Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level
<p>Location map of the Poço da Cruz reservoir, Pernambuco, Brazil.</p> "> Figure 2
<p>Sentinel-1 data preprocessing steps.</p> "> Figure 3
<p>Mean daily wind velocity in SAR image dates. Source: INMET climatological station A349.</p> "> Figure 4
<p>Multispectral Landsat-8 and Sentinel-2 images affected by atmospheric conditions from September 2016 to early October 2020.</p> "> Figure 5
<p>Multispectral pre-processing steps for multispectral images.</p> "> Figure 6
<p>Example of a histogram of SAR backscatter intensity.</p> "> Figure 7
<p>Water segmentation threshold variation for the date 5 June 2020.</p> "> Figure 8
<p>Workflow illustrating the water level estimation process.</p> "> Figure 9
<p>Sentinel-1A images: (<b>a</b>) low water level (16 February 2018) and (<b>b</b>) high water level (29 June 2020).</p> "> Figure 10
<p>Comparison between VV and VH backscattering coefficient thresholds: (1) Calculated based on the intersection of the observed water elevation contour line over SAR images (blue and red lines: VV_c and VH_c) and (2) obtained via graphical interpretation (black and green lines: VV_g and VH_g).</p> "> Figure 11
<p>Comparison between VV and VH backscattering coefficient thresholds, NDVI signal (<b>a</b>), 30 day accumulated precipitation (Pac30) (<b>b</b>), and surface soil moisture (SSM) (<b>c</b>). Shaded areas indicate the months corresponding to the wet season.</p> "> Figure 12
<p>Continuous wavelet transformation (CWT): (<b>a</b>) daily precipitation (P); (<b>b</b>) normalized difference vegetation index (NDVI); (<b>c</b>) surface soil moisture (SSM); (<b>d</b>) VV polarization; (<b>e</b>) VH polarization. Notes: time is displayed on the horizontal axis, frequency on the vertical axis; warmer colors (red) represent high power signals, and colder colors (blue) represent low power; power scale bars are shown to the right of the charts; the thick contour indicates the 95% significance level against white noise; the cone of influence (COI) is shaded.</p> "> Figure 13
<p>Wavelet transform coherence (WTC) between (<b>a</b>) P and VV, (<b>b</b>) P and VH, (<b>c</b>) NDVI and VV, (<b>d</b>) NDVI and VH, (<b>e</b>) SSM and VV, and (<b>f</b>) SSM and VH. Notes: time is displayed on the horizontal axis, frequency on the vertical axis; warmer colors (red) represent high power signals, and colder colors (blue) represent low power; power scale bars are shown to the right of the charts; the thick contour indicates the 95% significance level against white noise; the cone of influence (COI) is shaded.</p> "> Figure 14
<p>The correlation matrix of environmental variables, VV, and VH polarizations. Notes: charts on the matrix diagonal represent density distributions of values; charts on the top-right show linear correlation, characters “***” represent the significance of correlation at <span class="html-italic">p</span> < 0.001; charts on the bottom-left side present graphical scatter plots and linear regression models.</p> "> Figure 15
<p>Comparison between reconstructed and observed time series water levels using remote sensing.</p> "> Figure 16
<p>Water delimitation comparison with a low water level: (<b>a</b>) reservoir, (<b>b</b>) vegetation, (<b>c</b>) rock, (<b>d</b>) Landsat-8 (19 November 2017), (<b>e</b>) Sentinel-2 (12 November 2017), and (<b>f</b>) Sentinel-1A (12 November 2017).</p> "> Figure 17
