Performance Analysis of Ku/Ka Dual-Band SAR Altimeter from an Airborne Experiment over South China Sea
<p>The antennas of the airborne SAR altimeter system.</p> "> Figure 2
<p>Map of the airborne experiment area. The red line represents the flight path, and the other colored curves represent the MSS contours.</p> "> Figure 3
<p>Geometric schematic diagram of height measurement by radar altimeter.</p> "> Figure 4
<p>The variation of altitude along the flight path.</p> "> Figure 5
<p>Flowchart of the airborne data processing procedure.</p> "> Figure 6
<p>The variation of (<b>a</b>) roll angle and (<b>b</b>) pitch angle along the flight path.</p> "> Figure 7
<p>The SAR echo model with different (<b>a</b>) echo epoch (SWH = 2 m) and (<b>b</b>) SWH (Epoch = 40).</p> "> Figure 8
<p>Flowchart of re-tracking algorithm implementation step.</p> "> Figure 9
<p>Airborne waveforms before and after SAR processing of (<b>a</b>) the Ku-band and (<b>b</b>) the Ka-band.</p> "> Figure 10
<p>Airborne multi-look SAR echoes of (<b>a</b>) the Ku-band and (<b>b</b>) the Ka-band.</p> "> Figure 11
<p>The waveform re-tracking iteration and result of Ku-band (<b>a</b>,<b>b</b>) and Ka-band (<b>c</b>,<b>d</b>).</p> "> Figure 12
<p>The SSH retrieval results of Ku-band (blue curve) and Ka-band (red curve). (<b>a</b>) The complete SSH retrieval results. (<b>b</b>) The enlarged section that is indicated in (<b>a</b>).</p> "> Figure 13
<p>Verification of dual-band SSH retrieval results. The blue curve is the SSH data of Ku-band retrieval, the red curve is the SSH data of Ka-band retrieval, and the green curve is the public SSH data along the flight path at the experiment day.</p> "> Figure 14
<p>Comparison of re-processed dual-band SSH retrieval results. The blue curve is the SSH retrieval result of Ku-band under 320 MHz bandwidth, the red curve is the SSH retrieval result of Ka-band under 480 MHz bandwidth, and the green curve is the public SSH data of the flight path.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Airborne SAR Altimetry Experiment
2.2. SSH Determination Principle of SAR Altimeter
2.3. Echo Model of Airborne SAR Altimeter
2.4. Re-Tracking Algorithm and Theoretical Precision
3. Results
3.1. Waveform Re-Tracking and SSH Retrieval Results
3.2. Verification and Comparison of the Ku/Ka Dual-Band SSH Data
3.3. Analysis of Re-Tracking Precision from Re-Processed Airborne Data
4. Discussion
5. Conclusions
- (1)
- This airborne experiment has acquired the Ku/Ka dual-band echo data simultaneously for the first time, and thus the comparison results are profound.
- (2)
- The dual-band retrieval SSH data are compared with the public SSH data of the flight path for the experiment day, and the change trends of three SSH data sets are very consistent, which proves the correctness of SSH retrieval method and results.
