A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy)
"> Figure 1
<p>(<b>a</b>) Location of Basilicata with the 20 administrative units (NUTS2—Nomenclature of territorial units for statistics) of Italy and in red the footprint of Landsat path 188 and row 032; (<b>b</b>) DEM (Digital Elevation Model) of the study area with the main natural toponyms; (<b>c</b>) investigated SACs of Natura 2000 network of the Basilicata. Sites discussed in depth as case studies are circled, whereas in cyan, the main inner water bodies are reported.</p> "> Figure 2
<p>Flowchart of the procedure designed for estimating the Degree of Habitat Consistency (DHC) and identifying the Habitat Priority Areas (HPA) at level of a single protected site (SCI/SAC level statistics) or among all the sites of the network (network level statistics).</p> "> Figure 3
<p>Contrasting features of adjacent habitats within the Monti Li Foi SAC: (<b>a</b>) Map of habitats; (<b>b</b>) zoom on the analyzed habitats (red box): 9210 (<span class="html-italic">Apennine beech forests with Taxus and Ilex</span>), characterized by wooded vegetation, borders on herbaceous species 6510 (<span class="html-italic">Lowland hay meadows—Alopecurus pratensis, Sanguisorba officinalis</span>); (<b>c</b>) map of the 2009 anomalies overlapped with the 2008 orthophoto: pixels belonging to the beech forest and falling at the border between the two habitats are almost all marked as degraded, (<b>d</b>) 2008 orthophoto without overlap.</p> "> Figure 4
<p>Monte Vulture SAC: (<b>a</b>) Map of habitats; (<b>b</b>) map of habitat priority areas; (<b>c</b>) map of the degree of habitat consistency (DHC) index. Maps (<b>b</b>,<b>c</b>) are obtained on the statistics of 2009 data at SAC level.</p> "> Figure 5
<p>Monte Vulture SAC: (<b>a</b>) Maps of relative anomalies (2009); zoom of negative anomalies superimposed on the orthophoto within (<b>b</b>) habitat 9260 (<span class="html-italic">Castanea sativa woods</span>) due to abandonment of marginal areas and bad management of forest areas; (<b>c</b>) habitat 9510* (<span class="html-italic">Southern Apennine Abies alba forests</span>) due to grazing pressure and unfavorable biotope conditions; (<b>d</b>) habitat 91B0 (<span class="html-italic">Thermophilous Fraxinus angustifolia</span> woods) due to tourism flows favoring the growth of synanthropic and alien species.</p> "> Figure 6
<p>Monti Li Foi SAC: (<b>a</b>) Map of habitats; (<b>b</b>) map of habitat priority areas; (<b>c</b>) map of the degree of habitat consistency (DHC) index. Maps (<b>b</b>,<b>c</b>) are obtained on the statistics of 2009 data at SAC level.</p> "> Figure 7
<p>Monti Li Foi SAC: (<b>a</b>) Map of relative anomalies (2009); zoom of negative anomalies superimposed on the orthophoto within (<b>b</b>) habitat 6210* and 6510 (<span class="html-italic">Semi-natural dry grasslands and scrubland facies on calcareous substrates—Festuco-Brometalia with important orchid sites and Lowland hay meadows—Alopecurus pratensis, Sanguisorba officinalis</span>), highlighted in yellow, as examples of good vegetation conditions maintained, in the case of the habitat 6510, by sustainable agricultural practices; (<b>c</b>) habitat 9210 (<span class="html-italic">Apennine beech forests with Taxus and Ilex</span>) due to overgrazing along with the lack of silvicultural practices.</p> "> Figure 8
<p>Bosco Pantano di Policoro SAC: (<b>a</b>) Map of habitats; (<b>b</b>) map of habitat priority areas; (<b>c</b>) map of the degree of habitat consistency (DHC) index. Maps (<b>b</b>,<b>c</b>) are obtained on the statistics of 2009 data at SAC level.</p> "> Figure 9
<p>Bosco Pantano di Policoro SAC: (<b>a</b>) Map of relative anomalies (2009); zoom of negative anomalies superimposed on the orthophoto within (<b>b</b>) habitat 91F0 (<span class="html-italic">Riparian mixed forests of Quercus robur. Ulmus laevis and Ulmus minor, Fraxinus excelsior, or Fraxinus angustifolia, along the great rivers</span>), associated with the fragmented structure of vegetation patches due to salinization phenomena and invasion of halophytic species; (<b>c</b>) habitat 92D0 with 1410 (<span class="html-italic">southern riparian galleries and thickets with Mediterranean salt meadows—Juncetalia maritime</span>) as a consequence of hydrological oscillations in water regime (the Sinni River, in cyan, crosses the habitat).</p> "> Figure 10
<p>Example of a map of the standardized NDVI (<math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>NDVI</mi> </mrow> <mo stretchy="true">¯</mo> </mover> </mrow> </semantics></math>) for the SAC of Monte Vulture. Elaboration based on the Landsat image acquired on 27 July 2009.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Basilicata Region
2.1.2. The Natura 2000 Network of the Basilicata Region
- Special Protection Area (SPA): 1% of the population of listed vulnerable species or wetlands of international importance for migratory waterfowl;
- Sites of Community Importance (SCI): habitat types listed in the directive’s Annex I and the habitats of the species listed in its Annex II;
- Special Areas of Conservation (SAC): priority SCI sites that are most threatened and/or most important for conservation where the conservation necessary measures have been planned for the maintenance or restoration of natural habitats and peculiar species.
