Automated Extraction of Surface Water Extent from Sentinel-1 Data
<p>Map of the study sites, including the Prairie Pothole Region (PPR) and the Delmarva Peninsula (DMV), with Landsat path/row (purple solid line) and Sentinel-1 path/frame (blue solid line). National Agriculture Imagery Program (NAIP) images (right column) are given for each site, representing inland (<b>upper right</b>) and coastal (<b>bottom right</b>) wetlandscapes.</p> "> Figure 2
<p>Workflow for mapping surface water extent using Sentinel-1 SAR data.</p> "> Figure 3
<p>The Prairie Pothole Region site and footprints of remotely sensed data used in this study. The water and land class are from dynamic surface water extent (DSWE) composite class probabilities. Sentinel-1 data were collected on mid-night of 5 July 2016 (UTC) and 10 August 2016 (UTC). NAIP images were collected on the same day (noon to afternoon) of Sentinel-1 data.</p> "> Figure 4
<p>Land (<b>A</b>) and Water (<b>B</b>) class probabilities summarized from composited dynamic surface water extent (cDSWE) water/land classes and land/water classes derived from DSWE classes using a 95% threshold (<b>C</b>) and Shuttle Radar Topography Mission water body dataset (SWBD) water/land mask (<b>D</b>) over a site on the Delmarva Peninsula (see map). The zoom-in window (<b>a</b>–<b>d</b>) in the bottom-right shows the difference in spatial details in two products. These two prior masks were used to train and calibrate the surface water models.</p> "> Figure 5
<p>Box plot of polarized band, indices and geometry versus by land and water classes over Delmarva Peninsula. Red bar shows median and blue box represents first and third quantile. VVrVH = VV/VH, NDPI = (VV − VH)/(VV + VH)), NVHI = VH/(VV + VH), NVVI = (NVVI, VV/(VV + VH)), EIA = ellipsoid incidence angle, and LIA = local incidence angle.</p> "> Figure 6
<p>Gamma0_VV and Gamma0_VH (<b>left</b> column, (<b>A</b>,<b>D</b>)), density scatterplot (<b>middle</b> column, (<b>B</b>,<b>E</b>)), and binned scatterplot (<b>right</b> column, (<b>C</b>,<b>F</b>)) showing the separability between land and water classes defined by the SWBD in the Delmarva Peninsula. In the binned scatter plot, the backscatter coefficients (Gamma0_VV and Gamma0_VH in dB) are shown in cyan for water pixels and in red for land pixels. Grey bars represent 1 standard deviation.</p> "> Figure 7
<p>Random forest classification results over Prairie Pothole Region (PPR, <b>left</b> column, (<b>A</b>,<b>B</b>)) and Delmarva (DMV, <b>right</b> column, (<b>D</b>,<b>E</b>)) sites, using prior mask either from SWBD (<b>top</b> row) or composite DSWE (cDSWE) class probabilities (<b>second</b> row). The Sentinel-1 images (<b>third</b> row) were shown in false-color composited of Gamma naught (dB) (R: VV, G: VH, B: VHrVV), and were acquired on 10 August 2016 (<b>E</b>) and 9 July 2016 (<b>F</b>). The subzoom windows (bottom row) show small water bodies in PPR (left (<b>a</b>–<b>c</b>)) and linear streams (right (<b>d</b>–<b>f</b>)) missing from result using SWBD as prior mask. Difference in classification results between using SWBD and cDSWE were labeled in light to dark orange colors on the classification maps (<b>A</b>,<b>B</b>) and subzoom maps (<b>a</b>,<b>d</b>).</p> "> Figure 8
<p>Comparison of classification maps derived from near-coincident Sentinel-1 (<b>upper</b> row) and Landsat-8 DSWE (<b>bottom</b> row), over the sits of Prairie Pothole Region (PPR, <b>left</b> column) and the Delmarva Peninsula (DMV, <b>right</b> column). The two Sentinel-1 classification maps were generated using cDSWE as prior mask from Sentinel-1 data collected on (<b>B</b>) 9 July 2016 and (<b>D</b>) 10 August 2016. The two DSWE products were generated from Landsat-8 data collected on (<b>A</b>) 11 July 2016 and (<b>C</b>) 11 August 2016. Difference in classification results between this study and DSWE are labeled in light to dark orange colors on the classification maps from this study (<b>A</b>,<b>B</b>).</p> "> Figure 9
<p>Classification results based on Sentinel-1 SAR data from April to September 2016, using cDSWE probabilities to derive training data for the Prairie Pothole Region site. The zoom-in window (A) was selected for illustrating change patterns of the surface water extent and weather data in <a href="#remotesensing-10-00797-f010" class="html-fig">Figure 10</a>.</p> "> Figure 10
