Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension
<p>Schematic representation of the various interactions between managed (field) and natural ecosystems and the anthroposphere within an agricultural production context. Different fields (from 1 to 6) (white dashed areas) receive different amounts of inputs from the technosphere: <b>field #1</b>, do not receive any input; <b>field #2–4</b> receive increasing inputs which are used both on-site and at field scale (e.g., pesticides, chemical fertilizers, machinery, transportation); <b>field #5,6</b>, receive off-site technological inputs related to production steps occurring solely outside the field (e.g., transportation of olive to the mill, crushing, extraction and bottling of the olive oil). Note that the field, ecosystem and global frameworks (dashed box) have been drawn for orchard #5 for example purpose but they apply to all orchards. The flow of the ecosystems services (e.g., fruit/vegetable, soil erosion control, regulating atmospheric CO<sub>2</sub>) from ecosystems to the society (anthroposphere) and the potential flow of actions from society to ecosystems are reported as well. The broad arrows represent the emissions (from orchard to atmosphere) or removals (from atmosphere to orchard) of CO<sub>2</sub> or CO<sub>2</sub> equivalent (CO<sub>2</sub>eq).</p> "> Figure 2
<p>Values of annual trees and cover crop net primary productivity (NPP) measured at a Mediterranean peach orchard under different management options. Bars are SE and refers to the sum of tree and cover crop NPP; comparing the total NPP values for sustainable and conventional plot. * indicates significant differences (Student’s <span class="html-italic">t</span>-test, α = 0.05). Redrawn from [<a href="#B39-sustainability-13-08750" class="html-bibr">39</a>].</p> "> Figure 3
<p>Schematic of the main C fluxes accounted within the Net Ecosystem Carbon Balance (NECB) framework highlighting the lateral transport associated to the anthropogenic activities. <span class="html-italic">R</span><sub>h</sub> = heterotrophic respiration; VOC = volatile organic compound; SOC = soil organic carbon; wood = structural above and belowground wood.</p> "> Figure 4
<p>Values of annual Net Ecosystem Carbon Balance (NECB) in various tree species. Peach data are redrawn from [<a href="#B39-sustainability-13-08750" class="html-bibr">39</a>]; apple and grape from [<a href="#B50-sustainability-13-08750" class="html-bibr">50</a>,<a href="#B51-sustainability-13-08750" class="html-bibr">51</a>].</p> "> Figure 5
<p>Illustration of the three pools at cultivated field whose C stock variations are accounted within the IPCC procedures [<a href="#B31-sustainability-13-08750" class="html-bibr">31</a>]. SOC = soil organic carbon, wood = coarse above- and belowground wood. Note that these three pools are also included in the NECB framework (see <a href="#sustainability-13-08750-f003" class="html-fig">Figure 3</a>).</p> "> Figure 6
<p>Schematic representation of typical inputs provided by the technosphere to the agrifood production used at field (on-site) or off-site. Note that the GHGs associated to these inputs are accounted within the life cycle assessment (LCA) framework.</p> "> Figure 7
<p>Mean annual carbon net removals and sequestrations (positive values) and emissions (negative values) determined at sustainable and conventional Mediterranean peach orchards by means of Net Ecosystem Carbon Balance (NECB), IPCC and Life Cycle Assessment (LCA) operational frameworks. Data are reworked from [<a href="#B39-sustainability-13-08750" class="html-bibr">39</a>] (NECB, IPCC) and [<a href="#B12-sustainability-13-08750" class="html-bibr">12</a>] (LCA). Note that LCA carbon data were from CO<sub>2</sub> equivalent conversion.</p> "> Figure 8
<p>Schematic frameworks accounting for CO<sub>2</sub> (e non-CO<sub>2</sub>) GHGs fluxes at ecosystem (NECB) and global (LCA, IPCC) dimensions. Note that organic and mineral fertilizers are on-site input from the technosphere.</p> ">
Abstract
:1. Introduction
2. Farm Dimension
3. Ecosystem Dimension
4. Global Dimension
5. Product Environmental Footprint: The Uniqueness of the Olive Sector
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Sustainable development goals. In Arab Development Outlook; United Nations: New York, NY, USA, 2016; Annex I; p. 155. [Google Scholar]