- (3)
- By calculating the theoretical precision of waveform re-tracking and re-processing the dual-band airborne data into different bandwidths in reference to those chosen by satellite-borne altimeters, it is demonstrated that the Ku/Ka precision ratio is possible to achieve 1.4 within the 27 km offshore area, which indicates that Ka-band has better performance than that of Ku-band.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sandwell, D.T.; Smith, W.H. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. Solid Earth 1997, 102, 10039–10054. [Google Scholar] [CrossRef] [Green Version]
- Mitchum, G.T. Comparison of TOPEX sea surface heights and tide gauge sea levels. J. Geophys. Res. Oceans 1994, 99, 24541–24553. [Google Scholar] [CrossRef]
- Bannoura, W.J.; Wade, A.; Srinivas, D.N. NOAA ocean surface topography mission Jason-2 project overview. In Proceedings of the OCEANS 2005 MTS/IEEE, Washington, DC, USA, 17–23 September 2005; pp. 2155–2159. [Google Scholar]
- Garcia, E.S.; Sandwell, D.T.; Smith, W.H.F. Retracking CryoSat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery. Geophys. J. Int. 2013, 196, 1402–1422. [Google Scholar] [CrossRef] [Green Version]
- Dinardo, S.; Fenoglio-Marc, L.; Buchhaupt, C.; Becker, M.; Scharroo, R.; Fernandes, M.J.; Benveniste, J. Coastal SAR and PLRM altimeter in German bright and west Baltic sea. Adv. Space Res. 2018, 62, 1371–1404. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Raney, R.K. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578–1588. [Google Scholar] [CrossRef]
- Boy, F.; Desjonquères, J.D.; Picot, N.; Moreau, T.; Raynal, M. CryoSat-2 SAR-mode over oceans: Processing methods, global assessment, and benefits. IEEE Trans. Geosci. Remote Sens. 2017, 55, 148–158. [Google Scholar] [CrossRef]
- Dinardo, S.; Lucas, B.; Benveniste, J. Sentinel-3 STM SAR ocean retracking algorithm and SAMOSA model. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5320–5323. [Google Scholar]
- Egido, A.; Smith, W.H.F. Pulse-to-pulse correlation effects in high PRF low-resolution mode altimeters. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2610–2617. [Google Scholar] [CrossRef]
- Ludwig, M.; Daganzo-Eusebio, E.; Davidson, M. Ka-Band radar missions for earth observation. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 2289–2292. [Google Scholar]
- Richard, J.; Phalippou, L.; Robert, F.; Stenou, N.; Thouvenot, E.; Sengenes, P. An advanced concept of radar altimetry over oceans with improved performances and ocean sampling: AltiKa. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 3537–3540. [Google Scholar]
- Kumar, U.M.; Sasamal, S.K.; Swain, D.; Reddy, N.N.; Ramanjappa, T. Intercomparison of geophysical parameters from Saral/AltiKa and Jason-2 altimeters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4863–4870. [Google Scholar] [CrossRef]
- Vaze, P.; Kaki, S.; Limonadi, D.; Esteban-Fernandez, D.; Zohar, G. The surface water and ocean topography mission. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–9. [Google Scholar]
- Chen, G.; Tang, J.; Zhao, C.; Wu, S.; Yu, F.; Ma, C.; Xu, Y.; Chen, W.; Zhang, Y.; Liu, J.; et al. Concept design of the “Guanlan” science mission: China’s novel contribution to space oceanography. Front. Mar. Sci. 2019, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xu, Y.S.; Zhou, X.H.; Zhu, L.; Jiang, Q.; Sun, H.; Chen, G.; Wang, P.; Mertikas, S.P.; Fu, Y.; et al. Calibration of an airborne interferometric radar altimeter over the Qingdao coast sea, China. Remote Sens. 2020, 12, 1651. [Google Scholar] [CrossRef]
- Copernicus Marine Service. Available online: https://resources.marine.copernicus.eu (accessed on 11 April 2022).
