. Available online: https://www.earthdata.nasa.gov/learn/find-data (accessed on 19 August 2022).
- Donlon, C.; Cullen, R.; Giulicchi, L.; Fornari, M.; Vuilleumier, P. Copernicus Sentinel-6 Michael Freilich satellite mission: Overview and preliminary in orbit results. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 7732–7735. [Google Scholar]
- Dinardo, S.; Lucas, B.; Benveniste, J. Sentinel-3 STM SAR ocean retracking algorithm and SAMOSA model. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5320–5323. [Google Scholar]
- Wang, H.; Mouche, A.; Husson, R.; Chapron, B. Dynamic validation of ocean swell derived from Sentinel-1 wave mode against buoys. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 3223–3226. [Google Scholar]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. 2009, 36, L06607. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Koenig, T.; Schulz-Stellenfleth, J.; Lehner, S. Validation and intercomparison of ocean wave spectra inversion schemes using ASAR wave mode data. Int. J. Remote Sens. 2010, 31, 4969–4993. [Google Scholar] [CrossRef] [Green Version]
- Guccione, P. Beam sharpening of Delay/Doppler altimeter data through chirp Zeta transform. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2517–2526. [Google Scholar] [CrossRef]
- Scagliola, M.; Guccione, P.; Giudici, D. Fully focused SAR processing for radar altimeter: A frequency domain approach. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 6699–6702. [Google Scholar]
Item | Jason-3 | Sentinel-6 |
---|---|---|
Cycle | 073 | 056 |
Pass | 017–042 | 001–254 |
Mode | LR | LR and HR |
Data | Raw SSH | SLA |
Data rate | 20 Hz | |
Data level | GDR |
No. | Edit Parameter | Edit Criteria |
---|---|---|
1 | │SWH│ | ≤10 m |
2 | │SLA│ | ≤2 m |
3 | │diff (SWH)│ | ≤4 m |
4 | │diff (Range)│ | ≤5 m |
5 | Surface type flag | Nonzero: ≤2.5% |
6 | SWH quality flag | Nonzero: ≤2.5% |
7 | Range quality flag | Nonzero: ≤2.5% |
SWH | Jason-3 | S6-LR | S6-HR | Jason-3 | S6-LR | S6-HR |
---|---|---|---|---|---|---|
20 Hz | 1 Hz | |||||
1 m | 6.56 cm | 5.85 cm | 2.47 cm | 1.47 cm | 1.31 cm | 0.55 cm |
2 m | 7.41 cm | 6.66 cm | 3.13 cm | 1.66 cm | 1.49 cm | 0.70 cm |
3 m | 8.47 cm | 7.42 cm | 3.72 cm | 1.89 cm | 1.66 cm | 0.83 cm |
4 m | 9.56 cm | 8.13 cm | 4.42 cm | 2.14 cm | 1.82 cm | 0.99 cm |
5 m | 10.80 cm | 8.83 cm | 5.25 cm | 2.42 cm | 1.97 cm | 1.17 cm |
6 m | 11.88 cm | 9.45 cm | 6.17 cm | 2.66 cm | 2.11 cm | 1.38 cm |
SWH | S6-LR | S6-HR | S6-LR | S6-HR |
---|---|---|---|---|
Time-Domain Method | Frequency-Domain Method | |||
1 m | 5.85 cm | 2.47 cm | 5.84 cm | 2.48 cm |
2 m | 6.66 cm | 3.13 cm | 6.65 cm | 3.12 cm |
3 m | 7.42 cm | 3.72 cm | 7.43 cm | 3.72 cm |
4 m | 8.13 cm | 4.42 cm | 8.12 cm | 4.48 cm |
5 m | 8.83 cm | 5.25 cm | 8.77 cm | 5.14 cm |
Item | Rate | SWH | |||||
---|---|---|---|---|---|---|---|
2 m | 3 m | 4 m | 2 m | 3 m | 4 m | ||
LR | HR | ||||||
Estimated Noise level | 10 Hz | 4.72 cm | 5.28 cm | 5.74 cm | 2.25 cm | 2.71 cm | 3.29 cm |
5 Hz | 3.45 cm | 3.86 cm | 4.27 cm | 1.68 cm | 2.05 cm | 2.48 cm | |
1 Hz | 1.57 cm | 1.76 cm | 1.92 cm | 0.84 cm | 1.00 cm | 1.15 cm | |
Theoretical noise level | 10 Hz | 4.71 cm | 5.25 cm | 5.74 cm | 2.21 cm | 2.63 cm | 3.13 cm |
5 Hz | 3.33 cm | 3.71 cm | 4.07 cm | 1.57 cm | 1.86 cm | 2.21 cm | |
1 Hz | 1.49 cm | 1.66 cm | 1.82 cm | 0.70 cm | 0.83 cm | 0.99 cm | |
Ratio | 10 Hz | 1.0021 | 1.0057 | 1.0000 | 1.0181 | 1.0304 | 1.0511 |
5 Hz | 1.0360 | 1.0404 | 1.0491 | 1.0701 | 1.1022 | 1.1222 | |
1 Hz | 1.0537 | 1.0602 | 1.0549 | 1.2000 | 1.2048 | 1.1616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Kong, W.; Sun, H.; Xu, Y.; Lu, Y. An Improved Altimeter in-Orbit Range Noise-Level Estimation Approach Based on Along-Track Differential Method. Remote Sens. 2022, 14, 6250. https://doi.org/10.3390/rs14246250
Liu X, Kong W, Sun H, Xu Y, Lu Y. An Improved Altimeter in-Orbit Range Noise-Level Estimation Approach Based on Along-Track Differential Method. Remote Sensing. 2022; 14(24):6250. https://doi.org/10.3390/rs14246250
Chicago/Turabian StyleLiu, Xiaonan, Weiya Kong, Hanwei Sun, Yongsheng Xu, and Yaobing Lu. 2022. "An Improved Altimeter in-Orbit Range Noise-Level Estimation Approach Based on Along-Track Differential Method" Remote Sensing 14, no. 24: 6250. https://doi.org/10.3390/rs14246250