- Pacini, G.C.; Groot, J.C.J. Sustainability of agricultural management options under a systems perspective. In Encyclopedia of Sustainable Technologies, 1st ed.; Abraham, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 191–200. [Google Scholar]
- Robertson, G.P. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulselli, F.M.; Marchi, M. Global warming potential and the net carbon balance. Ref. Modul. Earth Syst. Environ. Sci. 2015. [Google Scholar] [CrossRef]
- Binswanger, H. Agricultural mechanization. World Bank Res. Obs. 1986, 1, 27–56. [Google Scholar] [CrossRef]
- Aguilera, E.; Vila-Traver, J.; Deemer, B.R.; Infante-Amate, J.; Guzmán, G.I.; González de Molina, M. Methane emissions from artificial waterbodies dominate the carbon footprint of irrigation: A study of transitions in the food–energy–water–climate nexus (Spain, 1900–2014). Environ. Sci. Technol. 2019, 53, 5091–5101. [Google Scholar] [CrossRef] [PubMed]
- Villarino, S.H.; Studdert, G.A.; Laterra, P. How does soil organic carbon mediate trade-offs between ecosystem services and agricultural production? Ecol. Indic. 2019, 103, 280–288. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Mosier, A.; Schimel, D.; Valentine, D.; Bronson, K.; Parton, W. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 1991, 350, 330–332. [Google Scholar] [CrossRef]
- Maris, S.C.; Teira-Esmatges, M.R.; Arbonés, A.; Rufat, J. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Sci. Total Environ. 2015, 538, 966–978. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Fiore, A.; Lardo, E.; Montanaro, G.; Laterza, D.; Loiudice, C.; Berloco, T.; Dichio, B.; Xiloyannis, C. Mitigation of global warming impact of fresh fruit production through climate smart management. J. Clean. Prod. 2018, 172, 3634–3643. [Google Scholar] [CrossRef]
- Lal, R. Beyond COP21: Potential and challenges of the 4 per Thousand initiative. J. Soil Water Conserv. 2016, 71, 20–25. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, G.S. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: A meta-analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Chen, J.; Gong, Y.; Wang, S.; Guan, B.; Balkovic, J.; Kraxner, F. To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Sci. Total Environ. 2019, 662, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- La Scala, N.; Marques, J.; Pereira, G.T.; Cora, J.E. Short-term temporal changes in the spatial variability model of CO2 emissions from a Brazilian bare soil. Soil Biol. Biochem. 2000, 32, 1459–1462. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pampuro, N.; Caffaro, F.; Cavallo, E. Farmers’ attitudes toward on-farm adoption of soil organic matter in piedmont region, Italy. Agriculture 2020, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- International Standard Organization. Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification; ISO: Geneva, Switzerland, 2018. [Google Scholar]
- Cordes, H.; Iriarte, A.; Villalobos, P. Evaluating the carbon footprint of Chilean organic blueberry production. Int. J. Life Cycle Assess. 2016, 21, 281–292. [Google Scholar] [CrossRef]
- Gadema, Z.; Oglethorpe, D. The use and usefulness of carbon labelling food: A policy perspective from a survey of UK supermarket shoppers. Food Policy 2011, 36, 815–822. [Google Scholar] [CrossRef]
- Feller, C.; Blanchart, E.; Bernoux, M.; Lal, R.; Manlay, R. Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries. Arch. Agron. Soil Sci. 2012, 58, S3–S21. [Google Scholar] [CrossRef]
- Manlay, R.J.; Feller, C.; Swift, M.J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2007, 119, 217–233. [Google Scholar] [CrossRef]
- Fageria, N.K. Soil fertility and plant nutrition research under field conditions: Basic principles and methodology. J. Plant Nutr. 2007, 30, 203–223. [Google Scholar] [CrossRef]
- Petersen, E.H.; Hoyle, F.C. Estimating the economic value of soil organic carbon for grains cropping systems in Western Australia. Soil Res. 2016, 54, 383. [Google Scholar] [CrossRef]
- Didion, M.; Blujdea, V.; Grassi, G.; Hernández, L.; Jandl, R.; Kriiska, K.; Lehtonen, A.; Saint-André, L. Models for reporting forest litter and soil C pools in national greenhouse gas inventories: Methodological considerations and requirements. Carbon Manag. 2016, 7, 79–92. [Google Scholar] [CrossRef]
