Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source
<p>Colorbar represents China’s population density (people per km<sup>2</sup>) map, with 1.4 billion people. The circles represent the cumulative number of cases reported by 8 April 2020, 76 days after the Wuhan lockdown on 23 January. Location of regions in study areas (black square), including NCP, CC, YRD, PRD, and SB. The blue dots represent Beijing (1), Wuhan (2), and Guangzhou (3), respectively.</p> "> Figure 2
<p>(<b>a</b>) Spatiotemporal distribution of AOD, AODf, and AODc at 550 nm from MODIS during the Pre-CLD (<b>a1</b>–<b>a3</b>), CLD-I (<b>a4</b>–<b>a6</b>), and CLD-II (<b>a7</b>–<b>a9</b>) periods. (<b>b</b>) MERRA-2 provides the AOD, AODf, and AODc at 550 nm during the Pre-CLD (<b>b1</b>–<b>b3</b>), CLD-I (<b>b4</b>–<b>b6</b>), and CLD-II (<b>b7</b>–<b>b9</b>) periods. The study area’s boundaries and the locations of critical cities were displayed in <a href="#remotesensing-14-03336-f001" class="html-fig">Figure 1</a>.</p> "> Figure 3
<p>(<b>a</b>) The AOD, AODf, and AODc retrieved by MODIS are compared with the 3-year average (2017–2019) of the same window in previous years during the Pre-CLD (<b>a1</b>–<b>a3</b>), CLD-I (<b>a4</b>–<b>a6</b>), and CLD-II (<b>a7</b>–<b>a9</b>) periods. (<b>b</b>) Same comparison as (<b>a</b>), but for MERRA-2 data.</p> "> Figure 4
<p>Spatiotemporal distribution of AAOD at 550 nm from MERRA-2 during the Pre-CLD, CLD-I, and CLD-II periods. (<b>a1</b>–<b>a3</b>) The upper rows showed the data in 2020 and (<b>b1</b>–<b>b3</b>) the average data in the previous three years (2017–2019) with the same window, respectively. (<b>c1–c3</b>) The lower row shows the differences compared with 2017–2019. The study area’s boundaries and the locations of key cities were displayed in <a href="#remotesensing-14-03336-f001" class="html-fig">Figure 1</a>.</p> "> Figure 5
<p>AOD of dust (<b>a1</b>–<b>a3</b>), BC (<b>b1</b>–<b>b3</b>), OC (<b>c1</b>–<b>c3</b>), and SO<sub>4</sub> (<b>d1</b>–<b>d3</b>) from MERRA-2 during the Pre-CLD, CLD-I, and CLD-II periods. The study area’s boundaries and the locations of key cities were shown in <a href="#remotesensing-14-03336-f001" class="html-fig">Figure 1</a>.</p> "> Figure 6
<p>Difference (AOD) of the three absorbing aerosols (dust (<b>a1</b>–<b>a3</b>), BC (<b>b1</b>–<b>b3</b>), and OC (<b>c1</b>–<b>c3</b>)) and scattering aerosol (SO<sub>4</sub> (<b>d1</b>–<b>d3</b>)) during the Pre-CLD, CLD-I, and CLD-II periods, with the mean values of the same window in previous years (2017–2019). The study area’s boundaries and the locations of key cities were shown in <a href="#remotesensing-14-03336-f001" class="html-fig">Figure 1</a>.</p> "> Figure 7
<p>AOD of dust, BC, OC, and SO<sub>4</sub> in NCP, CC, YRD, PRD, and SB in 2020 and the average value of previous years (2017–2019). The percentage on the bar represents (BC + OC)/(BC + OC + SO<sub>4</sub>).</p> "> Figure 8
<p>Profiles of AEC for five studies areas from CALIPSO retrievals in the Pre-CLD, CLD-I, and CLD-II periods. The red curve represents the 2020 data, and the blue curve represents the 2017–2019 data average.</p> "> Figure 9
