Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier Mapping Using Landsat Imagery
<p>Locations of the four study regions.</p> "> Figure 2
<p>Methodology flowchart.</p> "> Figure 3
<p>Distributions of pure pixels digital number (DN) values of major land cover types (<b>a</b>–<b>e</b>) and distributions of pure pixels band ratio DN values of three different methods (<b>f</b>–<b>h</b>). Each box plot explains the locations of the 10th, 25th, 50th, 75th and 90th percentiles using horizontal lines (boxes and whiskers).</p> "> Figure 4
<p>Edge pixels around a fraction of study region I showing mixed pixels between glacier and non-glacier (high spatial resolution image accessed through Google Earth).</p> "> Figure 5
<p>Glacier masks comparing two methods. Areas in grey were identified by both methods as being a glacier, red areas only by the first method, and black areas only by the second method in Region I and II. (<b>a</b>) Superimposed map of manual glacier delineations and Landsat images of test sites; and (<b>b</b>) high resolution Google Earth images of test sites. The compared methods are: (<b>c</b>) Red/SWIR and AGEI; (<b>d</b>) NIR/SWIR and AGEI; (<b>e</b>) supervised ML classification and AGEI; (<b>f</b>) NDSI and AGEI.</p> "> Figure 6
<p>Glacier masks comparing two methods. Areas in grey were identified by both methods as being a glacier, red areas only by the first method, and black areas only by the second method in Region III and IV. (<b>a</b>) Superimposed map of manual glacier delineations and Landsat images of test sites; and (<b>b</b>) high resolution Google Earth images of test sites. The compared methods are: (<b>c</b>) Red/SWIR and AGEI; (<b>d</b>) NIR/SWIR and AGEI; (<b>e</b>) supervised ML classification and AGEI; (<b>f</b>) NDSI and AGEI.</p> "> Figure 7
<p>Distribution of the four accuracy measures (<b>a</b><tt>–</tt><b>d</b>) calculated by the automated glacier extraction index (AGEI) with different α in the four regions.</p> "> Figure 8
<p>Five methods for the ten validation plots, including manual digitized Google Earth reference glacier boundaries (black outlines) and classified glaciers (grey hatched lines). Five challenging features were selected to compare performances of the five methods: (<b>a</b>,<b>b</b>) debris-free glaciers; (<b>c</b>,<b>d</b>) glaciers with seasonal snow; (<b>e</b>,<b>f</b>) proglacial lakes; (<b>g</b>,<b>h</b>) glaciers in shadowed areas; (<b>i</b>,<b>j</b>) debris-covered glaciers.</p> "> Figure 9
<p>Cumulative frequency of mixed pixels classified as glacier.</p> "> Figure 10
<p>The relationship between reference glacier and classified glacier calculated for each classifier after applying optimum thresholds (<a href="#water-11-01223-t003" class="html-table">Table 3</a>) for the 1120 validation plots. Grey lines are 1:1 lines, and red dashed lines are from the ordinary least squares regression.</p> "> Figure 11
<p>Overlaid glacier distribution map of Landsat 8 and Sentinel-2 imagery using five methods: (<b>a</b>) Red/SWIR; (<b>b</b>) NIR/SWIR; (<b>c</b>) AGEI; (<b>d</b>) supervised ML classification; (<b>e</b>) NDSI.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Areas
2.2. Data Sources and Pre-Processing
3. Methods
3.1. Existing Classifiers for Glacier Mapping
3.2. Automated Glacier Extraction Index (AGEI)
3.2.1. Pure-pixel Selection
3.2.2. Formulation of AGEI
3.3. Optimization of Weighted Coefficient and Threshold
3.3.1. The Weighted Coefficient “α” of the AGEI Equation
3.3.2. Threshold Selection and Optimization
3.4. Accuracy Validation Methods
3.4.1. Overall Accuracy Evaluation of Classified Glacier Maps
3.4.2. Mixed Edge Pixels Accuracy Assessment
3.4.3. Challenging Features’ Assessment at Validation Plot Scale
3.5. Comparison Glacier Maps with Different Sensors
4. Results
4.1. Comparison of Glacier Mapping Results
4.2. Accuracy Assessment of Glacier Mapping
4.2.1. Overall Accuracy Evaluation of AGEI with Different Coefficients
4.2.2. Overall accuracy evaluation for the five classifiers with multiple thresholds
