A New Automatic Extraction Method for Glaciers on the Tibetan Plateau under Clouds, Shadows and Snow Cover
<p>Study region.</p> "> Figure 2
<p>The process of glacier extraction.</p> "> Figure 3
<p>Image synthesis process.</p> "> Figure 4
<p>Sample collection of similar ground objects. (<b>a</b>–<b>f</b>) indicate shadow glaciers, debris-covered glaciers, rocks, glacial lakes, lakes, and clean glaciers, respectively. The S represents the area of each sampling area.</p> "> Figure 5
<p>Average spectral reflectance of different ground objects.</p> "> Figure 6
<p>Cloud score threshold setting experiment: the blue area is the extracted glacier, the red line is the glacier boundary of the dataset, and the cloud scores of the three images were set to 40 (<b>a</b>), 60 (<b>b</b>) and 80 (<b>c</b>).</p> "> Figure 7
<p>Importance score: (<b>a</b>) is the first classification and (<b>b</b>) is the second classification.</p> "> Figure 8
<p>Feature experiment of two classifications: (<b>a</b>) the first classification; (<b>b</b>) the second classification.</p> "> Figure 9
<p>Overall glacier extraction results on the Tibetan Plateau.</p> "> Figure 10
<p>Details of glacier extraction results on the Tibetan Plateau. The red line is the boundary of glaciers in the dataset.</p> "> Figure 11
<p>Comparison of extraction results of different methods. (<b>a</b>) Comparison between the results obtained by the Double RF method and the glacier dataset. The blue part represents the glaciers in the dataset, the yellow part represents the extracted glaciers, and the intersecting part represents the correctly extracted glaciers. The numbers above each part represent the area of the glacier in that part, and the unit is 1000 square kilometers. (<b>b</b>) shows PGD, PGE. and HM for the seven methods.</p> "> Figure 12
<p>Statistics of glaciers of different sizes on the Tibetan Plateau: (<b>a</b>) the percentage of the number of glaciers of different sizes; (<b>b</b>) the percentage of the area of glaciers of different sizes.</p> "> Figure 13
<p>Elevation distribution of glaciers: (<b>a</b>) the elevation distribution of all glaciers; (<b>b</b>) the elevation distribution of clean glaciers, glaciers in shadow, and debris-covered glaciers.</p> "> Figure 14
<p>Percentages of the two types of glaciers at different slopes (<b>a</b>) and different aspects (<b>b</b>).</p> "> Figure 15
<p>Extraction results of glaciers in shadow (<b>a</b>), debris-covered glaciers (<b>b</b>), and glacial lakes (<b>c</b>) using seven methods. The red line is the glacier reference boundary of glacier dataset. The parts circled in black or yellow lines are glaciers in shadow, debris-covered glaciers, and glacial lakes.</p> "> Figure 16
<p>Influences of cloud cover and snow cover. The black and yellow circles refer to clouds and snow, respectively.</p> ">
Abstract
:1. Introduction
2. Study Region and Data
2.1. Study Region
2.2. Data Sources
3. Automatic Extraction Method for Glaciers
3.1. Pre-Processing
3.1.1. Dataset Screening
3.1.2. Cloud Filtering
3.1.3. Image Synthesis
3.2. Feature Construction
3.2.1. Spectral Features
- (1)
- Common spectral features
- (2)
- Spectral features of glaciers under the influences of shadow and snow cover
- (3)
- Spectral features of debris-covered glaciers
3.2.2. Texture Features
3.2.3. Topographic Features
3.3. Feature Selection
3.4. Random Forest Classification
3.4.1. Random Forest Parameter Settings
3.4.2. Sample Selection
3.4.3. Post-Classification Processing
3.4.4. Accuracy Verification
3.5. Comparison and Analysis with Glacier Dataset
4. Results and Analysis
4.1. Automatic Extraction of Glaciers on the Tibetan Plateau
4.1.1. The Result of Pre-Processing
4.1.2. The Result of Feature Selection
4.1.3. Random Forest Classification of Glaciers on the Tibetan Plateau
4.1.4. Results of Random Forest Classification
- (1)
- Glacier extraction result
- (2)
- Accuracy verification
4.2. Comparison and Analysis with Glacier Dataset
4.3. Spatial Distribution of Glaciers on the Tibetan Plateau
4.3.1. Glacier Area Distribution
4.3.2. Spatial Distribution Characteristics
5. Discussion
5.1. Glacier Extraction in Special Areas
5.2. Factors Affecting Classification Accuracy
5.2.1. Selection of Features and Samples
5.2.2. DEM Accuracy
5.2.3. Cloud Cover
5.2.4. Snow
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms; IHP-VII Technical Documents in Hydrology No. 86; IACS Contribution No. 2; UNESCO-IHP: Paris, France, 2011; Available online: https://www.researchgate.net/profile/Lindsey-Nicholson-2/publication/281755921_Glossary_of_glacier_mass_balance_and_related_terms/links/56e6a37308ae65dd4cc1b560/Glossary-of-glacier-mass-balance-and-related-terms.pdf (accessed on 1 June 2022).
