Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling
<p>(<b>a</b>) Ratio of anthropogenic NO<sub>x</sub> fluxes, February 2020 divided by February 2019 (<b>left</b>) and May 2020 by May 2019 (<b>right</b>). (<b>b</b>) Idem for anthropogenic VOC fluxes. The anthropogenic fluxes for 2020 are those of the CONFORM dataset [<a href="#B11-atmosphere-12-00946" class="html-bibr">11</a>]. (<b>c</b>) Absolute flux difference 2020–2019 for biomass burning VOCs in February (<b>left</b>) and May (<b>right</b>). (<b>d</b>) Idem for isoprene biogenic fluxes.</p> "> Figure 2
<p>NO<sub>x</sub> emission estimates over China according to the baseline inventory CAMS-GLOB-ANT_v4.2-R1.1 (dashed), and the CONFORM emissions which account for the slowdown of economic activities due to the crisis (red). The pink shading represents the uncertainty ranges of the CONFORM emissions.</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) NO<sub>2</sub> column ratio, February 2020 divided by February 2019, according to TROPOMI (<b>left</b>) and to the R1 simulation (<b>right</b>). (<b>c</b>,<b>d</b>) Idem for May. Invalid data and areas with very low total NO<sub>x</sub> emissions (less than 2 × 10<sup>10</sup> molec.cm<sup>−2</sup> s<sup>−1</sup>) are left blank. The boxes of panel (<b>a</b>) indicate the analysis regions (also shown in <a href="#atmosphere-12-00946-f004" class="html-fig">Figure 4</a>).</p> "> Figure 4
<p>Regions used in this study. ECN = eastern China (22–42° N, 108–125° E); NCP = North China Plain (34–41.5° N, 112–119° E); YRD = Yangtze River Delta (29–33.5° N, 117.5–122.5° E); HH = Hubei–Hunan (27–32° N, 108.5–116.5° E); PRD = Pearl River Delta (22–24.5° N, 111–117° E).</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) HCHO column ratio, February 2020 divided by February 2019, according to satellite data (<b>left</b>) and to MAGRITTEv1.1 (<b>right</b>). (<b>c</b>,<b>d</b>) Idem for CHOCHO. (<b>e</b>,<b>f</b>) Idem for PAN. Invalid data and areas with very low VOC emissions (less than 5 × 10<sup>10</sup> molec.cm<sup>−2</sup>s<sup>−1</sup>) are left blank in panels a–d. The stippling in panels a, c, and e indicates data below the estimated detection limit. The boxes of panel (<b>a</b>) indicate the analysis regions (also shown in <a href="#atmosphere-12-00946-f004" class="html-fig">Figure 4</a>).</p> "> Figure 6
<p>Observed and modeled columns for May 2020. (<b>a</b>,<b>b</b>) NO<sub>2</sub>; (<b>c</b>,<b>d</b>) HCHO; (<b>e</b>,<b>f</b>) CHOCHO; (<b>g</b>,<b>h</b>) PAN. Units are 10<sup>15</sup> molec.cm<sup>−2</sup>, except for CHOCHO (10<sup>14</sup> molec.cm<sup>−2</sup>). The stippling in panels c, e, and g indicates data below the estimated detection limit. The boxes of panel (<b>a</b>) indicate the analysis regions (also shown on <a href="#atmosphere-12-00946-f004" class="html-fig">Figure 4</a>).</p> "> Figure 7
<p>(<b>a</b>,<b>b</b>) HCHO column ratio, May 2020 divided by May 2019, according to satellite data (<b>left</b>) and to the MAGRITTEv1.1 model (<b>right</b>). (<b>c</b>,<b>d</b>) Idem for CHOCHO. (<b>e</b>,<b>f</b>) Idem for PAN. Invalid data and areas with very low VOC emissions (less than 5 × 10<sup>10</sup> molec.cm<sup>−2</sup>s<sup>−1</sup>) are left blank in panels a–d. The stippling in panels a, c, and e indicates data below the estimated detection limit. The boxes of panel (<b>a</b>) indicate the analysis regions (also shown on <a href="#atmosphere-12-00946-f004" class="html-fig">Figure 4</a>).</p> "> Figure A1
<p>Location of 1643 environmental monitoring stations of the China National Environmental Monitoring Center operated by the Ministry of Ecology and Environmental Protection of China. The data is available at <a href="http://106.37.208.233:20035" target="_blank">http://106.37.208.233:20035</a> (accessed on 21 July 2021) [<a href="#B48-atmosphere-12-00946" class="html-bibr">48</a>]. Data quality control has been applied to the measurements following [<a href="#B49-atmosphere-12-00946" class="html-bibr">49</a>]. To allow meaningful comparisons between the in situ NO2 data and the TROPOMI columns, we considered only in situ data within a two-hour time-window around the TROPOMI overpass time (12–2 p.m. local time).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Observations from TROPOMI and IASI