4.2.3. Mixed Edge Pixels Evaluation for the Five Classifiers
4.2.4. Evaluation of Validation Plots in Different Land-Cover Backgrounds
4.3. Comparison Glacier Mapping of Landsat and Sentinel Imagery
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kargel, J.S. Global Land Ice Measurements from Space; Springer: Berlin/Heidelberg, Germany, 2014; pp. 205–228. [Google Scholar]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Change in Snow, Ice and Frozen Ground; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 337–384. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Zemp, M.; Frey, H.; Gärtnerroer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; He, X.; Shangguan, D.; Zhong, F.; Liu, S. Impact of Intensive Glacier Ablation on Arid Regions of Northwest China and Its Countermeasure. J. Glaciol. Geocryol. 2012, 34, 848–854. [Google Scholar]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [Green Version]
- Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shea, J.M.; Shrestha, A.B.; Pellicciotti, F.; Bierkens, M.F.P.; de Jong, S.M. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens. Environ. 2014, 150, 93–103. [Google Scholar] [CrossRef]
- Pope, A.; Rees, W.; Fox, A.; Fleming, A.H. Open access data in polar and cryospheric remote sensing. Remote Sens. 2014, 6, 6183–6220. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Bolch, T.; Menounos, B.; Wheate, R. Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ. 2010, 114, 127–137. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Mölg, N.; Machguth, H.; Le Bris, R.; Paul, F. The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere 2012, 6, 1483. [Google Scholar] [CrossRef]
- Hagg, W.; Mayer, C.; Lambrecht, A.; Kriegel, D.; Azizov, E. Glacier changes in the Big Naryn basin, Central Tian Shan. Glob. Planet. Chang. 2013, 110, 40–50. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Williams, R.S.; Richard, S.; Hall, D.K.; Siguresson, O.; Chien, J. Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–1992. Ann. Glaciol. 1997, 24, 72–80. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.; Maussion, F.; Scherer, D.; Huintjes, E.; Schneider, C. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 2010, 4, 419–433. [Google Scholar] [CrossRef]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Gratton, D.J.; Howarth, P.J.; Marceau, D.J. Combining DEM parameters with Landsat MSS and TM imagery in a GIS for mountain glacier characterization. IEEE Trans. Geosci. Remote Sens. 1990, 28, 766–769. [Google Scholar] [CrossRef]
- Schauwecker, S.; Rohrer, M.; Acuña, D.; Cochachin, A.; Dávila, L.; Frey, H.; Giráldez, C.; Gómez, J.; Huggel, C.; Jacques-Coper, M.; et al. Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob. Planet. Chang. 2014, 119, 85–97. [Google Scholar] [CrossRef]
- Kulkarni, A.; Patwardhan, S.; Kumar, K.K.; Ashok, K.; Krishnan, R. Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mt Res. Dev. 2013, 33, 142–151. [Google Scholar] [CrossRef]
- Sidjak, R. Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens. 1999, 20, 273–284. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Paul, F.; Raup, B.H.; Singh Khalsa, S.J.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Briggs, K.; Kääb, A.; McMillan, M.; McNabb, R.; Nagler, T.; Nuth, C.; Rastner, P.; Strozzi, T.; et al. Error sources and guidelines for quality assessment of glacier area, elevation change, and velocity products derived from satellite data in the Glaciers_cci project. Remote Sens. Environ. 2017, 203, 256–275. [Google Scholar] [CrossRef] [Green Version]
- Landsat, N. Science Data Users Handbook; USGS: Greenbelt, MD, USA, 2018.
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; International Society for Optics and Photonics: Warsaw, Poland, 2017; p. 1042704. [Google Scholar]