<p>Water delimitation with a high water level: (<b>a</b>) reservoir, (<b>b</b>) eutrophication, and (<b>c</b>) typical eutrophicated inlet branch, (<b>d</b>) Landsat-8 (24 September 2020), (<b>e</b>) Sentinel-2 (17 September 2020), and (<b>f</b>) Sentinel-1A (21 September 2020).</p> "> Figure 18
<p>Typical depletion zone image features in the dry season: (<b>a</b>) VV backscattering; (<b>b</b>) VH backscattering; (<b>c</b>) RGB composition; and (<b>d</b>) NDVI composite. OBS. W.L indicates observed water level.</p> "> Figure 19
<p>Typical depletion zone image features in the rainy season: (<b>a</b>) VV polarization backscattering; (<b>b</b>) VH polarization backscattering; (<b>c</b>) RGB composition; and (<b>d</b>) NDVI composite. OBS. W.L indicates observed water level.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. SAR Data Pre-Processing
2.2.2. Multispectral Image Pre-Processing
2.2.3. Digital Elevation Model
2.3. SAR Backscattering Thresholding
2.4. SAR Physical Environmental Influences over Backscattering Thresholding
2.5. Assessment of Water Level
3. Results
3.1. SAR Data Thresholding and Environmental Influences on Backscattering
3.2. Accuracy Assessment
3.2.1. Statistics
3.2.2. Water Level and Storage Effects
3.2.3. General Accuracy of Optical and SAR Water Data
4. Discussion
4.1. SAR Data Thresholding and Environmental Influences on Backscattering
4.2. Accuracy Assessment
5. Conclusions
- The use of SAR Sentinel-1 imagery allowed for the monitoring of reservoir water levels in an uninterrupted manner, with no gaps, whereas the low availability of optical images that were free from atmospheric interference proved to be unfeasible for operational monitoring.
- According to the methodology employed in water/non-water segmentation, VV polarization outperformed VH polarization. VV and VH reference water values depended on their position in the water body. Pixels on the water/non-water edge may represent values typical of soil features.
- During wet seasons, the contrast between water/non-water features was enhanced, and thresholds must be set according to soil moisture, as soil characteristics related to water absorption and changes in dielectric properties influence backscatter.
- NDVI and 30 day accumulated precipitation can be used to predict VV and VH thresholds, as well as machine learning models or more sophisticated algorithms with the aim of automating water segmentation.
- In the presence of a bare soil reservoir depletion zone, simple empirical threshold adjustments of about 5 dB can also be set to improve water extraction in the changes of dry to wet conditions.
- Compared to satellite optical images, the accuracy of SAR was equivalent to that of NDWI/Landsat-8.
- Optical image accuracy outperformed SAR image accuracy in inlet branches, where the complexity of water features was higher due to the diversity of features and the presence of aquatic macrophytes. Land use interactions can affect SAR data more negatively than multispectral images.
- Mode statistics showed to be the most appropriate for retrieving water levels when applying this methodology.
- Even employing the visual water extraction approach, SAR imagery proved to be suitable for operational monitoring not only when optical images are unavailable due to weather conditions but in order to maximize accuracy in situations when SAR data cannot perform well.