2.2. Data
2.2.1. Natura 2000 Habitat Boundaries
- Monte Vulture
- Monti Li Foi
- Bosco Pantano di Policoro
2.2.2. Satellite Data
2.2.3. Field Data
2.2.4. Auxiliary Data
2.3. Methods
2.3.1. Degree of Habitat Consistency (DHC) and Habitat Priority Areas (HPA)
- Estimation of mean values μh(·) and standard deviation σh(·) of NDVI for each habitat type h with h = 1,… n; where n = number of different habitats in the considered protected area level (single SAC or the overall NETwork).
- Standardization of the NDVI distribution for each pixel of the given habitat type h within the protected area:
- Estimation of the LW and UW thresholds for the standardized NDVI distribution () of each habitat as defined in Equations (2) and (3).
- Mapping the negative outliers to identify the Habitat Priority Areas (HPA) within the SAC by applying the habitat LW thresholds to the map:
- Evaluation of the Degree of Habitat Consistency (DHC) for each habitat h with respect to the protected site (SAC) or the network (NET).
- Assessment of the global status of the protected areas by considering all the enclosed habitats
2.3.2. Validation Procedure
3. Results
3.1. Accuracy and Exportability
3.2. Test Sites Habitat Status
3.2.1. Monte Vulture
3.2.2. Monti Li Foi
3.2.3. Bosco Pantano di Policoro
3.3. General Conditions of the Overall Natura 2000 Network of Basilicata
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmesan, C. Ecological and Evolutionary Responses to Recent Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Evans, D. Building the European Union’s Natura 2000 Network. Nat. Conserv. 2012, 1, 11–26. [Google Scholar] [CrossRef]
- European Commission. Our Life Insurance. Our Natural Capital: An EU Biodiversity Strategy to 2020; COM(2011) 244 Final; Publications Office of the European Union: Brussels, Belgium, 2011. [Google Scholar]
- Commission of the European Communities. Composite Report on the Conservation Status of Habitat Types and Species as Required under Article 17 of the Habitats Directive; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P. Remote Sensing for Conservation Monitoring: Assessing Protected Areas, Habitat Extent, Habitat Condition, Species Diversity, and Threats. Ecol. Indic. 2013, 33, 45–59. [Google Scholar] [CrossRef]
- Requena-Mullor, J.M.; Reyes, A.; Escribano, P.; Cabello, J. Assessment of Ecosystem Functioning from Space: Advancements in the Habitats Directive Implementation. Ecol. Indic. 2018, 89, 893–902. [Google Scholar] [CrossRef]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; García Millán, V.E.; Strasser, T.; Vanden Borre, J.; Toon, S.; Michael, F. Remote Sensing for Mapping Natural Habitats and Their Conservation Status—New Opportunities and Challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental Science: Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Gamon, J.A. Remote Sensing of Terrestrial Plant Biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Forstmaier, A.; Shekhar, A.; Chen, J. Mapping of Eucalyptus in Natura 2000 Areas Using Sentinel 2 Imagery and Artificial Neural Networks. Remote Sens. 2020, 12, 2176. [Google Scholar] [CrossRef]
- Tarantino, C.; Forte, L.; Blonda, P.; Vicario, S.; Tomaselli, V.; Beierkuhnlein, C.; Adamo, M. Intra-Annual Sentinel-2 Time-Series Supporting Grassland Habitat Discrimination. Remote Sens. 2021, 13, 277. [Google Scholar] [CrossRef]
- Mikula, K.; Kollar, M.; Ozvat, A.A.; Ambroz, M.; Cahojova, L.; Jarolimek, I.; Sibik, J.; Sibikova, M. Natural Numerical Networks for Natura 2000 Habitats Classification by Satellite Images. arXiv 2021. [Google Scholar] [CrossRef]
- Mikula, K.; Šibíková, M.; Ambroz, M.; Kollár, M.; Ožvat, A.A.; Urbán, J.; Jarolímek, I.; Šibík, J. NaturaSat—A Software Tool for Identification, Monitoring and Evaluation of Habitats by Remote Sensing Techniques. Remote Sens. 2021, 13, 3381. [Google Scholar] [CrossRef]