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Tian, H.; Yang, T.; Liu, Q. An empirical model to predict glacier area changes in China. IOP Conf. Ser. Earth Environ. Sci. 2019, 349, 012015. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.; Konovalov, V.; Le Bris, R. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Srinivasulu, J.; Manjul, S.; Mathur, P. Field based spectral reflectance studies to develop NDSI method for snow cover monitoring. J. Indian Soc. Remote Sens. 2002, 30, 73–80. [Google Scholar] [CrossRef]
- Sibandze, P.; Mhangara, P.; Odindi, J.; Kganyago, M. A comparison of Normalised Difference Snow Index (NDSI) and Normalised Difference Principal Component Snow Index (NDPCSI) techniques in distinguishing snow from related land cover types. S. Afr. J. Geomat. 2014, 3, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, X.; Shi, C.; Yan, D. Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR/SWIR Ratio Index for Glacier Mapping Using Landsat Imagery. Water 2019, 11, 1223. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.A.; Jamil, A.; Hussain, D.; Taj, M.; Jabeen, G.; Malik, M.K. Machine-learning algorithms for mapping debris-covered glaciers: The Hunza Basin case study. IEEE Access 2020, 8, 12725–12734. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z.; Huang, D. Glacier Mapping Based on Random Forest Algorithm: A Case Study over the Eastern Pamir. Water 2020, 12, 3231. [Google Scholar] [CrossRef]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.M.; Glasser, N.F. Glacial Geology: Ice Sheets and Landforms; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F. On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 480–490. [Google Scholar] [CrossRef]
- Patel, A.; Prajapati, R.; Dharpure, J.K.; Mani, S.; Chauhan, D. Mapping and monitoring of glacier areal changes using multispectral and elevation data: A case study over Chhota-Shigri glacier. Earth Sci. Inform. 2019, 12, 489–499. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Kunert, A.; Kamp, U. Automated delineation of debris-covered glaciers based on ASTER data. In GeoInformation in Europe, Proceedings of the 27th Annual Symposium European Association of Remote Sensing Laboratories (EARSeL), Bolzano, Italy, 4–7 June 2007; Millpress: Rotterdam, The Netherlands, 2007; pp. 4–6. [Google Scholar]
- Singh, V.; Goyal, M.K. An improved coupled framework for Glacier classification: An integration of optical and thermal infrared remote-sensing bands. Int. J. Remote Sens. 2018, 39, 6864–6892. [Google Scholar] [CrossRef]
- Taschner, S.; Ranzi, R. Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1044–1046. [Google Scholar]
- Smith, T.; Bookhagen, B.; Cannon, F. Improving Semi-Automated Glacier Mapping with a Multi-Method Approach: Applications in Central Asia. Cryosphere 2015, 9, 1747–1759. [Google Scholar] [CrossRef] [Green Version]
- Janke, J.R.; Bellisario, A.C.; Ferrando, F.A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 2015, 241, 98–121. [Google Scholar] [CrossRef]
- Lippl, S.; Vijay, S.; Braun, M. Automatic delineation of debris-covered glaciers using InSAR coherence derived from X-, C-and L-band radar data: A case study of Yazgyl Glacier. J. Glaciol. 2018, 64, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Racoviteanu, A.; Williams, M.W. Decision tree and texture analysis for mapping debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens. 2012, 4, 3078–3109. [Google Scholar] [CrossRef] [Green Version]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S. The GAMDAM glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hird, J.N.; Kariyeva, J.; McDermid, G.J. Satellite Time Series and Google Earth Engine Democratize the Process of Forest-Recovery Monitoring over Large Areas. Remote Sens. 2021, 13, 4745. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring forest change in the amazon using multi-temporal remote sensing data and machine learning classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [Google Scholar] [CrossRef]
