3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data
<p>Overview and detailed view of a high-resolution (4 × 4 cm) northed GPR slice showing the unexcavated remains of the southern third of the Roman forum in the Civil Town of Carnuntum, Austria. The slice image depicts the main outline of the building complex adjoining to the main open square in the north as well as internal details such as preserved paved floors, individual stone slabs in the foundation walls, or thresholds in door openings. The grid of individual pillars underneath the paved floors of the eastern building shows the remains of a hypocaust for heating the three main buildings interpreted as curia, the City hall. Furthermore, remains of the sewerage are visible within the building complex and underneath the streets east and west of the forum (<b>a</b>,<b>b</b>). Selection of detail slices forming a sub-volume of the dataset stack, which shows the 3D nature of the GPR data in analogy to a medical 3D dataset (see <a href="#remotesensing-14-01709-f002" class="html-fig">Figure 2</a>). Some structures, such as walls, are traceable over a wide depth range, while small structures are only visible in individual layers. Comprehensive understanding of the data including 3D shapes of such structures obviously requires three-dimensional visualizations (<b>c</b>).</p> "> Figure 2
<p>Generalized direct volume rendering (DVR) principle: The color values for single pixels of the output images on the right are computed by sampling the underlying dataset along view rays (arrow, left) and accumulating their individual visual contributions obtained by applying the transfer function assigning optical properties (color and transparency) to measurement values (middle).</p> "> Figure 3
<p>Visualization system overview: The system supports a wide range of data types. The 3D volumes may be visualized using DVR or as iso-surface, directly or after undergoing 3D image processing. The flexible visualization algorithm supports combining multiple datasets, or multiple versions of the same dataset by combining all their visual contributions. Furthermore, contributions from 3D models and 2D imagery are integrated. The 3D models can be used to control the visible portions of volume datasets, as well as the application domains of transfer functions.</p> "> Figure 4
<p>Direct volume visualization and iso-surface visualization of unfiltered GPR dataset: The structures visible in individual 2D slices can also be seen in the 3D DVR images (<b>a</b>,<b>c</b>). The moderate gain in plasticity for walls is paid for with a high degree of clutter caused by ground structures sharing the same dataset values. Iso-surface visualization avoids the blurring caused by blending semi-transparent soil structure contributions. Still, the walls are only visualized as accumulations of strong radar reflectors like individual bricks or stones, rather than independent superordinate structures (<b>b</b>,<b>d</b>).</p> "> Figure 5
<p>Results of a 3D bilateral filter (<b>a</b>,<b>c</b>) and a median filter (<b>b</b>,<b>d</b>) applied to a GPR dataset. Both filters reveal the actual boundaries of the foundation walls in a more defined way compared to the original image in <a href="#remotesensing-14-01709-f001" class="html-fig">Figure 1</a>. The bilateral filter avoids blurring at structure boundaries.</p> "> Figure 6
<p>Edge enhancing anisotropic diffusion filter applied to GPR Roman GPR dataset. Similar to the bilateral filter, EED (<b>a</b>,<b>b</b>) can depict the outline of the foundation walls in comparison to the unfiltered image in <a href="#remotesensing-14-01709-f001" class="html-fig">Figure 1</a>. Compared to the median filter result detail view in <a href="#remotesensing-14-01709-f005" class="html-fig">Figure 5</a>d, blurring of wall boundaries occurs to a lesser extent. Noise in the surrounding soil regions is still removed to a great extent (<b>b</b>).</p> "> Figure 7
<p>GPR data denoise using the TV-L1 filter: Dataset values converge to the representative values of their respective regions depending on the choice of parameter <math display="inline"><semantics> <mi>λ</mi> </semantics></math>. High values preserve smaller details such as the side walls of the Roman sewerage ducts on both sides of the forum of Carnuntum. Large features, such as walls, are still noisy and the filtered image more similar to the original image in <a href="#remotesensing-14-01709-f004" class="html-fig">Figure 4</a> (<b>a</b>,<b>c</b>). A lower <math display="inline"><semantics> <mi>λ</mi> </semantics></math> yields images with largely homogeneous wall. Still, their contours remain well defined and sharp. Small details such as the cavity of the sewer begin to blur or disappear (<b>b</b>,<b>d</b>).</p> "> Figure 8
<p>Direct volume rendering of GPR datasets filtered with a 3D median filter of kernel size 5 (<b>a</b>), a bilateral filter (<b>b</b>), an edge-enhancing anisotropic diffusion filter (EED) (<b>c</b>) and a TV-L1 filter <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math> (<b>d</b>). The outlines of the walls, sewerage ducts, and paved floors are clearly visible in all images. The blur level introduced by the median filter seems to be generally higher and it is respecting the shape edges of archaeological features to a lesser extent. The EED filter delivers very similar results to the bilateral filters. The TV-L1 filter results appear more detailed since blurring of structure boundaries is largely avoided.</p> "> Figure 9