- The graphical approach to the selection of SAR backscattering thresholds led to biased results that underestimated the number of water pixels. A bias correction step must be added, with the aim of achieving better results. One of the advantages of the graphical approach is to maximize the number of SAR images, enabling one to use data obtained under unfavorable wind stress conditions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Papa, F.; Prigent, C.; Rossow, W.B. Monitoring Flood and Discharge Variations in the Large Siberian Rivers from a Multi-Satellite Technique. Surv. Geophys. 2008, 29, 297–317. [Google Scholar] [CrossRef]
- Brisco, B. Mapping and Monitoring Surface Water and Wetlands with Synthetic Aperture Radar. In Remote Sensing of Wetlands: Applications and Advances; CRC Press: Boca Raton, FL, USA, 2015; pp. 119–135. [Google Scholar]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 11, 1307–1317. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetl. Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Hung, M.C.; Wu, Y.H. Mapping and visualizing the Great Salt Lake landscape dynamics using multi-temporal satellite images, 1972–1996. Int. J. Remote Sens. 2005, 26, 1815–1834. [Google Scholar] [CrossRef]
- Lira, J. Segmentation and morphology of open water bodies from multispectral images. Int. J. Remote Sens. 2006, 27, 4015–4038. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
- Sethre, P.R.; Rundquist, B.C.; Todhunter, P.E. Remote Detection of Prairie Pothole Ponds in the Devils Lake Basin, North Dakota. GIScience Remote Sens. 2005, 42, 277–296. [Google Scholar] [CrossRef]
- Bryant, R.G.; Rainey, M.P. Investigation of flood inundation on playas within the Zone of Chotts, using a time-series of AVHRR. Remote Sens. Environ. 2002, 82, 360–375. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of Flood-Prone Areas Using Remote Sensing Techniques. Water Resour. Manag. 2005, 19, 333–347. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Hoberg, T.; Rottensteiner, F.; Feitosa, R.Q.; Heipke, C. Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 659–673. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Malahlela, O.E. Inland waterbody mapping: Towards improving discrimination and extraction of inland surface water features. Int. J. Remote Sens. 2016, 37, 4574–4589. [Google Scholar] [CrossRef]
- Jiang, Z.; Qi, J.; Su, S.; Zhang, Z.; Wu, J. Water body delineation using index composition and HIS transformation. Int. J. Remote Sens. 2012, 33, 3402–3421. [Google Scholar] [CrossRef]
- Sheng, Y.; Shah, C.A.; Smith, L.C. Automated Image Registration for Hydrologic Change Detection in the Lake-Rich Arctic. IEEE Geosci. Remote Sens. Lett. 2008, 5, 414–418. [Google Scholar] [CrossRef]
- Acharya, T.D.; Lee, D.H.; Yang, I.T.; Lee, J.K. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree. Sensors 2016, 16, 1075. [Google Scholar] [CrossRef] [Green Version]
- Olthof, I. Mapping Seasonal Inundation Frequency (1985–2016) along the St-John River, New Brunswick, Canada using the Landsat Archive. Remote Sens. 2017, 9, 143. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Won, J.-S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Manjusree, P.; Kumar, L.P.; Bhatt, C.M.; Rao, G.S.; Bhanumurthy, V. Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. Int. J. Disaster Risk Sci. 2012, 3, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 2, p. 308. [Google Scholar]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Amitrano, D.; Martino, G.D.; Iodice, A.; Mitidieri, F.; Papa, M.N.; Riccio, D.; Ruello, G. Sentinel-1 for Monitoring Reservoirs: A Performance Analysis. Remote Sens. 2014, 6, 10676–10693. [Google Scholar] [CrossRef] [Green Version]
- Ezzahar, J.; Ouaadi, N.; Zribi, M.; Elfarkh, J.; Aouade, G.; Khabba, S.; Er-Raki, S.; Chehbouni, A.; Jarlan, L. Evaluation of Backscattering Models and Support Vector Machine for the Retrieval of Bare Soil Moisture from Sentinel-1 Data. Remote Sens. 2020, 12, 72. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Liu, J.; Poncos, V.; Geng, X.; Qian, B.; Chen, Q.; Dong, T.; Macdonald, D.; Martin, T.; Kovacs, J.; et al. Detection of Crop Seeding and Harvest through Analysis of Time-Series Sentinel-1 Interferometric SAR Data. Remote Sens. 2020, 12, 1551. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Su, Z.; Troch, P.A.; De Troch, F.P. Remote sensing of bare surface soil moisture using EMAC/ESAR data. Int. J. Remote Sens. 1997, 18, 2105–2124. [Google Scholar] [CrossRef]
- Schmugge, T.; Jackson, T. Passive Microwave Remote Sensing of Soil Moisture. In Land Surface Processes in Hydrology; Springer: Berlin/Heidelberg, Germany, 1997; pp. 239–262. [Google Scholar]
- Altese, E.; Bolognani, O.; Mancini, M.; Troch, P.A. Retrieving Soil Moisture Over Bare Soil from ERS 1 Synthetic Aperture Radar Data: Sensitivity Analysis Based on a Theoretical Surface Scattering Model and Field Data. Water Resour. Res. 1996, 32, 653–661. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Aslam, A.; Dobson, M.C. Effects of Vegetation Cover on the Radar Sensitivity to Soil Moisture. IEEE Trans. Geosci. Remote Sens. 1982, GE-20, 476–481. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar]
- Sinha, N.K.; Shokr, M. Sea Ice: Physics and Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2015; p. 600. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pereira, M. Relatório de Elaboração da CAV. ANA CAV—Açudes. Lote 02—Açude Poço da Cruz; ANA—Agência Nacional de Águas: Brasília, Brazil, 2018; p. 98.