- Agumas, B.; Blagodatsky, S.; Balume, I.; Musyoki, M.K.; Marhan, S.; Rasche, F. Microbial carbon use efficiency during plant residue decomposition: Integrating multi-enzyme stoichiometry and C balance approach. Appl. Soil Ecol. 2021, 159, 103820. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Wallenstein, M.D.; Schipanksi, M.E.; Grandy, A.S. Managing Agroecosystems for Soil Microbial Carbon Use Efficiency: Ecological Unknowns, Potential Outcomes, and a Path Forward. Front. Microbiol. 2019, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Han, H.; Ning, T.; Li, Z.; Lal, R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system. Field Crops Res. 2019, 233, 33–40. [Google Scholar] [CrossRef]
- Hijbeek, R.; van Ittersum, M.K.; Berge, H.F.M.; Gort, G.; Spiegel, H.; Whitmore, A.P. Do organic inputs matter—A meta-analysis of additional yield effects for arable crops in Europe. Plant Soil 2016, 411, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; ICCP: Ridderkerk, The Netherlands, 2006. [Google Scholar]
- European Council. Decision No. 529/2013/EU of the European Parliament and of the Council on accounting rules on greenhouse gas emissions and removals resulting from activities relating to land use, land-use change and forestry and on information concerning actions relating to those activities. Off. J. Eur. Union 2013, L165, 80–97. [Google Scholar]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.P.; Cardinael, R.; Chen, S.; et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob. Chang. Biol. 2020, 27, 237–256. [Google Scholar] [CrossRef]
- Chamizo, S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Sánchez-Cañete, E.P.; Vicente-Vicente, J.L.; Kowalski, A.S. Net ecosystem CO2 exchange in an irrigated olive orchard of SE Spain: Influence of weed cover. Agric. Ecosyst. Environ. 2017, 239, 51–64. [Google Scholar] [CrossRef]
- McGourty, G.T.; Reganold, J.P. Managing vineyard soil organic matter with cover crops. In Proceedings of the Soil Environment and Vine Mineral Nutrition, San Diego, CA, USA, 29–30 June 2004; American Society for Enology and Viticulture: Davis, CA, USA, 2005; pp. 145–151. [Google Scholar]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J.A. A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Montanaro, G.; Tuzio, A.C.; Xylogiannis, E.; Kolimenakis, A.; Dichio, B. Carbon budget in a Mediterranean peach orchard under different management practices. Agric. Ecosyst. Environ. 2017, 238, 104–113. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Chen, H.; Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. J. Agric. Meteorol. 2014, 198–199, 335–346. [Google Scholar] [CrossRef]
- Reicosky, D.C. Tillage-induced CO2 emission from soil. Nutr. Cycl. Agroecosyst. 1997, 49, 273–285. [Google Scholar] [CrossRef]
- Abdalla, K.; Chivenge, P.; Ciais, P.; Chaplot, V. No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: Results from a meta-analysis. Biogeosciences 2016, 13, 3619–3633. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, G.; Dichio, B.; Briccoli Bati, C.; Xiloyannis, C. Soil management affects carbon dynamics and yield in a Mediterranean peach orchard. Agric. Ecosyst. Environ. 2012, 161, 46–54. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of soil organic matter reduces global warming, myth or reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Nuzzo, A.; Spaccini, R.; Cozzolino, V.; Moschetti, G.; Piccolo, A. In situ polymerization of soil organic matter by oxidative biomimetic catalysis. Chem. Biol. Technol. Agric. 2017, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Managing and sustaining ecosystems. In Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; pp. 423–447. [Google Scholar]
- Chapin, F.S., III; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Zanotelli, D.; Montagnani, L.; Manca, G.; Scandellari, F.; Tagliavini, M. Net ecosystem carbon balance of an apple orchard. Eur. J. Agron. 2015, 63, 97–104. [Google Scholar] [CrossRef]
- Scandellari, F.; Caruso, G.; Liguori, G.; Meggio, F.; Palese, A.M.; Zanotelli, D.; Celano, G.; Gucci, R.; Inglese, P.; Pitacco, A.; et al. A survey of carbon sequestration potential of orchards and vineyards in Italy. Eur. J. Hortic. Sci. 2016, 81, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.; Panzacchi, P.; Muzzi, E.; Magnani, F.; Tonon, G. Carbon balance and soil carbon input in a poplar short rotation coppice plantation as affected by nitrogen and wood ash application. New For. 2019, 50, 969–990. [Google Scholar] [CrossRef]