2.2. Simulations with the MAGRITTEv1.1 Chemical Transport Model
3. Results
3.1. February 2019 and 2020: Simulated and Observed Changes
3.2. May 2019 and 2020: Simulated and Observed Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Gkatzelis, G.I.; Gilman, J.B.; Brown, S.S.; Eskes, H.; Gomes, A.R.; Lange, A.C.; McDonald, B.C.; Peischl, J.; Petzold, A.; Thompson, C.R.; et al. The global impacts of COVID-19 lockdowns on urban air pollution. Elem. Sci. Anthr. 2021, 9, 00176. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Lin, H.; Feng, X.; Fu, T.-M.; Wang, Y. NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere 2020, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Hu, J.; Wang, Q.; An, J.; Gong, K.; Sun, J.; Li, L.; Qin, M.; Li, J.; et al. Driving Forces of Changes in Air Quality during the COVID-19 Lockdown Period in the Yangtze River Delta Region, China. Environ. Sci. Technol. Lett. 2020, 7, 779–786. [Google Scholar] [CrossRef]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.; Van Gent, J.; Eskes, H.; Levelt, P.F.; Van Der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of Coronavirus Outbreak on NO 2 Pollution Assessed Using TROPOMI and OMI Observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Wood, R. Limited Regional Aerosol and Cloud Microphysical Changes Despite Unprecedented Decline in Nitrogen Oxide Pollution During the February 2020 COVID-19 Shutdown in China. Geophys. Res. Lett. 2020, 47, e2020GL088913. [Google Scholar] [CrossRef]
- Huang, G.; Sun, K. Non-negligible impacts of clean air regulations on the reduction of tropospheric NO2 over East China during the COVID-19 pandemic observed by OMI and TROPOMI. Sci. Total Environ. 2020, 745, 141023. [Google Scholar] [CrossRef]
- Miyazaki, K.; Bowman, K.; Sekiya, T.; Jiang, Z.; Chen, X.; Eskes, H.; Ru, M.; Zhang, Y.; Shindell, D. Air Quality Response in China Linked to the 2019 Novel Coronavirus (COVID-19) Lockdown. Geophys. Res. Lett. 2020, 47, e2020GL089252. [Google Scholar] [CrossRef]
- Ding, J.; Van Der A, R.J.; Eskes, H.J.; Mijling, B.; Stavrakou, T.; Van Geffen, J.H.G.M.; Veefkind, J.P. NOx Emissions Reduction and Rebound in China Due to the COVID-19 Crisis. Geophys. Res. Lett. 2020, 47, e2020GL089912. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, Y.; He, Y.; Walters, W.W.; Ni, Q.; Liu, X.; Xu, G.; Shao, J.; Jiang, C. Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution. Sci. Total Environ. 2021, 753, 142238. [Google Scholar] [CrossRef]
- Doumbia, T.; Granier, C.; Elguindi, N.; Bouarar, I.; Darras, S.; Brasseur, G.; Gaubert, B.; Liu, Y.; Shi, X.; Stavrakou, T.; et al. Changes in global air pollutant emissions during the COVID-19 pandemic: A dataset for atmospheric chemistry modeling. Earth Syst. Sci. Data Discuss. 2021, preprint. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K.H.; Sulprizio, M.P.; Song, S.; Lu, X.; et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl. Acad. Sci. USA 2021, 118, e2015797118. [Google Scholar] [CrossRef] [PubMed]
- Gaubert, B.; Bouarar, I.; Doumbia, T.; Liu, Y.; Stavrakou, T.; Deroubaix, A.; Darras, S.; Elguindi, N.; Granier, C.; Lacey, F.; et al. Global Changes in Secondary Atmospheric Pollutants during the 2020 COVID-19 Pandemic. J. Geophys. Res. Atmos. 2021, 126, e2020JD034213. [Google Scholar] [CrossRef] [PubMed]
- Griffith, S.M.; Huang, W.-S.; Lin, C.-C.; Chen, Y.-C.; Chang, K.-E.; Lin, T.-H.; Wang, S.-H.; Lin, N.-H. Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China. Sci. Total Environ. 2020, 741, 140214. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, K.; Xu, X.; Shen, H.; Zhu, X.; Zhang, Y.; Hu, Y.; Shen, G. Substantial Changes in Nitrogen Dioxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China. Environ. Sci. Technol. Lett. 2020, 7, 402–408. [Google Scholar] [CrossRef]