- Pham-Duc, B.; Prigent, C.; Aires, F. Surface Water Monitoring within Cambodia and the Vietnamese Mekong Delta over a Year, with Sentinel-1 SAR Observations. Water 2017, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Embrapa. Vegetation Temporal Analysis System (SATVeg). Available online: www.satveg.cnptia.embrapa.br (accessed on 22 February 2021).
- Esquerdo, J.C.D.M.; Antunes, J.F.G.; Coutinho, A.C.; Speranza, E.A.; Kondo, A.A.; dos Santos, J.L. SATVeg: A web-based tool for visualization of MODIS vegetation indices in South America. Comput. Electron. Agric. 2020, 175, 105516. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Maraun, D.; Kurths, J. Cross wavelet analysis: Significance testing and pitfalls. Nonliner Process. Geophys. 2004, 11, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, T.; Grinsted, A.; Simko, V. R Package Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (Version 0.20.19). 2019. Available online: https://github.com/tgouhier/biwavelet (accessed on 21 March 2022).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling; CRAN: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. R J. 2018, 10, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti James, S.; Rodell, M. Water in the Balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef]
- Benninga, H.-J.F.; van der Velde, R.; Su, Z. Sentinel-1 soil moisture content and its uncertainty over sparsely vegetated fields. J. Hydrol. X 2020, 9, 100066. [Google Scholar] [CrossRef]
- Theis, S.W.; Blanchard, B.J.; Newton, R.W. Utilization of vegetation indices to improve microwave soil moisture estimates over agricultural lands. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 490–496. [Google Scholar] [CrossRef]
- Van Leeuwen, B.; Tobak, Z.; Kovács, F. Sentinel-1 and -2 Based near Real Time Inland Excess Water Mapping for Optimized Water Management. Sustainability 2020, 12, 2854. [Google Scholar] [CrossRef] [Green Version]
- Weekley, D.; Li, X. Tracking Multidecadal Lake Water Dynamics with Landsat Imagery and Topography/Bathymetry. Water Resour. Res. 2019, 55, 8350–8367. [Google Scholar] [CrossRef]
- Özelkan, E. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Pol. J. Environ. Stud. 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational Surface Water Detection and Monitoring Using Radarsat 2. Remote Sens. 2016, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Reis, L.G.; Souza, W.D.; Ribeiro Neto, A.; Fragoso, C.R.; Ruiz-Armenteros, A.M.; Cabral, J.J.; Montenegro, S.M. Uncertainties Involved in the Use of Thresholds for the Detection of Water Bodies in Multitemporal Analysis from Landsat-8 and Sentinel-2 Images. Sensors 2021, 21, 7494. [Google Scholar] [CrossRef] [PubMed]