- Koskinen, J.; Leinonen, U.; Vollrath, A.; Ortmann, A.; Lindquist, E.; D’Annunzio, R.; Pekkarinen, A.; Kayhko, N. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 148, 63–74. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.; Shen, H. An urban water extraction method combining deep learning and google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 769–782. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Li, S.; Li, C.; Chen, H.; Peng, H. Study on the Spatiotemporal Variation of Impervious Surface in Hunan Province for Nearly 30 Years Based on Google Earth Engine. Geogr. Geo-Inf. Sci. 2020, 36, 41–46. [Google Scholar] [CrossRef]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian wetland inventory using Google Earth Engine: The first map and preliminary results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for drought assessment using global soil moisture data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Huang, H.; Tian, Y.; Du, Y. Monitoring and Assessment of the Eco-Environment Quality in the Sanjiangyuan Region based on Google Earth Engine. J. Geo-Inf. Sci. 2019, 21, 10. [Google Scholar]
- Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Dong, Z.; Zhang, J.; Bao, Y.; Guna, A.; Bao, Y. Spatiotemporal variations of land use/cover changes in Inner Mongolia (China) during 1980–2015. Sustainability 2018, 10, 4730. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jia, L.; Menenti, M.; Zhou, J.; Ren, S. Glacier area and snow cover changes in the range system surrounding tarim from 2000 to 2020 using google earth engine. Remote Sens. 2021, 13, 5117. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Zhou, J.M.; Zhang, P. An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 2021, 258, 112376. [Google Scholar] [CrossRef]
- Xie, F.; Liu, S.; Wu, K.; Zhu, Y.; Gao, Y.; Qi, M.; Duan, S.; Saifullah, M.; Tahir, A.A. Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990~2019. Front. Earth Sci. 2020, 8, 308. [Google Scholar] [CrossRef]
- Bevington, A.R.; Menounos, B. Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery. Remote Sens. Environ. 2022, 270, 112862. [Google Scholar] [CrossRef]
- Torabi Poodeh, H.; Yousefi, H.; Samadi, A.; Arshia, A.; Shamsi, Z.; Yarahmadi, Y. Evaluation of Snow Cover Changes Trend Using GEE and TFPW-MK Test (Case Study: Marber Basin-Isfahan). Iran. J. Ecohydrol. 2021, 8, 195–204. [Google Scholar]
- Beltramone, G.; Scavuzzo, M.; German, A.; Ferral, A. Wet snow detection in Patagonian Andes with Sentinel-1 SAR temporal series analysis in GEE. In Proceedings of the 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, 1–4 December 2020; pp. 1–8. [Google Scholar]
- Vale, A.B.; Arnold, N.S.; Rees, W.G.; Lea, J.M. Remote Detection of Surge-Related Glacier Terminus Change across High Mountain Asia. Remote Sens. 2021, 13, 1309. [Google Scholar] [CrossRef]
- Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 128. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Ran, W.; Wang, X.; Guo, W.; Zhao, H.; Zhao, X.; Liu, S.; Wei, J.; Zhang, Y. A dataset of glacier inventory in Western China during 2017–2018 (V1). Sci. Data Bank 2021. [Google Scholar] [CrossRef]
- Wu, M.; Han, Y.; Zhang, D.; Wang, X.; Gesang, W. Information Extraction Method of Debris-Covered Glaciers in Bomi County. Mt. Res. 2017, 35, 238–245. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A long-term spatiotemporal analysis of vegetation greenness over the Himalayan Region using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Jia, K.; Li, Q. Review of Features Selection in Crop Classification Using Remote Sensing Data. Resour. Sci. 2013, 35, 2507–2516. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Bach, F. Breaking the curse of dimensionality with convex neural networks. J. Mach. Learn. Res. 2017, 18, 629–681. [Google Scholar]