- Nusantara, C.A.D.S.; Hakim, A.R.; Adytia, D. Instantaneous height of sea surface: A comparison between local field observation and the simulated level from global models. In Proceedings of the 2020 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia, 5–6 August 2020; pp. 1–5. [Google Scholar]
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Guccione, P. Beam sharpening of Delay/Doppler altimeter data through chirp Zeta transform. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2517–2526. [Google Scholar] [CrossRef]
- Scagliola, M.; Guccione, P.; Giudici, D. Fully focused SAR processing for radar altimeter: A frequency domain approach. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 6699–6702. [Google Scholar]
- Tournadre, J.; Chapron, B. Altimeter as an imager of the sea surface roughness: Comparison of SAR and LRM modes. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3541–3544. [Google Scholar]
- Wingham, D.J.; Phalippou, L.; Mavrocordatos, C.; Wallis, D. The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2305–2323. [Google Scholar] [CrossRef]
- Egido, A.; Smith, W.H.F. Fully focused SAR altimetry: Theory and applications. IEEE Trans. Geosci. Remote Sens. 2017, 55, 392–406. [Google Scholar] [CrossRef]
- Ray, C.; Martin-Puig, C.; Clarizia, M.P.; Ruffini, G.; Dinardo, S.; Gommenginger, C.; Benveniste, J. SAR altimeter backscattered waveform model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 911–919. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.; Zhang, Y.; Zhao, C. The effects of random error on the measurement results of wide-swath interferometric imaging radar altimeter. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 8308–8311. [Google Scholar]
- Wingham, D.J.; Giles, K.A.; Galin, N.; Cullen, R.; Armitage, T.W.; Smith, W.H. A semianalytical model of the synthetic aperture, interferometric radar altimeter mean echo, and echo cross-product and its statistical fluctuations. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2539–2553. [Google Scholar] [CrossRef]
- Scagliola, M.; Guccione, P. Datation and range calibration of radar altimeter exploiting fully focused SAR processing. IEEE Geosci. Remote Sens. Lett. 2021, 18, 480–483. [Google Scholar] [CrossRef]
- Recchia, L.; Scagliola, M.; Giudici, D.; Kuschnerus, M. An accurate semianalytical waveform model for mispointed SAR interferometric altimeters. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1537–1541. [Google Scholar] [CrossRef]
- Pires, N.; Fernandes, M.J.; Gommenginger, C.; Scharroo, R. Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1448–1462. [Google Scholar] [CrossRef]
- Halimi, A.; Mailhes, C.; Tourneret, J.; Boy, F.; Moreau, T. Including antenna mispointing in a semi-analytical model for Delay/Doppler altimetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 598–608. [Google Scholar] [CrossRef] [Green Version]
- Recchia, L.; Scagliola, M.; Giudici, D. Doppler ambiguities masking for altimeter waveforms: A model based approach. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; pp. 7613–7616. [Google Scholar]
- Tourain, C.; Piras, F.; Ollivier, A.; Hauser, D.; Poisson, J.C.; Boy, F.; Thibaut, P.; Hermozo, L.; Tison, C. Benefits of the adaptive algorithm for retracking altimeter nadir echoes: Results from simulations and CFOSAT/SWIM observations. IEEE Trans. Geosci. Remote Sens. 2021, 9, 9927–9940. [Google Scholar] [CrossRef]
- Guo, J.; Di, W.; Yuan, J.; Niu, Y.; Li, Z. Satellite radar altimetric waveform simulation and retracking over coastal sea based on singular spectrum analysis. In Proceedings of the 5th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- Halimi, A.; Mailhes, C.; Tourneret, J.; Thibaut, P.; Boy, F. A semi-analytical model for Delay/Doppler altimetry and its estimation algorithm. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4248–4258. [Google Scholar] [CrossRef] [Green Version]