- Miller, C.C.; Jacob, D.J.; Marais, E.A.; Yu, K.; Travis, K.R.; Kim, P.S.; Fisher, J.A.; Zhu, L.; Wolfe, G.M.; Hanisco, T.F.; et al. Glyoxal yield from isoprene oxidation and relation to formaldehyde: Chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data. Atmos. Chem. Phys. 2017, 17, 8725–8738. [Google Scholar] [CrossRef] [Green Version]
- Fischer, E.V.; Jacob, D.J.; Yantosca, R.M.; Sulprizio, M.P.; Millet, D.B.; Mao, J.; Paulot, F.; Singh, H.B.; Roiger, A.; Ries, L.; et al. Atmospheric peroxyacetyl nitrate (PAN): A global budget and source attribution. Atmos. Chem. Phys. 2014, 14, 2679–2698. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Müller, J.-F.; Boersma, K.F.; Van Der A, R.R.; Kurokawa, J.; Ohara, T.; Zhang, Q. Key chemical NOx sink uncertainties and how they influence top-down emissions of nitrogen oxides. Atmos. Chem. Phys. 2013, 13, 9057–9082. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Müller, J.-F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.; Giglio, L.; Guenther, A. Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns. Atmos. Chem. Phys. 2009, 9, 1037–1060. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Müller, J.-F.; De Smedt, I.; Van Roozendael, M.; Kanakidou, M.; Vrekoussis, M.; Wittrock, F.; Richter, A.; Burrows, J.P. The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling. Atmos. Chem. Phys. 2009, 9, 8431–8446. [Google Scholar] [CrossRef] [Green Version]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Föorster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric com-position for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.J.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Palmer, P.I.; Abbot, D.S.; Fu, T.-M.; Jacob, D.J.; Chance, K.; Kurosu, T.P.; Guenther, A.; Wiedinmyer, C.; Stanton, J.C.; Pilling, M.J.; et al. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Marais, E.A.; Jacob, D.J.; Kurosu, T.P.; Chance, K.; Murphy, J.G.; Reeves, C.; Mills, G.; Casadio, S.; Millet, D.B.; Barkley, M.P.; et al. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmos. Chem. Phys. 2012, 12, 6219–6235. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, M.; Stavrakou, T.; Müller, J.-F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.; Wiedinmyer, C.; Kaiser, J.W.; Sindelarova, K.; Guenther, A. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos. Chem. Phys. 2016, 16, 10133–10158. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhu, L.; De Smedt, I.; Bai, B.; Pu, D.; Chen, Y.; Shu, L.; Wang, D.; Fu, T.-M.; Wang, X.; et al. Global Significant Changes in Formaldehyde (HCHO) Columns Observed From Space at the Early Stage of the COVID-19 Pandemic. Geophys. Res. Lett. 2021, 48, 2e020GL091265. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.-F.; Stavrakou, T.; Peeters, J. Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1)—Part A. Chemical mechanism. Geosci. Model Dev. 2019, 12, 2307–2356. [Google Scholar] [CrossRef] [Green Version]
- Van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P/TROPOMI NO2 slant column retrieval: Method, stability, uncertainties, and comparisons against OMI. Atmos. Meas. Tech. 2020, 13, 315–1335. [Google Scholar] [CrossRef] [Green Version]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.-C.; Eskes, H.J.; Eichmann, K.-U.; Fjæraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- De Smedt, I.; Theys, N.; Yu, H.; Danckaert, T.; Lerot, C.; Compernolle, S.; Van Roozendael, M.; Richter, A.; Hilboll, A.; Peters, E.; et al. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmos. Meas. Tech. 2018, 11, 2395–2426. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, I.; Pinardi, G.; Vigouroux, C.; Compernolle, S.; Bais, A.; Benavent, N.; Boersma, F.; Chan, K.L.; Donner, S.; Eichmann, K.U.; et al. Comparative assessment of TROPOMI and OMI formaldehyde observations against MAX-DOAS network column measurements. Atmos. Chem. Phys. Discuss. 2021, preprint. [Google Scholar] [CrossRef]
- Vigouroux, C.; Langerock, B.; Aquino, C.A.B.; Blumenstock, T.; Cheng, Z.; De Mazière, M.; De Smedt, I.; Grutter, M.; Hannigan, J.W.; Jones, N.; et al. TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations. Atmos. Meas. Tech. 2020, 13, 3751–3767. [Google Scholar] [CrossRef]