- Kuo, F.Y.; Sloan, I.H. Lifting the curse of dimensionality. Not. AMS 2005, 52, 1320–1328. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Huang, X.; Lu, Q.; Zhang, L.; Plaza, A. New postprocessing methods for remote sensing image classification: A systematic study. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7140–7159. [Google Scholar] [CrossRef]
- Zourarakis, D.P. Remote Sensing Handbook–Volume I: Remotely Sensed Data Characterization, Classification, and Accuracies. Photogramm. Eng. Remote Sens. 2018, 84, 481. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Wulf, H.; Gorelick, N. Global assessment of supraglacial debris-cover extents. Geophys. Res. Lett. 2018, 45, 11,798–11,805. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Chen, Y.; Luo, X.; Li, Y. Study on the Identification Method of Glacier in Mountain Shadows Based on Landsat 8 OLI Image. Spectrosc. Spectr. Anal. 2018, 38, 3857–3863. [Google Scholar]
- Tielidze, L.G.; Bolch, T.; Wheate, R.D.; Kutuzov, S.S.; Lavrentiev, I.I.; Zemp, M. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014. Cryosphere 2020, 14, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
Data | Source |
---|---|
The boundary of the Tibetan Plateau | A discussion on the boundary and area of the Tibetan Plateau in China [48] |
Landsat image data | United States Geological Survey |
DEM data | The Shuttle Radar Topography Mission, SRTM [49] |
Glacier catalog dataset | A dataset of glacier inventory in Western China during 2017–2018 (V1) [50] |
Source | Feature | |
---|---|---|
Spectral features | Composite image | B1~B7, B10, NDVI, NDWI, NDSI, band difference |
Tasseled cap transform image | Greenness, brightness, humidity | |
Original dataset | Multi-temporal minimum band ratio | |
Texture features | Band ratio of the composite image | Second moment, contrast, correlation, variance, inverse different moment, and entropy |
Topographic features | SRTMGL1_ 003 | Elevation, slope, aspect |
First Classification | Second Classification | ||
---|---|---|---|
Category | No. of samples | Category | No. of samples |
Glacier | 181 | Snow | 84 |
Water body | 126 | Glacier covered with debris | 384 |
Others | 554 | Water body | 180 |
Others | 880 |
Glacier | Water Body | Others | Total | |
---|---|---|---|---|
Glacier | 54 | 0 | 3 | 57 |
Water body | 0 | 27 | 3 | 30 |
Others | 3 | 1 | 162 | 166 |
Total | 57 | 28 | 168 | 253 |
Snow | Glacier Covered with Debris | Water Body | Others | Total | |
---|---|---|---|---|---|
Snow | 24 | 1 | 0 | 3 | 28 |
Glacier covered with debris | 2 | 92 | 0 | 21 | 115 |
Water body | 0 | 0 | 37 | 0 | 37 |
Others | 0 | 13 | 3 | 269 | 285 |
Total | 26 | 106 | 40 | 293 | 495 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Zhou, G.; Lv, X.; Zhou, L.; He, X.; Tian, Z. A New Automatic Extraction Method for Glaciers on the Tibetan Plateau under Clouds, Shadows and Snow Cover. Remote Sens. 2022, 14, 3084. https://doi.org/10.3390/rs14133084
Hu M, Zhou G, Lv X, Zhou L, He X, Tian Z. A New Automatic Extraction Method for Glaciers on the Tibetan Plateau under Clouds, Shadows and Snow Cover. Remote Sensing. 2022; 14(13):3084. https://doi.org/10.3390/rs14133084
Chicago/Turabian StyleHu, Mingcheng, Guangsheng Zhou, Xiaomin Lv, Li Zhou, Xiaohui He, and Zhihui Tian. 2022. "A New Automatic Extraction Method for Glaciers on the Tibetan Plateau under Clouds, Shadows and Snow Cover" Remote Sensing 14, no. 13: 3084. https://doi.org/10.3390/rs14133084