<p>Time series of Sentinel-1 derived percentage of surface water extent (%) and precipitation (mm) for a subset in the Prairie Pothole Region site. The percentage of water was calculated from the time series of classification maps over the given inset in <a href="#remotesensing-10-00797-f009" class="html-fig">Figure 9</a>. The daily precipitation data were collected by a nearby North Dakota Agricultural Weather Network (NDAWN) weather station in Robinson, ND [<a href="#B49-remotesensing-10-00797" class="html-bibr">49</a>].</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Remote-Sensing Datasets
2.3. Automated Synthetic Aperture Radar (SAR) Algorithm for Water Extent Mapping
2.3.1. SAR Data Pre-Processing
2.3.2. Training Datasets Preparation
2.3.3. Random Forest Classification
- If Pw ≥ 0.65, assign a ‘high-probability water’ label
- If 0.50 ≤ Pw < 0.65, assign a ‘moderate-probability water’ label
- If 0.35 ≤ Pw < 0.50, assign a ‘low-probability water’ label
- If Pw < 0.35, assign a ‘non-water’ label
2.3.4. Accuracy Assessment
2.3.5. Automation of Algorithms
3. Results
3.1. Comparison of Prior Masks
3.2. Land/Water Separability from Different Radar Variables
3.3. Comparison of Classification Results
3.4. Validation and Accuracy Assessment
3.4.1. Comparison with DSWE Product
3.4.2. Accuracy Assessment by High-Resolution Imagery
3.5. Time-Series Classifcation Results
4. Discussion
4.1. Significance of this Study
4.1.1. Automation of Algorithms
4.1.2. Improved Prior Masks for Classification
4.1.3. Validation of Products
4.2. Limitations and Potential Improvements
4.2.1. Omission from Inundated Vegetation
4.2.2. Resolution-Induced Omission Error
4.2.3. Commission from Smooth Objects
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment Board. Millennium Ecosystem Assessment Synthesis Report; United Nation Environment Programme: New York, NY, USA, 2005. [Google Scholar]
- Creed, I.F.; Lane, C.R.; Serran, J.N.; Alexander, L.C.; Basu, N.B.; Calhoun, A.J.; Christensen, J.R.; Cohen, M.J.; Craft, C.; D’Amico, E. Enhancing protection for vulnerable waters. Nat. Geosci. 2017, 10, 809. [Google Scholar] [CrossRef]
- Krinner, G. Impact of lakes and wetlands on boreal climate. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Shindell, D.T.; Faluvegi, G.; Bell, N.; Schmidt, G.A. An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- McDonough, O.T.; Lang, M.W.; Hosen, J.D.; Palmer, M.A. Surface hydrologic connectivity between delmarva bay wetlands and nearby streams along a gradient of agricultural alteration. Wetlands 2015, 35, 41–53. [Google Scholar] [CrossRef]
- Lee, S.; Yeo, I.-Y.; Lang, M.; McCarty, G.; Sadeghi, A.; Sharifi, A.; Jin, H.; Liu, Y. Improving the catchment scale wetland modeling using remotely sensed data. Environ. Model. Softw. 2017. [Google Scholar] [CrossRef]
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Becker, M.W. Potential for satellite remote sensing of ground water. Gr. Water 2006, 44, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Wickham, J.D.; Stehman, S.V.; Fry, J.A.; Smith, J.H.; Homer, C.G. Thematic accuracy of the NLCD 2001 land cover for the conterminous united states. Remote Sens. Environ. 2010, 114, 1286–1296. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lang, M.; Bourgeau-Chavez, L.L.; Tiner, R.; Klemas, V. Chapter 5 Advances in Remotely Sensed Data and Techniques for Wetland Mapping and Monitoring. In Remote Sensing of Wetlands: Applications and Advances; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Brisco, B. Mapping and monitoring surface water and wetlands with synthetic aperture radar. In Remote Sensing of Wetlands: Applications and Advances; Tiner, R., Lang, M., Klemas, V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 119–136. [Google Scholar]
- Kim, J.-W.; Lu, Z.; Jones, J.W.; Shum, C.K.; Lee, H.; Jia, Y. Monitoring everglades freshwater marsh water level using L-band synthetic aperture radar backscatter. Remote Sens. Environ. 2014, 150, 66–81. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmüller, U.; Lamarche, C.; Bontemps, S.; Defourny, P.; Arino, O. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sens. Environ. 2015, 171, 185–201. [Google Scholar] [CrossRef]