Satellite platform | Sentinel-1A |
Frequency | 5.405 GHz (C-band) |
Product type | Ground Range Detected (GRD) |
Sensor mode | Interferometric Wide Swath (IW) |
Sub-swath | IW1 |
Polarization | Dual (VV and VH) |
Pass direction | Descending |
Spatial resolution | 20.4 m × 22.5 m (range × azimuth) |
Incidence angle | 32.9° |
Swath width | 251.8 km |
Temporal resolution | 12 days |
Relative orbit number | 82 |
Satellite (Sensor) | Band | Wavelength (µm) | Level/ Correction | Spatial Resolution (m) | Temporal Resolution (Days) |
---|---|---|---|---|---|
Landsat-8 (OLI) | Green | 0.530–0.590 | Tier 1 only | 30 | 16 |
NIR | 0.850–0.880 | ||||
SWIR | 1.570–1.650 | ||||
Sentinel-2 (MSI) | Green | 0.560 (S2A)/0.559 (S2B) | L1C/TOA | 10 and 20 | 5 |
NIR | 0.835 (S2A)/0.833 (S2B) | 10 | |||
SWIR | 1.613 (S2A)/1.610 (S2B) | 20 |
Satellite | No. of Images | Date |
---|---|---|
Sentinel-1 | 61 | 28/01/2017, 09/02/2017, 31/10/2017, 28/02/2018, 24/03/2018, 05/04/2018, 17/04/2018, 28/06/2018, 10/07/2018, 22/07/2018, 03/08/2018, 15/08/2018, 27/08/2018, 08/09/2018, 20/09/2018, 02/10/2018, 14/10/2018, 26/10/2018, 07/11/2018, 19/11/2018, 01/12/2018, 13/12/2018, 25/12/2018, 06/01/2019, 18/01/2019, 30/01/2019, 11/02/2019, 23/02/2019, 07/03/2019, 19/03/2019, 31/03/2019, 12/04/2019, 24/04/2019, 11/06/2019, 23/06/2019, 05/07/2019, 17/07/2019, 29/07/2019, 10/08/2019, 22/08/2019, 03/09/2019, 15/09/2019, 27/09/2019, 09/10/2019, 21/10/2019, 02/11/2019, 14/11/2019, 08/12/2019, 20/12/2019, 01/01/2020, 13/01/2020, 25/01/2020, 06/02/2020, 18/02/2020, 12/05/2020, 24/05/2020, 05/06/2020, 17/06/2020, 29/06/2020, 11/07/2020, 23/07/2020 |
Satellite | No. of Images | Date |
---|---|---|
Landsat-8 | 12 | 19/11/2017, 01/07/2018, 17/07/2018, 21/10/2018, 08/12/2018, 25/01/2019, 14/03/2019, 02/06/2019, 21/08/2019, 24/10/2019, 11/12/2019, 27/12/2019 |
Sentinel-2 | 32 | 26/01/2017, 21/05/2018, 20/07/2018, 30/07/2018, 04/08/2018, 14/08/2018, 23/09/2018, 23/10/2018, 28/10/2018, 02/11/2018, 17/11/2018, 22/12/2018, 27/12/2018, 01/01/2019, 20/02/2019, 17/03/2019, 11/04/2019, 05/06/2019, 05/07/2019, 13/09/2019, 28/09/2019, 03/10/2019, 23/10/2019, 28/10/2019, 02/11/2019, 07/11/2019, 17/11/2019, 22/11/2019, 02/12/2019, 07/12/2019, 12/12/2019, 04/07/2020 |
No. of Datas | Date | Water Level [m] | Date | Water Level [m] | Date | Water Level [m] | Date | Water Level [m] |
---|---|---|---|---|---|---|---|---|
102 | 27/01/2017 | 414.65 | 20/10/2018 | 419.66 | 31/03/2019 | 420.08 | 07/11/2019 | 419.48 |