<p>The frequency distribution of each aerosol type within an 8 km altitude for five study areas during the Pre-CLD, CLD-1, and CLD-II periods in 2020. The different colors represent the six aerosol types.</p> "> Figure 10
<p>Scatterplots of PDR and CR in different lockdown stages in the five study areas, in which the black line represents the 1:1 line. The sample size (N) is also provided.</p> "> Figure 11
<p>(<b>a</b>) Occurrence frequencies of each aerosol subtype contributed to the total aerosol type in the vertical direction for five study areas during Pre-CLD, CLD-I, and CLD-II periods, and (<b>b</b>) the same window contribution data in previous years.</p> "> Figure 12
<p>Mean 48 h backward-trajectory clusters (500 m) of Beijing, Wuhan, and Guangzhou and distribution of potential source of PM<sub>2.5</sub> during CLD-I period. The bottom map of the first column of backward-trajectory air masses is the MODIS FRP.</p> "> Figure 13
<p>The same as <a href="#remotesensing-14-03336-f012" class="html-fig">Figure 12</a> but for the CLD-II period.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Areas and Study Periods
2.2. Observation and Reanalysis of Data
2.2.1. MODIS AOD, AODf, and AODc
2.2.2. CALIPSO PDR, CR, and VFM
2.2.3. MERRA-2
2.3. Backward Trajectory
3. Results
3.1. AOD, AODf, and AODc
3.2. Light-Absorbing Aerosols and Scattering Aerosols
3.2.1. AAOD
3.2.2. Dust, BC, OC, and SO4
3.3. CALIPSO
3.3.1. Aerosol Extinction Profile and Vertical Distribution of Each Aerosol Type
3.3.2. Anthropogenic and Natural Aerosols
3.4. Backward Trajectory and Potential Sources of Aerosol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Novel Coronavirus (2019-nCoV): Situation Report, 22; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Pei, S.; Yamana, T.K.; Kandula, S.; Galanti, M.; Shaman, J. Burden and characteristics of COVID-19 in the United States during 2020. Nature 2021, 598, 338–2021. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar] [CrossRef] [PubMed]
- Stavrakou, T.; Müller, J.-F.; Bauwens, M.; Doumbia, T.; Elguindi, N.; Darras, S.; Granier, C.; Smedt, I.D.; Lerot, C.; Van Roozendael, M. Atmospheric impacts of COVID-19 on NOx and VOC levels over China based on TROPOMI and IASI satellite data and modeling. Atmosphere 2021, 12, 946. [Google Scholar] [CrossRef]
- Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2021, 271, 116298. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Lan, J.; Liu, Y.; Wang, X.; Chan, P.; Hong, Y.; Feng, Y.; Liu, Y.; Zeng, Y.; Liang, G. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China. Atmos. Environ. 2015, 122, 829–838. [Google Scholar] [CrossRef]
- Lennartson, E.M.; Wang, J.; Gu, J.; Castro Garcia, L.; Ge, C.; Gao, M.; Choi, M.; Saide, P.E.; Carmichael, G.R.; Kim, J. Diurnal variation of aerosol optical depth and PM2.5 in South Korea: A synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model. Atmos. Chem. Phys. 2018, 18, 15125–15144. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, Q.; Geng, G.; Chen, C.; Shi, Q.; Cui, M.; Lei, Y.; He, K. Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth Syst. Sci. Data 2021, 13, 2895–2907. [Google Scholar] [CrossRef]