- Cazals, C.; Rapinel, S.; Frison, P.-L.; Bonis, A.; Mercier, G.; Mallet, C.; Corgne, S.; Rudant, J.-P. Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution sentinel-1A images. Remote Sens. 2016, 8, 570. [Google Scholar] [CrossRef]
- Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational surface water detection and monitoring using radarsat 2. Remote Sens. 2016, 8, 285. [Google Scholar] [CrossRef]
- Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A. Comparing four operational SAR-based water and flood detection approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [Google Scholar] [CrossRef]
- Lang, M.W.; McCarty, G.W. Chapter 2 Remote Sensing Data for Regional Wetland Mapping in the United States: Trends and Future Prospects. In Wetlands: Ecology, Conservation and Restoration; Russo, R.E., Ed.; Nova Science Publishers. Inc.: Hauppauge, NY, USA, 2008. [Google Scholar]
- Santoro, M.; Wegmüller, U. Multi-temporal synthetic aperture radar metrics applied to map open water bodies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3225–3238. [Google Scholar] [CrossRef]
- Westerhoff, R.; Kleuskens, M.; Winsemius, H.; Huizinga, H.; Brakenridge, G.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef]
- Morandeira, N.; Grings, F.; Facchinetti, C.; Kandus, P. Mapping plant functional types in floodplain wetlands: An analysis of c-band polarimetric SAR data from Radarsat-2. Remote Sens. 2016, 8, 174. [Google Scholar] [CrossRef]
- Clement, M.A.; Kilsby, C.G.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2017. [Google Scholar] [CrossRef]
- Lang, M.W.; Townsend, P.A.; Kasischke, E.S. Influence of incidence angle on detecting flooded forests using C-HH synthetic aperture radar data. Remote Sens. Environ. 2008, 112, 3898–3907. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Ni, W.; Zhang, Z.; Dubayah, R. Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass. Remote Sens. 2015, 7, 9587–9609. [Google Scholar] [CrossRef]
- Smith, L.C.; Alsdorf, D.E. Control on sediment and organic carbon delivery to the arctic ocean revealed with space-borne synthetic aperture radar: Ob’river, Siberia. Geology 1998, 26, 395–398. [Google Scholar] [CrossRef]
- Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution Terrasar-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth Parts A/B/C 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Brisco, B.; Schmitt, A.; Murnaghan, K.; Kaya, S.; Roth, A. SAR polarimetric change detection for flooded vegetation. Int. J. Digit. Earth 2013, 6, 103–114. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmuller, U.; Wiesmann, A.; Lamarche, C.; Bontemps, S.; Defourny, P.; Arino, O. Assessing Envisat ASAR and Sentinel-1 Multi-Temporal Observations to Map Open Water Bodies. In Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015; pp. 614–619. [Google Scholar]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2015, 1–21. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.; Gessner, U.; Dech, S.; Kuenzer, C. Results of the global waterpack: A novel product to assess inland water body dynamics on a daily basis. Remote Sens. Lett. 2015, 6, 78–87. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P. Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 2017, 197, 15–34. [Google Scholar] [CrossRef]
- Carroll, M.L.; Townshend, J.R.; DiMiceli, C.M.; Noojipady, P.; Sohlberg, R.A. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth 2009, 2, 291–308. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lang, M.; McDonough, O.; McCarty, G.; Oesterling, R.; Wilen, B. Enhanced detection of wetland-stream connectivity using lidar. Wetlands 2012, 32, 461–473. [Google Scholar] [CrossRef]
- Huang, C.; Peng, Y.; Lang, M.; Yeo, I.-Y.; McCarty, G. Wetland inundation mapping and change monitoring using Landsat and airborne lidar data. Remote Sens. Environ. 2014, 141, 231–242. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. Gmes Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Copernicus Sentinel Data. Retrieved from ASF DAAC. Retrieved from ASF DAAC. Processed by ESA. 2016. Available online: https://vertex.daac.asf.alaska.edu/ (accessed on 1 May 2017).