10/02/2017 | 414.31 | 23/10/2018 | 419.64 | 11/04/2019 | 420.94 | 14/11/2019 | 419.41 | |
31/10/2017 | 412.59 | 26/10/2018 | 419.60 | 12/04/2019 | 420.94 | 16/11/2019 | 419.40 | |
20/11/2017 | 412.29 | 27/10/2018 | 419.60 | 25/04/2019 | 420.89 | 22/11/2019 | 419.34 | |
28/02/2018 | 418.11 | 02/11/2018 | 419.55 | 03/06/2019 | 420.61 | 02/12/2019 | 419.41 | |
24/03/2018 | 420.96 | 07/11/2018 | 419.49 | 05/06/2019 | 420.59 | 07/12/2019 | 419.37 | |
05/04/2018 | 420.93 | 17/11/2018 | 419.39 | 11/06/2019 | 420.55 | 08/12/2019 | 419.36 | |
17/04/2018 | 420.98 | 19/11/2018 | 419.37 | 23/06/2019 | 420.50 | 11/12/2019 | 419.33 | |
21/05/2018 | 420.78 | 01/12/2018 | 419.28 | 05/07/2019 | 420.44 | 11/12/2019 | 419.33 | |
28/06/2018 | 420.55 | 08/12/2018 | 419.23 | 17/07/2019 | 420.36 | 20/12/2019 | 419.24 | |
01/07/2018 | 420.53 | 13/12/2018 | 419.21 | 29/07/2019 | 420.29 | 27/12/2019 | 419.17 | |
09/07/2018 | 420.48 | 22/12/2018 | 419.24 | 10/08/2019 | 420.22 | 02/01/2020 | 419.22 | |
16/07/2018 | 420.44 | 24/12/2018 | 419.23 | 21/08/2019 | 420.15 | 13/01/2020 | 419.17 | |
19/07/2018 | 420.41 | 27/12/2018 | 419.21 | 22/08/2019 | 420.14 | 25/01/2020 | 419.11 | |
22/07/2018 | 420.39 | 31/12/2018 | 419.18 | 03/09/2019 | 420.05 | 06/02/2020 | 419.38 | |
30/07/2018 | 420.34 | 07/01/2019 | 419.11 | 13/09/2019 | 419.97 | 18/02/2020 | 419.34 | |
03/08/2018 | 420.31 | 18/01/2019 | 419.03 | 15/09/2019 | 419.96 | 12/05/2020 | 432.27 | |
04/08/2018 | 420.31 | 25/01/2019 | 418.97 | 27/09/2019 | 419.86 | 25/05/2020 | 432.27 | |
14/08/2018 | 420.24 | 30/01/2019 | 418.92 | 28/09/2019 | 419.85 | 05/06/2020 | 432.43 | |
15/08/2018 | 420.23 | 11/02/2019 | 418.83 | 03/10/2019 | 419.81 | 17/06/2020 | 432.43 | |
27/08/2018 | 420.13 | 20/02/2019 | 418.77 | 09/10/2019 | 419.75 | 29/06/2020 | 432.43 | |
08/09/2018 | 420.04 | 23/02/2019 | 418.74 | 21/10/2019 | 419.64 | 03/07/2020 | 432.42 | |
20/09/2018 | 419.94 | 07/03/2019 | 418.69 | 23/10/2019 | 419.63 | 11/07/2020 | 432.38 | |
23/09/2018 | 419.92 | 14/03/2019 | 418.62 | 24/10/2019 | 419.62 | 22/07/2020 | 432.34 | |
02/10/2018 | 419.83 | 17/03/2019 | 418.68 | 28/10/2019 | 419.58 | - | - | |
14/10/2018 | 419.72 | 19/03/2019 | 418.66 | 01/11/2019 | 419.54 | - | - |
Statistics | Graphical Method | Contour Level Method | ||
---|---|---|---|---|
VV | VH | VV | VH | |
Min. | −16.50 | −23.30 | −20.4 | −23.6 |
1st Quartile | −15.97 | −22.70 | −14.2 | −20.7 |
Median | −15.50 | −22.20 | −13.4 | −20.0 |
Mean | −15.15 | −21.97 | −13.4 | −20.0 |
3rd Quartile | −14.50 | −21.60 | −12.3 | −18.6 |