- Lerot, C.; Hendrick, F.; Van Roozendael, M.; Alvarado, L.M.A.; Richter, A.; De Smedt, I.; Theys, N.; Vlietinck, J.; Yu, H.; Van Gent, J.; et al. Glyoxal tropospheric column retrievals from TROPOMI, multi-satellite intercomparison and ground-based validation. Atmos. Meas. Tech. Discuss. 2021, preprint. [Google Scholar] [CrossRef]
- Whitburn, S.; Van Damme, M.; Clarisse, L.; Bauduin, S.; Heald, C.L.; Hadji-Lazaro, J.; Hurtmans, D.; Zondlo, M.; Clerbaux, C.; Coheur, P.-F. A flexible and robust neural network IASI-NH3retrieval algorithm. J. Geophys. Res. Atmos. 2016, 121, 6581–6599. [Google Scholar] [CrossRef]
- Van Damme, M.; Whitburn, S.; Clarisse, L.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F. Version 2 of the IASI NH3 neural network retrieval algorithm: Near-real-time and reanalysed datasets. Atmos. Meas. Tech. 2017, 10, 4905–4914. [Google Scholar] [CrossRef] [Green Version]
- Franco, B.; Clarisse, L.; Stavrakou, T.; Müller, J.-F.; Van Damme, M.; Whitburn, S.; Hadji-Lazaro, J.; Hurtmans, D.; Taraborrelli, D.; Clerbaux, C.; et al. A general framework for global re-trievals of trace gases from IASI: Application to methanol, formic acid, and PAN. J. Geophys. Res. 2018, 123, 13963–13984. [Google Scholar] [CrossRef] [Green Version]
- Franco, B.; Clarisse, L.; Stavrakou, T.; Müller, J.; Pozzer, A.; Hadji-Lazaro, J.; Hurtmans, D.; Clerbaux, C.; Coheur, P. Acetone Atmospheric Distribution Retrieved from Space. Geophys. Res. Lett. 2019, 46, 2884–2893. [Google Scholar] [CrossRef] [Green Version]
- Franco, B.; Clarisse, L.; Stavrakou, T.; Müller, J.-F.; Taraborrelli, D.; Hadji-Lazaro, J.; Hannigan, J.W.; Hase, F.; Hurtmans, D.; Jones, N.; et al. Spaceborne measurements of for-mic and acetic acids: A global view of the regional sources. Geophys. Res. Lett. 2020, 47, e2019GL086239. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Stavrakou, T.; Müller, J.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; Guenther, A. Impact of Short-Term Climate Variability on Volatile Organic Compounds Emissions Assessed Using OMI Satellite Formaldehyde Observations. Geophys. Res. Lett. 2018, 45, 8681–8689. [Google Scholar] [CrossRef]
- Opacka, B.; Müller, J.-F.; Stavrakou, T.; Bauwens, M.; Sindelarova, K.; Markova, J.; Guenther, A.B. Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model. Atmos. Chem. Phys. 2021, 21, 8413–8436. [Google Scholar] [CrossRef]
- Granier, C.; Darras, S.; van der Gon, H.D.; Jana, D.; Elguindi, N.; Bo, G.; Gauss, M.; Jalkanen, J.-P.; Kuenen, J.; Liousse, C.; et al. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions; Research Report; Copernicus Atmosphere Monitoring Service: Reading, UK, 2019. [Google Scholar]
- Elguindi, N.; Granier, C.; Stavrakou, T.; Darras, S.; Bauwens, M.; Cao, H.; Chen, C.; van der Gon, H.A.C.D.; Dubovik, O.; Fu, T.M.; et al. Intercomparison of magnitudes and trends in anthropogenic surface emissions from bottom-up inventories, top-down estimates and emission scenarios. Earth’s Future 2020, 8, e2020EF001520. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, T.; Stavrakou, T.; Elguindi, N.; Doumbia, T.; Granier, C.; Bouarar, I.; Gaubert, B.; Brasseur, G.P. Diverse response of surface ozone to COVID-19 lockdown in China. Sci. Total Environ. 2021, 789, 147739. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Tang, G.; Wu, F.; Alvarado, L.; Vrekoussis, M.; Richter, A.; Burrows, J.P. Investigating missing sources of glyoxal over China using a regional air quality model (RAMS-CMAQ). J. Environ. Sci. 2018, 71, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Vadrevu, K.P.; Lwin, Z.M.; Lasko, K.; Justice, C.O. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar. PLoS ONE 2015, 10, e0124346. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.J.; Heald, C.L.; Li, M. Space-Based Constraints on Terrestrial Glyoxal Production. J. Geophys. Res. Atmos. 2018, 123, 13583–13594. [Google Scholar] [CrossRef]
- Al-Haschimi, A.; Aposolou, A.; Ricci, M. China’s path to normalisation in the aftermath of the COVID-19 pandemic. Econ. Bull. Artic. 2020, 6. Available online: https://EconPapers.repec.org/RePEc:ecb:ecbart:2020:0006:1 (accessed on 21 July 2021).