- Guo, W.; Liu, S.; Yao, X.; Xu, J.; Shangguan, D.; Wu, L.; Zhao, J.; Liu, Q.; Jiang, Z.; Li, P.; et al. The Second Glacier Inventory Dataset of China (Version 1.0); Cold and Arid Regions Science Data Center: Lanzhou, China, 2014. [Google Scholar]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Ordoñez, J. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol. 2008, 54, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Gjermundsen, E.; Mathieu, R.; Kääb, A.; Chinn, T.; Fitzharris, B.B.; Hagen, J.O. Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data. J. Glaciol. 2011, 57, 667–683. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A. Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island. Ann. Glaciol. 2005, 42, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, L.; Paul, F. The new Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2008, 2, 131–145. [Google Scholar] [CrossRef]
- Cao, M.; Li, X.; Chen, X.; Wang, J.; Che, T. Remote Sensing of Cryosphere; Science Press: Beijing, China, 2006. [Google Scholar]
- Xiong, L.; Deng, R.; Li, J.; Liu, X.; Qin, Y.; Liang, Y.; Liu, Y. Subpixel Surface Water Extraction (SSWE) Using Landsat 8 OLI Data. Water 2018, 10, 653. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier remote sensing using sentinel-2. Part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Paul, F.; Barry, R.G.; Cogley, J.G.; Frey, H.; Haeberli, W.; Ohmura, A.; Ommanney, C.S.L.; Raup, B.H.; Rivera, A.; Zemp, M. Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol. 2009, 50, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Frey, H.; Le Bris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003, challenges and results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Cogley, J.G. A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann. Glaciol. 2013, 54, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Ohtsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Automated subpixel surface water mapping from heterogeneous urban environments using Landsat 8 OLI imagery. Remote Sens. 2016, 8, 584. [Google Scholar] [CrossRef]
- Brenning, A.; Peña, M.A.; Long, S.; Soliman, A. Thermal remote sensing of ice-debris landforms using ASTER: An example from the Chilean Andes. Cryosphere 2012, 6, 367–382. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T.; Chaujar, R.K. Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. Int. J. Remote Sens. 2011, 32, 8095–8119. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y.; Tang, L.; Fan, R.; Yao, Y. Object-Based Convolutional Neural Networks for Cloud and Snow Detection in High-Resolution Multispectral Imagers. Water 2018, 10, 1666. [Google Scholar] [CrossRef]
- Rastner, P.; Bolch, T.; Notarnicola, C.; Paul, F. A comparison of pixel-and object-based glacier classification with optical satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 853–862. [Google Scholar] [CrossRef]
Test Site | Satellite | Sensor | Scene | Reference Data and Sources | |||
---|---|---|---|---|---|---|---|
Place | GLIMS_ID | Experiment data | Google EarthTM image | Landsat data | SCGI | ||
Region I | G084633E29798N | Landsat-8 | OLI | 16 October 2016 | 1 December 2016 | 14 September 2016 | 30 January 2009 |
Sentinel-2 | MSI | 23 October 2016 | |||||
Region II | G088362E43816N | Landsat-5 | TM | 3 October 2011 | 5 October 2011 | 23 July 2011 | 13 August 2010 |
Region III | G090407E30339N | Landsat-5 | TM | 16 January 2008 | 29 October 2007 | 8 July 2007 | 2 November 2009 |
Region IV | G090510E28196N | Landsat-5 | TM | 18 November 2003 | 17 December 2003 | 12 May 2004 | 6 February 2010 |
Name of Classifier | Center Wavelength (μm) | Design Algorithm | Value Used |
---|---|---|---|
Maximum-Likelihood classification | Multispectral combination | Select ROI samples | Spectral reflectance values |
NDSI | Band (Green):0.561 Band (SWIR):1.609 | Spectral reflectance values | |
Red/SWIR | Band (Red):0.655 Band (SWIR):1.609 | Raw digital number values (DN) | |
NIR/SWIR | Band (NIR):0.865 Band (SWIR):1.609 | Raw digital number values (DN) | |
AGEI (this work) | Band (Red):0.655 Band (NIR):0.865 Band (SWIR):1.609 | Raw digital number values (DN) |
Classifier | Threshold | Glacier Total-Error (%) | Non-Glacier Total-Error (%) | Overall Accuracy (%) | Kappa Coefficient | Threshold | Glacier Total-Error (%) | Non-Glacier Total-Error (%) | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|---|---|---|---|---|