- SWBD. Shuttle Radar Topography Mission Water Body Data Set. Digital Media 2005. Available online: https://dds.Cr.Usgs.Gov/srtm/version2_1/ (accessed on 1 April 2016).
- Jones, J. Efficient wetland surface water detection and monitoring via landsat: Comparison with in situ data from the everglades depth estimation network. Remote Sens. 2015, 7, 12503. [Google Scholar] [CrossRef]
- Carroll, M.; Loboda, T. Multi-decadal surface water dynamics in North American tundra. Remote Sens. 2017, 9, 497. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Lang, M.; Jones, J.; Huang, W.; Creed, I. Automated quantification of surface water fraction in wetlands using optical Landsat and Sentinel-2 imagery. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- NDAWN. North Dakota Agricultural Weather Network (NDAWN) Center. North Dakota State University, Ed.: Fargo, North Dakota, 2016. Available online: http://ndawn.Ndsu.Nodak.Edu (accessed on 12 March 2018).
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Lee, J.-S.; Wen, J.-H.; Ainsworth, T.L.; Chen, K.-S.; Chen, A.J. Improved sigma filter for speckle filtering of sar imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 202–213. [Google Scholar]
- Brisco, B.; Kapfer, M.; Hirose, T.; Tedford, B.; Liu, J. Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Can. J. Remote Sens. 2011, 37, 82–92. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; White, L.J.T.; Abernethy, K.A.; Jeffery, K.J.; Lewis, S.L.; Collins, M.; Lefsky, M.A.; Leal, M.E.; Woodhouse, I.H.; et al. Mapping tropical forest biomass with radar and spaceborne lidar in lopé national park, gabon: Overcoming problems of high biomass and persistent cloud. Biogeosciences 2012, 9, 179–191. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Saatchi, S.; Ustin, S.; Balzter, H. Modelling forest canopy height by integrating airborne lidar samples with satellite radar and multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 159–173. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gabrielsen, C.G.; Murphy, M.A.; Evans, J.S. Using a multiscale, probabilistic approach to identify spatial-temporal wetland gradients. Remote Sens. Environ. 2016, 184, 522–538. [Google Scholar] [CrossRef]
- McCabe, M.F.; Rodell, M.; Alsdorf, D.E.; Miralles, D.G.; Uijlenhoet, R.; Wagner, W.; Lucieer, A.; Houborg, R.; Verhoest, N.E.C.; Franz, T.E.; et al. The future of earth observation in hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3879–3914. [Google Scholar] [CrossRef]
- Thompson, A.A. Overview of the radarsat constellation mission. Can. J. Remote Sens. 2015, 41, 401–407. [Google Scholar] [CrossRef]
- Charbonneau, F.J.; Brisco, B.; Raney, R.K.; McNairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; DeAbreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36, S298–S315. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Yu, J.J.; Ribbes, F.; Floury, N. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Deledalle, C.-A.; Denis, L.; Tupin, F.; Reigber, A.; Jäger, M. Nl-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In)SAR denoising. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2021–2038. [Google Scholar] [CrossRef]