- Miller, C.C.; Jacob, D.J.; Abad, G.G.; Chance, K. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: Implications for emissions of aromatic hydrocarbons. Atmos. Chem. Phys. 2016, 16, 4631–4639. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, Y.; Vrekoussis, M.; Richter, A.; Wittrock, F.; Burrows, J.P.; Shao, M.; Chang, C.-C.; Liu, S.-C.; Wang, H.; et al. Exploring the missing source of glyoxal (CHOCHO) over China. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. J. Geophys. Res. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Spurr, R.J.D. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light Scattering Reviews; Kokhanovsky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 229–271. [Google Scholar]
- Kleipool, Q.L.; Dobber, M.R.; De Haan, J.F.; Levelt, P.F. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. 2008, 113, D18308. [Google Scholar] [CrossRef]
- Williams, J.E.; Boersma, K.F.; Le Sager, P.; Verstraeten, W.W. The high-resolution version of TM5-MP for optimized satellite retrievals: Description and validation. Geosci. Model. Dev. 2017, 10, 721–750. [Google Scholar] [CrossRef] [Green Version]
- Loyola, D.G.; García, S.G.; Lutz, R.; Argyrouli, A.; Romahn, F.; Spurr, R.J.D.; Pedergnana, M.; Doicu, A.; García, V.M.; Schüssler, O. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmos. Meas. Tech. 2018, 11, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Boersma, K.F.; Eskes, H.J.; Brinksma, E.J. Error analysis for tropospheric NO2retrieval from space. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef]
- Volkamer, R.; Baidar, S.; Campos, T.L.; Coburn, S.; DiGangi, J.P.; Dix, B.; Eloranta, E.W.; Koenig, T.K.; Morley, B.; Ortega, I.; et al. Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O2–O2 and aerosol extinction profiles in the tropics: Comparison with aircraft-/ship-based in situ and lidar measurements. Atmos. Meas. Tech. 2015, 8, 2121–2148. [Google Scholar] [CrossRef] [Green Version]
- Sinreich, R.; Coburn, S.; Dix, B.; Volkamer, R. Ship-based detection of glyoxal over the remote tropical Pacific Ocean. Atmos. Chem. Phys. 2010, 10, 11359–11371. [Google Scholar] [CrossRef] [Green Version]
- Behrens, L.K.; Hilboll, A.; Richter, A.; Peters, E.; Alvarado, L.M.A.; Hedegaard, A.B.K.; Wittrock, F.; Burrows, J.P.; Vrekoussis, M. Detection of outflow of formaldehyde and glyoxal from the African continent to the Atlantic Ocean with a MAX-DOAS instrument. Atmos. Chem. Phys. 2019, 19, 10257–10278. [Google Scholar] [CrossRef] [Green Version]
- De Longueville, H.; Clarisse, L.; Whitburn, S.; Franco, B.; Bauduin, S.; Clerbaux, C.; Camy-Peyret, C.; Coheur, P.-F. Iden-tification of short and long-lived atmospheric trace gases from IASI space observations. Geophys. Res. Lett. 2021, 48, e2020GL091742. [Google Scholar] [CrossRef]
- Clarisse, L.; Clerbaux, C.; Franco, B.; Hadji-Lazaro, J.; Whitburn, S.; Kopp, A.K.; Hurtmans, D.; Coheur, P.-F. A Decadal Data Set of Global Atmospheric Dust Retrieved from IASI Satellite Measurements. J. Geophys. Res. Atmos. 2019, 124, 1618–1647. [Google Scholar] [CrossRef] [Green Version]