- Ursu, A.; Stoleriu, C.C.; Ion, C.; Jitariu, V.; Enea, A. Romanian Natura 2000 Network: Evaluation of the Threats and Pressures through the Corine Land Cover Dataset. Remote Sens. 2020, 12, 2075. [Google Scholar] [CrossRef]
- Belcore, E.; Pittarello, M.; Lingua, A.M.; Lonati, M. Mapping Riparian Habitats of Natura 2000 Network (91E0*, 3240) at Individual Tree Level Using UAV Multi-Temporal and Multi-Spectral Data. Remote Sens. 2021, 13, 1756. [Google Scholar] [CrossRef]
- Alvarez-Vanhard, E.; Houet, T.; Mony, C.; Lecoq, L.; Corpetti, T. Can UAVs Fill the Gap between in Situ Surveys and Satellites for Habitat Mapping? Remote Sens. Environ. 2020, 243, 111780. [Google Scholar] [CrossRef]
- Willis, K.S. Remote Sensing Change Detection for Ecological Monitoring in United States Protected Areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Díaz Varela, R.A.; Ramil Rego, P.; Calvo Iglesias, S.; Muñoz Sobrino, C. Automatic Habitat Classification Methods Based on Satellite Images: A Practical Assessment in the NW Iberia Coastal Mountains. Environ. Monit. Assess. 2008, 144, 229–250. [Google Scholar] [CrossRef] [PubMed]
- Gounaridis, D.; Zaimes, G.N.; Koukoulas, S. Quantifying Spatio-Temporal Patterns of Forest Fragmentation in Hymettus Mountain, Greece. Comput. Environ. Urban Syst. 2014, 46, 35–44. [Google Scholar] [CrossRef]
- Buchanan, G.M.; Nelson, A.; Mayaux, P.; Hartley, A.; Donald, P.F. Delivering a Global, Terrestrial, Biodiversity Observation System through Remote Sensing. Conserv. Biol. 2009, 23, 499–502. [Google Scholar] [CrossRef]
- Bunce, R.G.H.; Bogers, M.M.B.; Evans, D.; Halada, L.; Jongman, R.H.G.; Mucher, C.A.; Bauch, B.; de Blust, G.; Parr, T.W.; Olsvig-Whittaker, L. The Significance of Habitats as Indicators of Biodiversity and Their Links to Species. Ecol. Indic. 2013, 33, 19–25. [Google Scholar] [CrossRef]
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and Interpreting Historical Land Cover/Land Use Changes in a Natura 2000 Site Using Earth Observational Data: The Case of Nestos Delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Jongman, R.H.G. Biodiversity Observation from Local to Global. Ecol. Indic. 2013, 33, 1–4. [Google Scholar] [CrossRef]
- Gibbons, P.; Briggs, S.V.; Ayers, D.A.; Doyle, S.; Seddon, J.; McElhinny, C.; Jones, N.; Sims, R.; Doody, J.S. Rapidly Quantifying Reference Conditions in Modified Landscapes. Biol. Conserv. 2008, 141, 2483–2493. [Google Scholar] [CrossRef]
- Liu, S.; Liu, R.; Liu, Y. Spatial and Temporal Variation of Global LAI during 1981–2006. J. Geogr. Sci. 2010, 20, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Murthy, M.S.R.; Thomas, A.P. The Progress on Remote Sensing Technology in Identifying Tropical Forest Degradation: A Synthesis of the Present Knowledge and Future Perspectives. Environ. Earth Sci. 2010, 64, 731–741. [Google Scholar] [CrossRef]
- Bajocco, S.; De Angelis, A.; Salvati, L. A Satellite-Based Green Index as a Proxy for Vegetation Cover Quality in a Mediterranean Region. Ecol. Indic. 2012, 23, 578–587. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of Air Pollution on Human and Ecosystem Health, and Implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018. [Google Scholar]
- Salvati, L.; Perini, L.; Sabbi, A.; Bajocco, S. Climate Aridity and Land Use Changes: A Regional-Scale Analysis. Geogr. Res. 2012, 50, 193–203. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau. Remote Sens. 2013, 5, 4255. [Google Scholar] [CrossRef] [Green Version]
- Jian, J.; Jiang, H.; Zhou, G.; Jiang, Z.; Yu, S.; Peng, S.; Liu, S.; Wang, J. Mapping the Vegetation Changes in Giant Panda Habitat Using Landsat Remotely Sensed Data. Int. J. Remote Sens. 2011, 32, 1339–1356. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived {NDVI} to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Levin, N.; Shmida, A.; Levanoni, O.; Tamari, H.; Kark, S. Predicting Mountain Plant Richness and Rarity from Space Using Satellite-Derived Vegetation Indices. Divers. Distrib. 2007, 13, 692–703. [Google Scholar] [CrossRef]