Max. | −11.50 | −18.00 | −10.0 | −16.2 |
(max–min) | 5.00 | 5.30 | 10.4 | 7.4 |
Product | No of Images | WL (Me) | WL (Mn) | WL (Mo) | |||
---|---|---|---|---|---|---|---|
RMSE | MPD | RMSE | MPD | RMSE | MPD | ||
(m) | (%) | (m) | (%) | (m) | (%) | ||
NDWI/L8 | 12 | 1.01 | 0.23 | 1.01 | 0.23 | 0.89 | 0.20 |
MNDWI/L8 | 0.66 | 0.14 | 0.67 | 0.15 | 0.55 | 0.12 | |
NDWI/S2 | 32 | 0.74 | 0.17 | 0.61 | 0.14 | 0.44 | 0.10 |
MNDWI/S2 | 1.03 | 0.24 | 0.87 | 0.21 | 0.58 | 0.13 | |
SAR/S1A-VV | 61 | 1.32 | 0.29 | 1.16 | 0.25 | 0.87 | 0.19 |
SAR/S1A-VH | 1.88 | 0.42 | 1.56 | 0.35 | 1.15 | 0.24 |
Water Level < 420 m | ||||||
---|---|---|---|---|---|---|
Product | <1 m (%) | RMSE (m) | MPD (%) | ≥1 m (%) | RMSE (m) | MPD (%) |
NDWI/L8 | 83 | 0.79 | 0.18 | 17 | 1.25 | 0.30 |
MNDWI/L8 | 100 | 0.58 | 0.13 | - | - | - |
NDWI/S2 | 100 | 0.43 | 0.10 | - | - | - |
MNDWI/S2 | 100 | 0.58 | 0.13 | - | - | - |
SAR/S1A-VV | 80 | 0.64 | 0.15 | 20 | 1.22 | 0.28 |
SAR/S1A-VH | 65 | 0.67 | 0.17 | 35 | 1.68 | 0.37 |
Water Level ≥ 420 m | ||||||
Product | <1 m (%) | RMSE (m) | MPD (%) | ≥1 m (%) | RMSE (m) | MPD (%) |
NDWI/L8 | - | - | - | - | - | - |
MNDWI/L8 | 100 | 0.42 | 0.10 | - | - | - |
NDWI/S2 | 100 | 0.46 | 0.10 | - | - | - |
MNDWI/S2 | 100 | 0.60 | 0.14 | - | - | - |
SAR/S1A-VV | 30 | 0.54 | 0.12 | 70 | 1.39 | 0.32 |
SAR/S1A-VH | 40 | 0.73 | 0.17 | 60 | 1.24 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, W.d.O.; Reis, L.G.d.M.; Ruiz-Armenteros, A.M.; Veleda, D.; Ribeiro Neto, A.; Fragoso Jr., C.R.; Cabral, J.J.d.S.P.; Montenegro, S.M.G.L. Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level. Remote Sens. 2022, 14, 2218. https://doi.org/10.3390/rs14092218
Souza WdO, Reis LGdM, Ruiz-Armenteros AM, Veleda D, Ribeiro Neto A, Fragoso Jr. CR, Cabral JJdSP, Montenegro SMGL. Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level. Remote Sensing. 2022; 14(9):2218. https://doi.org/10.3390/rs14092218
Chicago/Turabian StyleSouza, Wendson de Oliveira, Luis Gustavo de Moura Reis, Antonio Miguel Ruiz-Armenteros, Doris Veleda, Alfredo Ribeiro Neto, Carlos Ruberto Fragoso Jr., Jaime Joaquim da Silva Pereira Cabral, and Suzana Maria Gico Lima Montenegro. 2022. "Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level" Remote Sensing 14, no. 9: 2218. https://doi.org/10.3390/rs14092218
APA StyleSouza, W. d. O., Reis, L. G. d. M., Ruiz-Armenteros, A. M., Veleda, D., Ribeiro Neto, A., Fragoso Jr., C. R., Cabral, J. J. d. S. P., & Montenegro, S. M. G. L. (2022). Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level. Remote Sensing, 14(9), 2218. https://doi.org/10.3390/rs14092218