- Rosen, P.A.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, V.R. Global persistent SAR sampling with the NASA-ISRO SAR (NISAR) mission. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; pp. 0410–0414. [Google Scholar]
Site | Sensor | Path/Row (Frame *) | Date | Average Temperature (°C) | Precipitation (mm) | ||
---|---|---|---|---|---|---|---|
1 Day | 3 Days | 7 Days | |||||
PPR | Senintl-1A SAR | 34/151 | 24 April 2016 | 6.0 | 0.0 | 0.0 | 13.0 |
6 May 2016 | 14.0 | 0.0 | 0.0 | 1.0 | |||
18 May 2016 | 13.5 | 0.0 | 0.0 | 0.5 | |||
30 May 2016 | 18.2 | 0.0 | 0.0 | 6.4 | |||
34/149 | 11 June 2016 | 18.7 | 9.7 | 9.7 | 9.7 | ||
34/151 | 5 July 2016 | 19.9 | 0.0 | 3.0 | 3.0 | ||
17 July 2016 | 19.9 | 8.9 | 8.9 | 48.6 | |||
10 August 2016 | 20.4 | 11.4 | 11.4 | 11.9 | |||
22 Augut 2016 | 20.3 | 0.0 | 4.1 | 29.0 | |||
3 September 2016 | 20.7 | 0.0 | 8.9 | 8.9 | |||
Landsat-8 OLI | 32/27 | 11 August 2016 | 21.7 | 21.8 | 33.3 | 33.5 | |
DMV | Senintl-1A SAR | 106/119 | 9 July 2016 | 27.1 | 0.0 | 0.0 | 0.2 |
106/126 | |||||||
Landsat-8 OLI | 140/32 | 11 July 2016 | 25.1 | 0.0 | 0.0 | 0.2 | |
140/34 |
Index | Abbreviation | Equations | Reference |
---|---|---|---|
Polarized Ratio (VH to VV) | VHrVV | ϒ⁰VHrVV = ϒ⁰VH/ϒ⁰VV | Brisco et al. [52] |
Normalized Difference Polarized Index | NDPI | ϒ⁰NDPI = (ϒ⁰VV − ϒ⁰VH)/(ϒ⁰VV + ϒ⁰VH) | Mitchard et al. [54] |
Normalized VH Index | NVHI | ϒ⁰NVHI = ϒ⁰VH/(ϒ⁰VV + ϒ⁰VH) | McNairn & Brisco [56] |
Normalized VV Index | NVVI | ϒ⁰NVHI = ϒ⁰VV/(ϒ⁰VV + ϒ⁰VH) | McNairn & Brisco [56] |
Site (Date) | Prior Mask | Overall Accuracy | Kappa Coefficient | Commission Error | Omission Error | ||
---|---|---|---|---|---|---|---|
Land | Water | Land | Water | ||||
A. PPR (4 July 2016) | SWBD | 79% | 0.54 | 29% | 1% | 1% | 43% |
cDSWE | 82% | 0.64 | 26% | 1% | 1% | 36% | |
B. PPR (9 August 2016) | SWBD | 90% | 0.77 | 8% | 14% | 6% | 18% |
cDSWE | 93% | 0.84 | 4% | 13% | 6% | 8% |
Site (Date) | Reference (from NAIP) | |||||
---|---|---|---|---|---|---|
Class | Land | Water | Total | User’s Accuracy | ||
A. PPR (5 July 2016) | Predicted | Land | 150 | 52 | 202 | 74% |
Water | 1 | 93 | 94 | 99% | ||
Total | 151 | 145 | 296 | |||
Producer’s accuracy | 99% | 64% | ||||
Overall Accuracy | 82% | |||||
B. PPR (10 August 2016) | Predicted | Land | 168 | 11 | 179 | 96% |
Water | 7 | 76 | 83 | 87% | ||
Total | 175 | 87 | 262 | |||
Producer’s accuracy | 94% | 92% | ||||
Overall Accuracy | 93% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. https://doi.org/10.3390/rs10050797
Huang W, DeVries B, Huang C, Lang MW, Jones JW, Creed IF, Carroll ML. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sensing. 2018; 10(5):797. https://doi.org/10.3390/rs10050797
Chicago/Turabian StyleHuang, Wenli, Ben DeVries, Chengquan Huang, Megan W. Lang, John W. Jones, Irena F. Creed, and Mark L. Carroll. 2018. "Automated Extraction of Surface Water Extent from Sentinel-1 Data" Remote Sensing 10, no. 5: 797. https://doi.org/10.3390/rs10050797