- Simoniello, T.; Lanfredi, M.; Liberti, M.; Coppola, R.; Macchiato, M. Estimation of Vegetation Cover Resilience from Satellite Time Series. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 511–546. [Google Scholar] [CrossRef] [Green Version]
- Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Salvati, L.; Perini, L. Linking Trajectories of Land Change, Land Degradation Processes and Ecosystem Services. Environ. Res. 2016, 147, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the Ecological Niche of Long-Term Land Use Changes: The Role of Biophysical Factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Gizzi, F.T.; Proto, M.; Potenza, M.R. The Basilicata Region (Southern Italy): A Natural and ‘Human-Built’ Open-Air Laboratory for Manifold Studies. Research Trends over the Last 24 Years (1994–2017). Geomat. Nat. Hazards Risk 2019, 10, 433–464. [Google Scholar] [CrossRef]
- Carone, M.T.; Guisan, A.; Cianfrani, C.; Simoniello, T.; Loy, A.; Carranza, M.L. A Multi-Temporal Approach to Model Endangered Species Distribution in Europe. The Case of the Eurasian Otter in Italy. Ecol. Model. 2014, 274, 21–28. [Google Scholar] [CrossRef]
- Calvello, M.; Esposito, F.; Trippetta, S. An Integrated Approach for the Evaluation of Technological Hazard Impacts on Air Quality: The Case of the Val d’Agri Oil/Gas Plant. Nat. Hazards Earth Syst. Sci. 2014, 14, 2133–2144. [Google Scholar] [CrossRef] [Green Version]
- D’Emilio, M.; Coluzzi, R.; Macchiato, M.; Imbrenda, V.; Ragosta, M.; Sabia, S.; Simoniello, T. Satellite Data and Soil Magnetic Susceptibility Measurements for Heavy Metals Monitoring: Findings from Agri Valley (Southern Italy). Environ. Earth Sci. 2018, 77, 63. [Google Scholar] [CrossRef]
- Carone, M.T.; Simoniello, T.; Manfreda, S.; Caricato, G. Watershed Influence on Fluvial Ecosystems: An Integrated Methodology for River Water Quality Management. Environ. Monit. Assess. 2009, 152, 327–342. [Google Scholar] [CrossRef] [PubMed]
- D’Emilio, M.; Macchiato, M.; Ragosta, M.; Simoniello, T. A Method for the Integration of Satellite Vegetation Activities Observations and Magnetic Susceptibility Measurements for Monitoring Heavy Metals in Soil. J. Hazard. Mater. 2012, 241–242, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, G.; Tuzio, A.C.; Xylogiannis, E.; Kolimenakis, A.; Dichio, B. Carbon Budget in a Mediterranean Peach Orchard under Different Management Practices. Agric. Ecosyst. Environ. 2017, 238, 104–113. [Google Scholar] [CrossRef]
- Montanaro, G.; Amato, D.; Briglia, N.; Russo, C.; Nuzzo, V. Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension. Sustainability 2021, 13, 8750. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Salvati, L.; Sinisi, R.; Summa, V. Going Conservative or Conventional? Investigating Farm Management Strategies in between Economic and Environmental Sustainability in Southern Italy. Agronomy 2022, 12, 597. [Google Scholar] [CrossRef]
- Fiore, A.; Lardo, E.; Montanaro, G.; Laterza, D.; Loiudice, C.; Berloco, T.; Dichio, B.; Xiloyannis, C. Mitigation of Global Warming Impact of Fresh Fruit Production through Climate Smart Management. J. Clean. Prod. 2018, 172, 3634–3643. [Google Scholar] [CrossRef]
- Lanfredi, M.; Coppola, R.; D’Emilio, M.; Imbrenda, V.; Macchiato, M.; Simoniello, T. A Geostatistics-Assisted Approach to the Deterministic Approximation of Climate Data. Environ. Model. Softw. 2015, 66, 69–77. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Lanfredi, M.; Coluzzi, R.; Imbrenda, V.; Macchiato, M.; Simoniello, T. Analyzing Space–Time Coherence in Precipitation Seasonality across Different European Climates. Remote Sens. 2020, 12, 171. [Google Scholar] [CrossRef] [Green Version]
- Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Giorgio, G.A.; Lanfredi, M.; Macchiato, M.; Ragosta, M.; Simoniello, T.; Telesca, V. Investigating Climate Variability and Long-Term Vegetation Activity across Heterogeneous Basilicata Agroecosystems. Geomat. Nat. Hazards Risk 2019, 10, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Lanorte, A.; Cillis, G.; Calamita, G.; Nolè, G.; Pilogallo, A.; Tucci, B.; De Santis, F. Integrated Approach of RUSLE, GIS and ESA Sentinel-2 Satellite Data for Post-Fire Soil Erosion Assessment in Basilicata Region (Southern Italy). Geomat. Nat. Hazards Risk 2019, 10, 1563–1595. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C.; Gioia, A.; Consoli, G.G.; Iacobellis, V.; Giuzio, L.; Cantisani, A.; Sole, A. Flood-Prone Areas Assessment Using Linear Binary Classifiers Based on Flood Maps Obtained from 1D and 2D Hydraulic Models. Nat. Hazards 2015, 79, 735–754. [Google Scholar] [CrossRef]
- Perrone, A.; Canora, F.; Calamita, G.; Bellanova, J.; Serlenga, V.; Panebianco, S.; Tragni, N.; Piscitelli, S.; Vignola, L.; Doglioni, A.; et al. A Multidisciplinary Approach for Landslide Residual Risk Assessment: The Pomarico Landslide (Basilicata Region, Southern Italy) Case Study. Landslides 2021, 18, 353–365. [Google Scholar] [CrossRef]
- Lacava, T.; Ciancia, E.; Faruolo, M.; Pergola, N.; Satriano, V.; Tramutoli, V. On the Potential of RST-FLOOD on Visible Infrared Imaging Radiometer Suite Data for Flooded Areas Detection. Remote Sens. 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Samela, C. A Digital Elevation Model Based Method for a Rapid Estimation of Flood Inundation Depth. J. Flood Risk Manag. 2019, 12, e12541. [Google Scholar] [CrossRef] [Green Version]
- Perrone, A. Lessons Learned by 10 Years of Geophysical Measurements with Civil Protection in Basilicata (Italy) Landslide Areas. Landslides 2021, 18, 1499–1508. [Google Scholar] [CrossRef]
- Imbrenda, V.; D’Emilio, M.; Lanfredi, M.; Ragosta, M.; Simoniello, T. Indicators of Land Degradation Vulnerability Due to Anthropic Factors: Tools for an Efficient Planning. In Geographic Information Analysis for Sustainable Development and Economic Planning: New Technologies; IGI Global: Hershey, PA, USA, 2013; pp. 87–101. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Hook, S.J.; Schott, J.R.; Raqueno, N.G.; Markham, B.L. Landsat-5 Thematic Mapper Thermal Band Calibration Update. IEEE Geosci. Remote Sens. Lett. 2007, 4, 552–555. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.; Deering, D. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA: Washington, DC, USA, 1973.
- Feeley, K.J.; Gillespie, T.W.; Terborgh, J.W. The Utility of Spectral Indices from Landsat ETM+ for Measuring the Structure and Composition of Tropical Dry Forests1. Biotropica 2005, 37, 508–519. [Google Scholar] [CrossRef]
- Quaranta, G.; Salvia, R.; Salvati, L.; Paola, V.D.; Coluzzi, R.; Imbrenda, V.; Simoniello, T. Long-Term Impacts of Grazing Management on Land Degradation in a Rural Community of Southern Italy: Depopulation Matters. Land Degrad. Dev. 2020, 31, 2379–2394. [Google Scholar] [CrossRef]
- Coluzzi, R.; Fascetti, S.; Imbrenda, V.; Italiano, S.S.P.; Ripullone, F.; Lanfredi, M. Exploring the Use of Sentinel-2 Data to Monitor Heterogeneous Effects of Contextual Drought and Heatwaves on Mediterranean Forests. Land 2020, 9, 325. [Google Scholar] [CrossRef]
- Hawkins, D.M. Identification of Outliers; Monographs on Applied Probability and Statistics; Hawkins, D.M., Ed.; Springer: Dordrecht, The Netherlands, 1980; Volume 11, ISBN 978-94-015-3994-4. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis. Addison-Wesley Publishing Company Reading, Mass.—Menlo Park, Cal., London, Amsterdam, Don Mills, Ontario, Sydney 1977, XVI, 688 S. Biom. J. 1981, 23, 413–414. [Google Scholar] [CrossRef]
- Lanfredi, M.; Coppola, R.; Simoniello, T.; Coluzzi, R.; D’Emilio, M.; Imbrenda, V.; Macchiato, M. Early Identification of Land Degradation Hotspots in Complex Bio-Geographic Regions. Remote Sens. 2015, 7, 8154–8179. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.; Simoniello, T.; Carone, M.; Coppola, R.; D’Emilio, M.; Macchiato, M. Mapping Badland Areas Using LANDSAT TM/ETM Satellite Imagery and Morphological Data. Geomorphology 2009, 106, 333–343. [Google Scholar] [CrossRef]