- Kinne, S.; North, P.; Pearson, K.; Popp, T. Aerosol radiative effects with dual view AOD retrievals. Atmos. Chem. Phys. Discuss. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N.J.A.; Research, A.Q. Impact Assessment of COVID-19 on Variations of SO2, NO2, CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Elser, M.; Feng, T.; Cao, J.; El-Haddad, I.; Huang, R.; Tie, X.; Prévôt, A.S.H.; Li, G. Contributions of residential coal combustion to the air quality in Beijing–Tianjin–Hebei (BTH), China: A case study. Atmos. Chem. Phys. 2018, 18, 10675–10691. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate Effects of Black Carbon Aerosols in China and India. Science 2002, 297, 2250–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Shao, L.; Zhang, D.; Li, Y.; Li, W.; Liu, P.; Xing, J. Mineralogical similarities and differences of dust storm particles at Beijing from deserts in the north and northwest. Sci. Total Environ. 2022, 803, 149980. [Google Scholar] [CrossRef]
- Xing, L.; Bei, N.; Guo, J.; Wang, Q.; Liu, S.; Han, Y.; Pongpiachan, S.; Li, G. Impacts of Biomass Burning in Peninsular Southeast Asia on PM2.5 Concentration and Ozone Formation in Southern China During Springtime—A Case Study. J. Geophys. Res. Atmos. 2021, 126, e2021JD034908. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, 8, nwaa137. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Zhang, X.; Peng, Y.; Liu, Z.; Zhong, J.; Wang, Y.; Che, H.; Zhao, Y. The Different Impacts of Emissions and Meteorology on PM2.5 Changes in Various Regions in China: A Case Study. Atmosphere 2022, 13, 222. [Google Scholar] [CrossRef]
- Ukhov, A.; Mostamandi, S.; da Silva, A.; Flemming, J.; Alshehri, Y.; Shevchenko, I.; Stenchikov, G. Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos. Chem. Phys. 2020, 20, 9281–9310. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Zhao, C.; Huang, J.P.; Leung, L.R.; Qian, Y.; Yu, H.B.; Huang, L.; Kalashnikova, O.V. Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, B.; Chen, S.; Gong, W.; Ma, Y.; Zhang, M.; Jin, S.; Jin, Y. Characteristics of aerosol within the nocturnal residual layer and its effects on surface PM2.5 over China. Atmos. Environ. 2020, 241, 117841. [Google Scholar] [CrossRef]
- Tian, P.; Cao, X.; Zhang, L.; Sun, N.; Sun, L.; Logan, T.; Shi, J.; Wang, Y.; Ji, Y.; Lin, Y. Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing. Atmos. Chem. Phys. 2017, 17, 2509–2523. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; de Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Buchard, V.; Randles, C.A.; da Silva, A.M.; Darmenov, A.; Colarco, P.R.; Govindaraju, R.; Ferrare, R.; Hair, J.; Beyersdorf, A.J.; Ziemba, L.D.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies. J. Clim. 2017, 30, 6851–6872. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Li, Z.; Chen, C.; Zhang, Y.; Li, K.; Shi, Z.; Dong, J.; Xu, H.; Peng, Z.; Xie, Y.; et al. Evaluation of MERRA-2 Aerosol Optical and Component Properties over China Using SONET and PARASOL/GRASP Data. Remote Sens. 2022, 14, 821. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Wang, W.; Qian, Y.; Bai, W.; Guo, Y.; Mao, R. Observed holiday aerosol reduction and temperature cooling over East Asia. J. Geophys. Res. Atmos. 2014, 119, 6306–6324. [Google Scholar] [CrossRef]