Region I | RegionII | |||||||||
ML | -- | 16.68 | 28.79 | 89.122 | 0.761 | -- | 26.21 | 48.03 | 82.336 | 0.614 |
Red/SWIR | 1.70 | 18.29 | 31.49 | 88.400 | 0.745 | 3.00 | 24.00 | 36.60 | 85.483 | 0.695 |
1.90 | 18.52 | 30.91 | 88.710 | 0.747 | 2.90 | 23.67 | 37.00 | 85.600 | 0.697 | |
1.80 | 18.17 | 30.90 | 88.710 | 0.744 | 2.95 | 24.00 | 38.82 | 84.848 | 0.678 | |
1.95 | 18.69 | 30.28 | 89.020 | 0.741 | 2.85 | 25.00 | 40.30 | 84.262 | 0.670 | |
NIR/SWIR | 1.70 | 18.17 | 25.75 | 89.090 | 0.764 | 2.00 | 25.77 | 35.45 | 85.254 | 0.692 |
1.80 | 18.50 | 24.45 | 89.270 | 0.760 | 2.10 | 25.56 | 35.48 | 85.359 | 0.695 | |
1.90 | 17.81 | 24.17 | 89.540 | 0.765 | 1.95 | 25.97 | 36.66 | 84.946 | 0.691 | |
2.00 | 18.60 | 25.55 | 89.200 | 0.760 | 2.20 | 24.07 | 37.42 | 84.799 | 0.687 | |
NDSI | 0.40 | 21.51 | 38.16 | 85.670 | 0.684 | 0.40 | 29.02 | 62.81 | 75.520 | 0.426 |
0.60 | 19.01 | 31.16 | 87.266 | 0.727 | 0.57 | 27.52 | 56.70 | 79.008 | 0.523 | |
0.70 | 18.30 | 28.68 | 88.094 | 0.737 | 0.60 | 27.71 | 55.87 | 79.552 | 0.540 | |
0.80 | 19.59 | 28.40 | 87.763 | 0.735 | 0.65 | 30.04 | 59.30 | 78.592 | 0.529 | |
AGEI | 1.80 | 17.02 | 24.74 | 89.870 | 0.772 | 2.50 | 23.76 | 34.00 | 85.630 | 0.705 |
1.85 | 17.00 | 23.50 | 90.249 | 0.785 | 2.65 | 22.98 | 33.90 | 86.100 | 0.710 | |
2.00 | 17.17 | 26.90 | 89.910 | 0.774 | 2.55 | 23.03 | 34.82 | 85.777 | 0.705 | |
1.90 | 17.78 | 26.11 | 90.020 | 0.775 | 2.70 | 22.45 | 36.00 | 85.532 | 0.696 | |
RegionIII | RegionIV | |||||||||
ML | -- | 26.85 | 24.01 | 88.024 | 0.734 | -- | 31.44 | 35.50 | 82.691 | 0.650 |
Red/SWIR | 1.80 | 24.31 | 25.19 | 88.626 | 0.745 | 3.60 | 25.60 | 36.43 | 85.054 | 0.687 |
1.90 | 24.52 | 23.56 | 88.710 | 0.747 | 3.65 | 25.50 | 35.79 | 85.163 | 0.690 | |
2.00 | 24.58 | 24.21 | 88.760 | 0.748 | 3.70 | 25.44 | 35.50 | 85.218 | 0.692 | |
2.05 | 25.07 | 24.08 | 88.626 | 0.745 | 3.80 | 25.67 | 35.17 | 85.145 | 0.691 | |
NIR/SWIR | 1.30 | 25.47 | 24.59 | 88.409 | 0.741 | 2.50 | 24.29 | 35.85 | 85.545 | 0.696 |
1.40 | 24.64 | 24.94 | 88.593 | 0.744 | 2.60 | 24.77 | 35.10 | 85.636 | 0.698 | |
1.50 | 26.38 | 24.55 | 88.109 | 0.735 | 2.70 | 24.54 | 35.71 | 85.691 | 0.699 | |
1.60 | 26.70 | 23.70 | 88.092 | 0.735 | 2.80 | 25.16 | 34.26 | 85.654 | 0.703 | |
NDSI | 0.30 | 24.05 | 28.89 | 87.592 | 0.724 | 0.4 | 25.29 | 54.49 | 81.673 | 0.582 |
0.35 | 23.37 | 26.20 | 88.560 | 0.743 | 0.5 | 25.77 | 48.75 | 83.164 | 0.626 | |
0.40 | 23.32 | 24.82 | 88.960 | 0.752 | 0.7 | 27.59 | 37.03 | 84.527 | 0.676 | |
0.50 | 25.08 | 23.89 | 88.643 | 0.746 | 0.8 | 33.52 | 35.41 | 81.364 | 0.667 | |
AGEI | 1.40 | 21.65 | 24.14 | 89.526 | 0.763 | 3.00 | 23.17 | 35.44 | 86.509 | 0.709 |
1.50 | 21.72 | 23.12 | 89.794 | 0.769 | 3.10 | 23.12 | 33.28 | 86.673 | 0.716 | |
1.55 | 22.26 | 23.03 | 89.677 | 0.767 | 3.15 | 23.44 | 34.18 | 86.545 | 0.712 | |
1.60 | 22.54 | 22.84 | 89.643 | 0.766 | 3.20 | 23.36 | 33.66 | 86.636 | 0.715 |
Classifiers | L Non-Glacier S Non-Glacier | L Glacier S Glacier | L Non-Glacier S Glacier | L Glacier S Non-Glacier |
---|---|---|---|---|
Red/SWIR | 63.866 | 32.376 | 0.203 | 3.553 |
NIR/SWIR | 66.149 | 30.832 | 0.624 | 2.393 |
AGEI | 64.409 | 32.788 | 0.551 | 2.249 |
ML classification | 59.390 | 37.771 | 0.937 | 1.900 |
NDSI | 62.934 | 34.253 | 1.118 | 1.693 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, X.; Shi, C.; Yan, D. Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier Mapping Using Landsat Imagery. Water 2019, 11, 1223. https://doi.org/10.3390/w11061223
Zhang M, Wang X, Shi C, Yan D. Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier Mapping Using Landsat Imagery. Water. 2019; 11(6):1223. https://doi.org/10.3390/w11061223
Chicago/Turabian StyleZhang, Meng, Xuhong Wang, Chenlie Shi, and Dajiang Yan. 2019. "Automated Glacier Extraction Index by Optimization of Red/SWIR and NIR /SWIR Ratio Index for Glacier Mapping Using Landsat Imagery" Water 11, no. 6: 1223. https://doi.org/10.3390/w11061223