- Stenzel, S.; Feilhauer, H.; Mack, B.; Metz, A.; Schmidtlein, S. Remote Sensing of Scattered Natura 2000 Habitats Using a One-Class Classifier. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 211–217. [Google Scholar] [CrossRef]
- Armiero, M. A Rugged Nation: Mountains and the Making of Modern Italy; The White Horse Press: Winwick, UK, 2011. [Google Scholar]
- Spicciarelli, R.; Marchetto, A. The Contrasting Evolution of Twin Volcanic Lakes (Monticchio, Mt. Vulture, Italy) Inferred from Literature Records. Adv. Oceanogr. Limnol. 2019, 10, 44–56. [Google Scholar] [CrossRef]
- Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M. Land Cover Changes and Forest Landscape Evolution (1985–2009) in a Typical Mediterranean Agroforestry System (High Agri Valley). Nat. Hazards Earth Syst. Sci. 2015, 15, 1201–1214. [Google Scholar] [CrossRef] [Green Version]
- Basilicata Region. Ten Year Program of Forestation 2013–2022; Regione Basilicata: Potenza, Italy, 2013. [Google Scholar]
- Colucci, F.; Menegoni, P.; Trotta, C. Natura 2000 In Basilicata: Percorsi Di “Contaminazione” Tra Natura, Scienza, Arte e Cultura Dei Luoghi. In Proceedings of the Convegno di Aliano (Matera), Roma, Italy, 4–6 April 2013; p. 137. [Google Scholar]
- Freschi, P.; Musto, M.; Paolino, R.; Cosentino, C. Grazing and Biodiversity Conservation: Highlights on a Natura 2000 Network Site. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; Springer: Berlin/Heidelberg, Germany, 2015; pp. 271–288. ISBN 3-319-16356-6. [Google Scholar]
- Poschlod, P.; WallisDeVries, M.F. The Historical and Socioeconomic Perspective of Calcareous Grasslands—Lessons from the Distant and Recent Past. Biol. Conserv. 2002, 104, 361–376. [Google Scholar] [CrossRef]
- Margiotta, S.; Manera, C.; Sivolella, C.; Fabrizio, D. Evolution of the Metaponto District, Southern Italy: From Land Reform to New Sustainable Scenarios. Landsc. Res. 2015, 40, 174–191. [Google Scholar] [CrossRef]
- Muzzillo, R.; Zuffianò, L.E.; Rizzo, E.; Canora, F.; Capozzoli, L.; Giampaolo, V.; De Giorgio, G.; Sdao, F.; Polemio, M. Seawater Intrusion Proneness and Geophysical Investigations in the Metaponto Coastal Plain (Basilicata, Italy). Water 2021, 13, 53. [Google Scholar] [CrossRef]
- Satriani, A.; Loperte, A.; Imbrenda, V.; Lapenna, V. Geoelectrical Surveys for Characterization of the Coastal Saltwater Intrusion in Metapontum Forest Reserve (Southern Italy). Available online: https://www.hindawi.com/journals/ijge/2012/238478/ (accessed on 27 June 2018).
- Imbrenda, V.; Coluzzi, R.; Lanfredi, M.; Loperte, A.; Satriani, A.; Simoniello, T. Analysis of Landscape Evolution in a Vulnerable Coastal Area under Natural and Human Pressure. Geomat. Nat. Hazards Risk 2018, 9, 1249–1279. [Google Scholar] [CrossRef] [Green Version]
- De Capua, E.L. The Policoro wood: History and vegetation. Ann. Accad. Ital. Di Sci. For. 1995, 44, 183–233. [Google Scholar]
- Bentivenga, M.; Giano, S.I.; Piccarreta, M. Recent Increase of Flood Frequency in the Ionian Belt of Basilicata Region, Southern Italy: Human or Climatic Changes? Water 2020, 12, 2062. [Google Scholar] [CrossRef]
- De Capua, E.; Nigro, C.; Labriola, F. Forests, Biodiversity, Territory and Environmental Variations. Aims and Activities in the Province of Matera, Italy. For. J. Silvic. For. Ecol. 2005, 2, 110–129. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, O.P. The Need for Management of Nature Conservation Sites Designated under Natura 2000. J. Appl. Ecol. 1998, 35, 968–973. [Google Scholar] [CrossRef]
- Mexia, T.; Lecomte, X.; Caldeira, M.C.; Bugalho, M.N. Conservation Zones Increase Habitat Heterogeneity of Certified Mediterranean Oak Woodlands. For. Ecol. Manag. 2022, 504, 119811. [Google Scholar] [CrossRef]