- Phalippou, L.; Enjolras, V. Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 3533–3536. [Google Scholar]
- Halimi, A.; Mailhes, C.; Tourneret, J. Cramér-Rao bounds and estimation algorithms for delay/Doppler and conventional altimetry. In Proceedings of the 21st European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Fernandes, M.J.; Lázaro, C.; Nunes, A.L.; Pires, N.; Bastos, L.; Mendes, V.B. GNSS-derived path delay: An approach to compute the wet tropospheric correction for coastal altimetry. IEEE Geosci. Remote Sens. Lett. 2010, 7, 596–600. [Google Scholar] [CrossRef]
- Vieira, T.; Fernandes, M.J.; Lazaro, C. Impact of the new ERA5 reanalysis in the computation of radar altimeter wet path delays. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9849–9857. [Google Scholar] [CrossRef]
- Dong, X.; Woodworth, P.; Moore, P.; Bingley, R. Absolute calibration of the TOPEX/POSEIDON altimeters using UK tide gauges, GPS, and precise, local Geoid-Differences. Mar. Geod. 2002, 25, 189–204. [Google Scholar] [CrossRef]
- Lin, Y. Development and Applications of a GNSS Buoy for Monitoring Tides and Ocean Waves in Coastal Areas. Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, 2018. [Google Scholar]
- Marth, P.C.; Jensen, J.R.; Kilgus, C.C.; Perschy, J.A.; MacArthur, J.L.; Hancock, D.W.; Hayne, G.S.; Purdy, C.L.; Rossi, L.C.; Koblinsky, C.J. Prelaunch performance of the NASA altimeter for the TOPEX/POSEIDON project. IEEE Trans. Geosci. Remote Sens. 1993, 31, 315–332. [Google Scholar] [CrossRef]
Parameter | Ku-Band | Ka-Band |
---|---|---|
Carrier frequency | 15.8 GHz | 35.8 GHz |
Along-track beam width (3 dB) | 2.82° | 1.36° |
Across-track beam width (3 dB) | 15° | |
Pulse Width | ||
Bandwidth | 900 MHz | |
Pulse repetition frequency | 5000 Hz | |
Mean flight altitude | 3767 m |
SWH | Ku-Band | Ka-Band | Ku-Band | Ka-Band |
---|---|---|---|---|
(Without Considering Altitude Determination Error *) | (With Considering Altitude Determination Error *) | |||
1 m | 1.12 cm | 1.07 cm | 4.15~5.12 cm | 4.14~5.11 cm |
2 m | 1.43 cm | 1.37 cm | 4.25~5.20 cm | 4.23~5.19 cm |
3 m | 1.70 cm | 1.63 cm | 4.35~5.28 cm | 4.32~5.26 cm |
4 m | 1.93 cm | 1.84 cm | 4.44~5.36 cm | 4.40~5.33 cm |
Bandwidth | Ku-Band | Ka-Band |
---|---|---|
300 MHz | 2.94 cm | 2.82 cm |
500 MHz | 2.05 cm | 1.96 cm |
700 MHz | 1.66 cm | 1.59 cm |
900 MHz | 1.43 cm | 1.37 cm |
SWH | Ku-Band | Ka-Band | Ku-Band | Ka-Band |
---|---|---|---|---|
(Without Considering Altitude Determination Error *) | (With Considering Altitude Determination Error *) | |||
1 m | 2.53 cm | 1.71 cm | 4.73~5.60 cm | 4.35~5.28 cm |
2 m | 2.80 cm | 2.01 cm | 4.88~5.73 cm | 4.48~5.39 cm |
3 m | 3.12 cm | 2.32 cm | 5.07~5.89 cm | 4.62~5.51 cm |
4 m | 3.42 cm | 2.59 cm | 5.26~6.05 cm | 4.76~5.63 cm |
Ratio | 1.32~1.48 | 1.06~1.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Kong, W.; Sun, H.; Lu, Y. Performance Analysis of Ku/Ka Dual-Band SAR Altimeter from an Airborne Experiment over South China Sea. Remote Sens. 2022, 14, 2362. https://doi.org/10.3390/rs14102362
Liu X, Kong W, Sun H, Lu Y. Performance Analysis of Ku/Ka Dual-Band SAR Altimeter from an Airborne Experiment over South China Sea. Remote Sensing. 2022; 14(10):2362. https://doi.org/10.3390/rs14102362
Chicago/Turabian StyleLiu, Xiaonan, Weiya Kong, Hanwei Sun, and Yaobing Lu. 2022. "Performance Analysis of Ku/Ka Dual-Band SAR Altimeter from an Airborne Experiment over South China Sea" Remote Sensing 14, no. 10: 2362. https://doi.org/10.3390/rs14102362