Short Name | Description |
---|---|
R1 | Use average estimates of CONFORM adjustment factors for anthropogenic 2020 emissions [12] |
R1H | Use high estimates of CONFORM adjustment factors. The resulting anthropogenic fluxes for 2020 are higher than in R1. |
R1L | Use low estimates of CONFORM adjustment factors. The resulting anthropogenic fluxes for 2020 are lower than in R1. |
R2 | Use 2020 baseline anthropogenic emissions from CAMS-GLOB-ANT_v4.2-R1.1. These emissions do not account for pandemic-induced disruptions. |
R3 | Use the same (2019) anthropogenic NOx fluxes in 2019 and 2020 |
R4 | Use the same (2019) anthropogenic VOC fluxes in 2019 and 2020 |
R5 | Use the same (2019) anthropogenic and natural (biomass burning, biogenic) fluxes in 2019 and 2020 |
NO2 Changes | ||||||||
TROPOMI | R1 | R1H | R1L | R2 | R3 | R4 | R5 | |
February | −39.7 | −41.9 | −35.2 | −49.5 | −8.4 | −2.6 | −43.1 | −5.2 |
May | −15.4 | −12.3 | −5.7 | −14.4 | −4.4 | −2.3 | −12.7 | −3.2 |
HCHO Changes | ||||||||
TROPOMI | R1 | R1H | R1L | R2 | R3 | R4 | R5 | |
February | −8.6 | −13.7 | −11.3 | −16.3 | −5.7 | −10.8 | −8.3 | −6.3 |
May | 6.0 | 4.5 | 6.8 | 3.1 | 7.8 | 5.7 | 6.9 | 4.2 |
CHOCHO Changes | ||||||||
TROPOMI | R1 | R1H | R1L | R2 | R3 | R4 | R5 | |
February | −13.2 | −20.7 | −14.7 | −27.0 | 0.2 | −21.9 | 2.4 | 0.5 |
May | −3.2 | −8.4 | −0.9 | −14.9 | −2.1 | −9.4 | 3.6 | −1.3 |
PAN Changes | ||||||||
IASI | R1 | R1H | R1L | R2 | R3 | R4 | R5 | |
February | −17.9 | −11.5 | −7.6 | −15.0 | 0.6 | −7.9 | −3.4 | 0.6 |
May | −21.2 | −19.5 | −13.2 | −23.0 | −11.5 | −16.5 | −14.2 | −9.9 |
Region (Number of In Situ Sites) | In Situ vs. R1 | TROPOMI Columns vs. R1 (At In Situ Stations) | ||||||
---|---|---|---|---|---|---|---|---|
February | May | February | May | |||||
In Situ | R1 | In Situ | R1 | Sat | R1 | Sat | R1 | |
Eastern China (1035) | −36 | −40 | −8 | −8 | −45 | −46 | −19 | −18 |
North China Plain (230) | −36 | −45 | −5 | −2 | −46 | −48 | −17 | −19 |
Yangtze River Delta (154) | −41 | −39 | −2 | 2 | −45 | −47 | −29 | −25 |
Pearl River Delta (94) | −31 | −23 | −24 | −20 | −8 | −33 | −24 | −15 |
Hubei-Hunan (150) | −39 | −46 | −18 | −8 | −48 | −49 | −11 | −11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrakou, T.; Müller, J.-F.; Bauwens, M.; Doumbia, T.; Elguindi, N.; Darras, S.; Granier, C.; Smedt, I.D.; Lerot, C.; Van Roozendael, M.; et al. Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere 2021, 12, 946. https://doi.org/10.3390/atmos12080946
Stavrakou T, Müller J-F, Bauwens M, Doumbia T, Elguindi N, Darras S, Granier C, Smedt ID, Lerot C, Van Roozendael M, et al. Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere. 2021; 12(8):946. https://doi.org/10.3390/atmos12080946
Chicago/Turabian StyleStavrakou, Trissevgeni, Jean-François Müller, Maite Bauwens, Thierno Doumbia, Nellie Elguindi, Sabine Darras, Claire Granier, Isabelle De Smedt, Christophe Lerot, Michel Van Roozendael, and et al. 2021. "Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling" Atmosphere 12, no. 8: 946. https://doi.org/10.3390/atmos12080946