- Albrecht, M.A.; Becknell, R.E.; Long, Q. Habitat Change in Insular Grasslands: Woody Encroachment Alters the Population Dynamics of a Rare Ecotonal Plant. Biol. Conserv. 2016, 196, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Ratajczak, Z.; Nippert, J.B.; Collins, S.L. Woody Encroachment Decreases Diversity across North American Grasslands and Savannas. Ecology 2012, 93, 697–703. [Google Scholar] [CrossRef]
- Borre, J.V.; Paelinckx, D.; Mücher, C.A.; Kooistra, L.; Haest, B.; Blust, G.D.; Schmidt, A.M. Integrating Remote Sensing in Natura 2000 Habitat Monitoring: Prospects on the Way Forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Cheţan, M.A.; Dornik, A.; Urdea, P. Analysis of Recent Changes in Natural Habitat Types in the Apuseni Mountains (Romania), Using Multi-Temporal Landsat Satellite Imagery (1986–2015). Appl. Geogr. 2018, 97, 161–175. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Pignatti, S.; Acito, N.; Amato, U.; Casa, R.; Castaldi, F.; Coluzzi, R.; De Bonis, R.; Diani, M.; Imbrenda, V.; Laneve, G. Environmental Products Overview of the Italian Hyperspectral Prisma Mission: The SAP4PRISMA Project. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3997–4000. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.-J.; Kim, C.-K.; Lee, H.-W.; Lee, W.-K. Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Sinha, P.; Kumar, L. Binary Images in Seasonal Land-Cover Change Identification: A Comparative Study in Parts of New South Wales, Australia. Int. J. Remote Sens. 2013, 34, 2162–2186. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Fidelibus, M.D.; Zanin, G.M.; Parisi, A.; Spilotro, G. Dynamics of the Basilicata Ionian Coast: Human and Natural Drivers. Rend. Fis. Acc. Lincei 2020, 31, 353–364. [Google Scholar] [CrossRef]
- Guariglia, A.; Buonamassa, A.; Losurdo, A.; Saladino, R.; Trivigno, M.L.; Zaccagnino, A.; Colangelo, A. A Multisource Approach for Coastline Mapping and Identification of Shoreline Changes. Ann. Geophys. 2006, 4, 295–304. [Google Scholar] [CrossRef]
- Sabato, L.; Longhitano, S.G.; Gioia, D.; Cilumbriello, A.; Spalluto, L. Sedimentological and Morpho-Evolution Maps of the ‘Bosco Pantano Di Policoro’Coastal System (Gulf of Taranto, Southern Italy). J. Maps 2012, 8, 304–311. [Google Scholar] [CrossRef] [Green Version]
SAC | Habitat Code | Description | Area (ha) | Area (%) |
---|---|---|---|---|
3150 | Natural eutrophic lakes with Magnopotamion or Hydrocharition-type vegetation | 27.5 | 1.7 | |
6420 | Mediterranean tall humid herb grasslands of the Molinio-Holoschoenion | 7.5 | 0.5 | |
91B0 | Thermophilous Fraxinus angustifolia woods | 3.4 | 0.2 | |
Monte Vulture | 91E0* | Alluvial forests with Alnus glutinosa and Fraxinus excelsior | 21.9 | 1.4 |
IT9210210 | 91M0 | Pannonian-Balkanic turkey oak–sessile oak forests | 451.5 | 28.8 |
9220* | Apennine beech forests with Abies alba and beech forests with Abies nebrodensis | 290.4 | 18.5 | |
9260 | Castanea sativa woods | 693.1 | 44.2 | |
9510* | Southern Apennine Abies alba | 74.0 | 4.7 | |
3150 | Natural eutrophic lakes with Magnopotamion or Hydrocharition-type vegetation | 0.13 | 0.02 | |
3260 | Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation | 0.10 | 0.01 | |
6210 | Semi-natural dry grasslands and scrubland facies on calcareous substrates | 6.82 | 0.85 | |
6210* | Semi-natural dry grasslands and scrubland facies on calcareous substrates (*important orchid sites) | 71.49 | 8.88 | |
Monti Li Foi | 6210,6430 | Semi-natural dry grasslands and scrubland facies on calcareous substrates/Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels | 9.17 | 1.14 |
IT9210215 | 6430 | Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels | 1.32 | 0.16 |
6510 | Lowland hay meadows | 44.15 | 5.48 | |
8130, 8220 | Western Mediterranean and thermophilous scree/ Siliceous rocky slopes with chasmophytic vegetation | 14.05 | 1.75 | |