- Shi, Q.; Dorling, D.; Cao, G.; Liu, T. Changes in population movement make COVID-19 spread differently from SARS. Soc. Sci. Med. 2020, 255, 113036. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.; Li, B.; Cai, J.; Xu, B.; Yang, Q. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Sogacheva, L.; Rodriguez, E.; Kolmonen, P.; Virtanen, T.H.; Saponaro, G.; de Leeuw, G.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; van der A, R.J. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations. Atmos. Chem. Phys. 2018, 18, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
- Che, H.; Yang, L.; Liu, C.; Xia, X.; Wang, Y.; Wang, H.; Wang, H.; Lu, X.; Zhang, X. Long-term validation of MODIS C6 and C6.1 Dark Target aerosol products over China using CARSNET and AERONET. Chemosphere 2019, 236, 124268. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 km resolution aerosol optical depth product: Global evaluation and uncertainty analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Pu, B.; Ginoux, P.; Guo, H.; Hsu, N.C.; Kimball, J.; Marticorena, B.; Malyshev, S.; Naik, V.; O’Neill, N.T.; Pérez García-Pando, C.; et al. Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos. Chem. Phys. 2020, 20, 55–81. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Winker, D.; Tackett, J.; Getzewich, B.; Liu, Z.; Vaughan, M.; Rogers, R. Physics. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.J.J.o.A. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Mishra, A.K.; Shibata, T. Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP. Atmos. Environ. 2012, 46, 365–375. [Google Scholar] [CrossRef]
- Gui, K.; Che, H.; Zheng, Y.; Zhao, H.; Yao, W.; Li, L.; Zhang, L.; Wang, H.; Wang, Y.; Zhang, X.; et al. Three-dimensional climatology, trends, and meteorological drivers of global and regional tropospheric type-dependent aerosols: Insights from 13 years (2007–2019) of CALIOP observations. Atmos. Chem. Phys. 2021, 21, 15309–15336. [Google Scholar] [CrossRef]
- Vaughan, M.; Pitts, M.; Trepte, C.; Winker, D.; Detweiler, P.; Garnier, A.; Getzewitch, B.; Hunt, W.; Lambeth, J.; Lee, K. CALIPSO Data Management System Data Products Catalog; PC-SCI-503, Release 4.20. 2017. Available online: http://www-calipso.larc.nasa.gov (accessed on 5 July 2022).
- Lu, X.; Mao, F.; Pan, Z.; Gong, W.; Wang, W.; Tian, L.; Fang, S. Three-dimensional physical and optical characteristics of aerosols over central china from long-term calipso and hysplit data. Remote Sens. 2018, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.O.; Zhang, X.; Bi, L.J.A.R. Seasonal aerosol variations over a coastal city, Zhoushan, China from CALIPSO observations. Atmos. Res. 2019, 218, 117–128. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Wang, Y.Q. An Open Source Software Suite for Multi-Dimensional Meteorological Data Computation and Visualisation. J. Open Res. Softw. 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Ara Begum, B.; Kim, E.; Jeong, C.-H.; Lee, D.-W.; Hopke, P.K. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, Y. Association between ambient temperature and COVID-19 infection in 122 cities from China. Sci. Total Environ. 2020, 724, 138201. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Zhao, T.; Gong, S.; Xu, X.; Li, Y.; Luo, L.; Gui, K.; Wang, H.; Zheng, Y.; et al. A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmos. Environ. 2019, 196, 77–85. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sun, E.; Xu, X.; Che, H.; Tang, Z.; Gui, K.; An, L.; Lu, C.; Shi, G. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol. Terr. Phys. 2019, 186, 8–19. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black Carbon Emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-R.; Wang, S.-H.; Yen, M.-C.; Lin, N.-H.; Promchote, P. Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts. J. Geophys. Res. Atmos. 2016, 121, 10016–10028. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, A.; Bahadur, R.; Suski, K.J.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K.A. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Lin, B.; Minnis, P.; Wang, T.; Wang, X.; Hu, Y.; Yi, Y.; Ayers, J.K. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett. 2006, 33, L19802. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhao, W.; Bi, J.; Ma, Z. Climatology and calibration of MERRA-2 PM2.5 components over China. Atmos. Pollut. Res. 2021, 12, 357–366. [Google Scholar] [CrossRef]
- Qian, Y.; Giorgi, F. Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophys. Res. Lett. 2000, 27, 3521–3524. [Google Scholar] [CrossRef]
- Ning, G.; Wang, S.; Ma, M.; Ni, C.; Shang, Z.; Wang, J.; Li, J. Characteristics of air pollution in different zones of Sichuan Basin, China. Sci. Total Environ. 2018, 612, 975–984. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: Effect of the regional transport of different aerosol types over eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef] [Green Version]
- Wenbin, L.; Zuzhao, H.; Yanning, C.; Junxia, K.; Jinpu, Z.; Xiaonuan, Q. Observation Studies on a Dust Case in the Spring of Guangzhou. Environ. Monit. China 2017, 33, 42–48. [Google Scholar] [CrossRef]
Variables | Periods (Start to End) | Description |
---|---|---|
Pre-CLD | 2020-01-03 to 2020-01-23 | 21 days before Wuhan’s lockdown |
CLD-I | 2020-01-24 to 2020-02-13 | The entire country goes into lockdown |
CLD-II | 2020-02-14 to 2020-04-08 | Wuhan was unblocked on 8 April |
Names | Periods Variables | Regionals | |||||
---|---|---|---|---|---|---|---|
NCP | CC | YRD | PRD | SB | |||
2020 (Avg.) | Pre-CLD | AOD | 0.75 (0.46) | 0.50 (0.46) | 0.59 (0.42) | 0.34 (0.38) | 0.21 (0.44) |
AODf | 0.50 (0.27) | 0.32 (0.29) | 0.44 (0.25) | 0.25 (0.27) | 0.15 (0.32) | ||
AODc | 0.25 (0.19) | 0.18 (0.17) | 0.15 (0.16) | 0.09 (0.09) | 0.06 (0.12) | ||
AAOD | 0.039 (0.037) | 0.038 (0.040) | 0.034 (0.037) | 0.016 (0.021) | 0.036 (0.042) | ||
CLD-I | AOD | 0.69 (0.72) | 0.35 (0.41) | 0.38 (0.43) | 0.28 (0.42) | 0.29 (0.34) | |
AODf | 0.62 (0.54) | 0.26 (0.29) | 0.27 (0.30) | 0.21 (0.30) | 0.21 (0.25) | ||
AODc | 0.07 (0.18) | 0.09 (0.12) | 0.11 (0.13) | 0.07 (0.12) | 0.08 (0.09) | ||
AAOD | 0.049 (0.041) | 0.038 (0.034) | 0.037 (0.031) | 0.022 (0.019) | 0.034 (0.036) | ||
CLD-II | AOD | 0.43 (0.55) | 0.40 (0.47) | 0.37 (0.52) | 0.46 (0.43) | 0.36 (0.33) | |
AODf | 0.32 (0.38) | 0.30 (0.33) | 0.29 (0.37) | 0.33 (0.31) | 0.27 (0.24) | ||
AODc | 0.11 (0.17) | 0.10 (0.14) | 0.08 (0.15) | 0.13 (0.13) | 0.09 (0.09) | ||