- Tsangas, M.; Gavriel, I.; Doula, M.; Xeni, F.; Zorpas, A.A. Life cycle analysis in the framework of agricultural strategic development planning in the balkan region. Sustainability 2020, 12, 1813. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.K.; Beccaro, G.L.; Bosco, S.; De Luca, A.I.; Falcone, G.; Fiore, A.; Iofrida, N.; Lo Giudice, A.; Strano, A. Life cycle assessment in the fruit sector. In Life Cycle Assessment in the Agri-Food Sector; Springer: New York City, NY, USA, 2015; pp. 333–388. [Google Scholar]
- Pattara, C.; Russo, C.; Antrodicchia, V.; Cichelli, A. Carbon footprint as an instrument for enhancing food quality: Overview of the wine, olive oil and cereals sectors. J. Sci. Food Agric. 2016, 97, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Solinas, S.; Tiloca, M.T.; Deligios, P.A.; Cossu, M.; Ledda, L. Carbon footprints and social carbon cost assessments in a perennial energy crop system: A comparison of fertilizer management practices in a Mediterranean area. Agric. Syst. 2021, 186, 102989. [Google Scholar] [CrossRef]
- Stillitano, T.; Falcone, G.; De Luca, A.I.; Piga, A.; Conte, P.; Strano, A.; Gulisano, G. A life cycle perspective to assess the environmental and economic impacts of innovative technologies in extra virgin olive oil extraction. Foods 2019, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Proietti, S.; Sdringola, P.; Regni, L.; Evangelisti, N.; Brunori, A.; Ilarioni, L.; Nasini, L.; Proietti, P. Extra virgin olive oil as carbon negative product: Experimental analysis and validation of results. J. Clean. Prod. 2017, 166, 550–562. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; McConkey, B.G.; Campbell, C.A.; Nemecek, T. Accounting for soil carbon changes in agricultural life cycle assessment (LCA): A review. J. Clean. Prod. 2015, 104, 23–39. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation of 9 April 2013 on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Off. J. Eur. Union 2013, L124, 1–210. [Google Scholar]
- Montanaro, G.; Nuzzo, V.; Xiloyannis, C.; Dichio, B. Climate change mitigation and adaptation in agriculture: The case of olive. J. Water Clim. Chang. 2018, 9, 633–642. [Google Scholar] [CrossRef]
- Lombardo, L.; Farolfi, C.; Capri, E. Sustainability certification, a new path of value creation in the olive oil sector: The Italian case study. Foods 2021, 10, 501. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission, PEFCR Guidance Document—Guidance for the Development of Product Environmental Footprint Category Rules (PEFCRs), Version 6.3. May 2018. Available online: https://ec.europa.eu/environment/eussd/smgp/pdf/PEFCR_guidance_v6.3.pdf (accessed on 15 July 2020).
- Technical Secretariat for Olive Oil. Product Environmental Footprint Category Rules for Olive Oil. Available online: https://ec.europa.eu/environment/eussd/smgp/pdf/pilots/draft_pefcr_olive_oil_pilot_for_3rd_consultation.pdf (accessed on 10 May 2021).
- Russo, C.; Cappelletti, G.M.; Nicoletti, G.M.; di Noia, A.E.; Michalopoulos, G. Comparison of European Olive Production Systems. Sustainability 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Tuomisto, H.L.; Michalopoulos, G.; Pattara, C.; Polo Palomino, J.A.; Cappelletti, G.M.; Nicoletti, G.M. Product environmental footprint in the olive oil sector: State of the art. Environ. Eng. Manag. J. 2016, 15, 2019–2027. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Egea, G.; Fernández, J.E.; Alcon, F. Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards. Agric. Water Manag. 2017, 187, 47–56. [Google Scholar] [CrossRef]
- Nieto, O.M.; Castro, J.; Fernández, E.; Smith, P. Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manag. 2010, 26, 118–125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanaro, G.; Amato, D.; Briglia, N.; Russo, C.; Nuzzo, V. Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension. Sustainability 2021, 13, 8750. https://doi.org/10.3390/su13168750
Montanaro G, Amato D, Briglia N, Russo C, Nuzzo V. Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension. Sustainability. 2021; 13(16):8750. https://doi.org/10.3390/su13168750
Chicago/Turabian StyleMontanaro, Giuseppe, Davide Amato, Nunzio Briglia, Carlo Russo, and Vitale Nuzzo. 2021. "Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension" Sustainability 13, no. 16: 8750. https://doi.org/10.3390/su13168750
APA StyleMontanaro, G., Amato, D., Briglia, N., Russo, C., & Nuzzo, V. (2021). Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension. Sustainability, 13(16), 8750. https://doi.org/10.3390/su13168750