9180* | Tilio-Acerion forests of slopes, screes and ravinen | 2.70 | 0.34 | |
91M0 | Pannonian-Balkanic turkey oak–sessile oak forests | 131.41 | 16.32 | |
9210 | Apennine beech forests with Taxus and Ilex | 523.9 | 65.06 | |
1130 | Estuaries | 3.8 | 0.6 | |
1210, 2110, 2120, 2210, 2230, 2240 | Different Dune Habitats | 14.7 | 2.4 | |
1310, 1420 | Salicornia and other annuals colonizing mud and sand, Mediterranean and thermo-Atlantic halophilous scrubs | 12.6 | 2.0 | |
Bosco Pantano di Policoro | 1410, 6420 | Mediterranean salt meadows, Mediterranean tall humid herb grasslands of the Molinio-Holoschoenion | 55.3 | 8.9 |
IT9220055 | 1410, 92D0 | Mediterranean salt meadows, Southern riparian galleries and thickets | 154.9 | 24.9 |
2250*, 2260, 2230 | Coastal dunes with Juniperus spp, Cisto-Lavanduletalia dune sclerophyllous scrubs, Malcolmietalia dune grasslands | 31.9 | 5.1 | |
2260 | Cisto-Lavanduletalia dune sclerophyllous scrubs | 49.3 | 7.9 | |
3280 | Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba | 6.7 | 1.1 | |
91F0 | Riparian mixed forests of Quercus robur, Ulmus laevis, and Ulmus minor, Fraxinus excelsior, or Fraxinus angustifolia, along the great rivers | 144.1 | 23.2 | |
91F0, 92A0 | Fraxinus angustifolia, along the great rivers, Salix alba and Populus alba galleries | 53.6 | 8.6 | |
92D0 | Southern riparian galleries and thickets | 95.4 | 15.3 |
SAC | Code | OA | CE | OE |
---|---|---|---|---|
Monte Vulture | IT9210210 | 98 | 6 | 5 |
Monti Li Foi | IT9210215 | 97 | 7 | 6 |
Bosco Pantano di Policoro | IT9220055 | 93 | 11 | 6 |
Overall habitats | 97 | 8 | 6 |
2009 (%) | Extent 2009 (ha) | 1985 (%) | Extent 1985 (ha) | |
---|---|---|---|---|
Negative Outliers | 5.36 | 608.14 | 3.78 | 428.80 |
DHCNET | 93.78 | 10,637.88 | 95.69 | 10,854.66 |
Positive Outliers | 0.86 | 97.56 | 0.53 | 60.12 |
Total | 100 | 11,343.58 | 100 | 11,343.58 |
Habitat Code | Description | Anom. Area 2009 (%) | Anom. Area 2009 (ha) | Anom. Area 1985 (%) | Anom. Area 1985 (ha) | N. of Patches |
---|---|---|---|---|---|---|
6430 | Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels | 12.5 | 0.165 | 0 | 0 | 4 |
9260 | Castanea sativa woods | 9.23 | 63.94 | 7.34 | 50.84 | 3 |
91M0 | Pannonian-Balkanic turkey oak–sessile oak forests | 8.78 | 114.04 | 8.34 | 108.35 | 172 |
91F0 | Riparian mixed forests of Quercus robur, Ulmus laevis, and Ulmus minor, Fraxinus excelsior, or Fraxinus angustifolia, along the great rivers | 7.64 | 11.01 | 7.32 | 10.55 | 6 |
9220* | Apennine beech forests with Abies alba and beech forests with Abies nebrodensis | 7.61 | 89.58 | 6.23 | 73.34 | 443 |
3290 | Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion | 7.58 | 1.41 | 3.32 | 0.61 | 7 |
9510* | Southern Apennine Abies alba | 7.49 | 5.53 | 0.86 | 0.64 | 2 |
9210 | Apennine beech forests with Taxus and Ilex | 6,93 | 36.28 | 8.9 | 46.6 | 35 |
91E0* | Alluvial forests with Alnus glutinosa and Fraxinus excelsior | 2.6 | 0.57 | 9.52 | 2.09 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imbrenda, V.; Lanfredi, M.; Coluzzi, R.; Simoniello, T. A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy). Remote Sens. 2022, 14, 2699. https://doi.org/10.3390/rs14112699
Imbrenda V, Lanfredi M, Coluzzi R, Simoniello T. A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy). Remote Sensing. 2022; 14(11):2699. https://doi.org/10.3390/rs14112699
Chicago/Turabian StyleImbrenda, Vito, Maria Lanfredi, Rosa Coluzzi, and Tiziana Simoniello. 2022. "A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy)" Remote Sensing 14, no. 11: 2699. https://doi.org/10.3390/rs14112699
APA StyleImbrenda, V., Lanfredi, M., Coluzzi, R., & Simoniello, T. (2022). A Smart Procedure for Assessing the Health Status of Terrestrial Habitats in Protected Areas: The Case of the Natura 2000 Ecological Network in Basilicata (Southern Italy). Remote Sensing, 14(11), 2699. https://doi.org/10.3390/rs14112699