AAOD | 0.038 (0.042) | 0.042 (0.038) | 0.034 (0.037) | 0.040 (0.032) | 0.036 (0.034) | ||
Change | Pre-CLD | AOD | 0.29 (64.15) | 0.04 (9.20) | 0.17 (41.93) | −0.04 (−9.79) | −0.23 (−53.19) |
AODf | 0.23 (86.60) | 0.03 (11.70) | 0.19 (74.66) | −0.02 (−8.30) | −0.17 (−52.52) | ||
AODc | 0.06 (30.82) | 0.01 (7.08) | −0.01 (−7.38) | 0 (−0.04) | −0.17 (−53.94) | ||
AAOD | 0.002 (6.29) | −0.002 (−5.16) | −0.003 (−6.83) | −0.005 (−24.51) | −0.006 (−13.42) | ||
CLD-I | AOD | −0.02 (−3.33) | −0.006 (−14.36) | −0.05 (−10.80) | −0.13 (−31.44) | −0.05 (−15.50) | |
AODf | 0.08 (14.09) | −0.02 (−8.14) | −0.03 (3.38) | −0.09 (−30.04) | −0.04 (−16.11) | ||
AODc | −0.11 (−61.11) | −0.03 (−25.00) | −0.02 (−15.38) | −0.05 (−39.69) | −0.01 (−13.41) | ||
AAOD | 0.008 (18.27) | 0.004 (12.32) | 0.006 (19.35) | 0.003 (17.64) | −0.002 (−6.02) | ||
CLD-II | AOD | −0.12 (−22.26) | −0.07 (−14.12) | −0.15 (−28.93) | 0.02 (5.31) | 0.03 (9.00) | |
AODf | −0.06 (−16.11) | −0.03 (−8.57) | −0.07 (−20.37) | 0.02 (4.97) | 0.03 (13.85) | ||
AODc | −0.03 (−15.69) | −0.04 (−28.57) | −0.07 (−46.67) | 0 (0) | 0 (0) | ||
AAOD | −0.003 (−8.30) | 0.004 (10.69) | −0.003 (−7.63) | 0.008 (25.43) | 0.001 (3.80) |
Periods | Altitudes | Regionals | ||||
---|---|---|---|---|---|---|
NCP | CC | YRD | PRD | SB | ||
Pre-CLD | 0–2 km | 0.47 | 0.51 | 0.51 | 0.28 | 0.47 |
2–4 km | 0.16 | 0.11 | 0.07 | 0.09 | 0.47 | |
4–6 km | 0.12 | 0.09 | 0.02 | 0.06 | ||
6–8 km | 0.04 | 0.10 | 0.26 | 0.32 | 0.05 | |
CLD-I | 0–2 km | 0.42 (−10.76) | 0.3 (−32.48) | 0.21 (−29.64) | 0.25 (−22.68) | 0.2 (−8.44) |
2–4 km | 0.07 (−16.04) | 0.09 (−22.30) | 0.50 (48.04) | 0.11 (1.86) | 0.17 (−24.39) | |
4–6 km | 0.36 (2.25) | 0.05 (−0.48) | 0.17 (1.45) | 0.22 | 0.06 (−0.48) | |
6–8 km | 0.02 (−2.63) | 0.05 (−15.44) | 0.06 (−9.46) | 0.41 (−33.38) | 0.05 (−1.60) | |
CLD-II | 0–2 km | 0.25 (−15.96) | 0.25 (−27.96) | 0.19 (−40.46) | 0.27 (−16.52) | 0.25 (−11.43) |
2–4 km | 0.14 (−7.28) | 0.18 (−7.90) | 0.12 (10.08) | 0.24 (13.6) | 0.23 (−27.62) | |
4–6 km | 0.09 (−0.53) | 0.11 (−0.54) | 0.05 (0.34) | 0.11 | 0.07 (−0.13) | |
6–8 km | 0.05 (1.56) | 0.07 (−0.09) | 0.02 (−23.54) | 0.40 (2.55) | 0.02 (−1.43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Ma, Y.; Zhang, M.; Liu, Y.; Lu, X.; Liu, B.; Jin, S.; Shen, A.; Zhang, J.; Fan, Q. Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source. Remote Sens. 2022, 14, 3336. https://doi.org/10.3390/rs14143336
Jin Y, Ma Y, Zhang M, Liu Y, Lu X, Liu B, Jin S, Shen A, Zhang J, Fan Q. Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source. Remote Sensing. 2022; 14(14):3336. https://doi.org/10.3390/rs14143336
Chicago/Turabian StyleJin, Yinbao, Yingying Ma, Ming Zhang, Yiming Liu, Xiao Lu, Boming Liu, Shikuan Jin, Ao Shen, Juan Zhang, and Qi Fan. 2022. "Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source" Remote Sensing 14, no. 14: 3336. https://doi.org/10.3390/rs14143336
APA StyleJin, Y., Ma, Y., Zhang, M., Liu, Y., Lu, X., Liu, B., Jin, S., Shen, A., Zhang, J., & Fan, Q. (2022). Aerosol Characteristics during the COVID-19 Lockdown in China: Optical Properties, Vertical Distribution, and Potential Source. Remote Sensing, 14(14), 3336. https://doi.org/10.3390/rs14143336