<p>Iso-surface visualization of GPR datasets filtered with a 3D median filter of kernel size 5 (<b>a</b>), a bilateral filter (<b>b</b>), an edge-enhancing anisotropic diffusion filter (<b>c</b>), and a TV-L1 filter <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math> (<b>d</b>). The results are comparable to <a href="#remotesensing-14-01709-f008" class="html-fig">Figure 8</a>, although DVR preserves slightly more structure surface details. Nevertheless, iso-surfaces of filtered GPR data are a useful complement to DVR.</p> "> Figure 10
<p>TV-L1-based volume visualization using a more aggressive filter setting of <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>, leading to the removal of most structures smaller than the wall diameter in the DVR result, while wall surface structure details are still visible (<b>a</b>,<b>c</b>). In the corresponding iso-surface visualization (<b>b</b>,<b>d</b>) these surfaces are even more defined at the expense of inner structural information.</p> "> Figure 11
<p>Combined visualization of original GPR dataset (DVR) using the same transfer function as in <a href="#remotesensing-14-01709-f004" class="html-fig">Figure 4</a> (blue), mesh representation of an interpretation model (red) obtained by extruding polygons drawn on top of 2D GPR slices, and the result from interactive 3D segmentation of the walls of two buildings (yellow and orange). The segmentation datasets are more detailed, reflecting the actual shape of the walls, while the hand drawn interpretation shows an idealized floor plan.</p> "> Figure 12
<p>Visualization results overview: Multi-volume DVR based on partially overlapping sub-volumes of the unfiltered (blue) and TV-L1 filtered (brown) Carnuntum dataset. In the overlap region, the visual contributions are combined. The floor plan remains clearly recognizable, details lost during filtering are supplemented from the unfiltered dataset (<b>a</b>). Integration of a semi-transparent segmentation result displayed in red emphasizing the walls of the segmented building. In the unfiltered region the superimposition with the segmentation supports the structural analysis of the walls (<b>b</b>). Spatial separation in, e.g., vertical direction reduces occlusion and is therefore useful for illustrating results of GPR data analysis (<b>c</b>). Likewise, including iso-surface visualization of the filtered dataset may be used to highlight regions of high radar reflectivity. In our case, there is a good match with the segmented walls (<b>d</b>).</p> "> Figure 13
<p>Combined visualization of GPR data, interpretation model, segmentation, and a virtual reconstruction of the Roman forum in Carnuntum. The integration of the 3D model allows viewers with no prior knowledge of Roman architecture to gain an idea of the possible original appearance of the buildings detected by ground penetrating radar.</p> "> Figure 14
<p>Local visualization control example: Conjoint visualization of filtered GPR dataset and 3D interpretation model (<b>a</b>). GPR dataset DVR limited to the inside of the invisible 3D model geometry (<b>b</b>). Combination of unfiltered GPR DVR outside and filtered GPR DVR inside the interpretation model. The building floor plan stands out while the remainder of the dataset is still visible. Wall surface details are visible despite the simplistic nature of the interpretation (<b>c</b>,<b>d</b>).</p> "> Figure 15
<p>Result image combining multiple versions of the GPR dataset, a 3D interpretation model of the walls, segmented walls, and the reconstructed model. All the datasets are visualized together with a 3D terrain model.</p> "> Figure 16
<p>Top view of the scene from <a href="#remotesensing-14-01709-f015" class="html-fig">Figure 15</a> without terrain and parts of the 3D model cut out (<a href="#sec2dot6-remotesensing-14-01709" class="html-sec">Section 2.6</a>) for better visibility of the prospection datasets, interpretation model, and the segmented walls (<a href="#sec2dot4-remotesensing-14-01709" class="html-sec">Section 2.4</a>).</p> "> Figure 17
<p>Detail view: The segmentation results depict and visually separate the two buildings in the surrounding GPR visualization. A vertical profile sampled from the unfiltered dataset placed perpendicular to the sewer illustrates the still existing cavity in its center indicated by lower/darker reflectivity values. Its small size in the order of the dataset resolution limits the quality of the presentation. Furthermore, details such as pillars of a hypocaust floor are visible.</p> "> Figure 18
<p>Interactive 3D GPR interpretation by polygon extrusion and CSG operations: Initial 2D contour (<b>a</b>). Visualization limiting DVR to the interior of the extruded 3D model (<b>b</b>). More 2D contours (<b>c</b>,<b>d</b>) and refined 3D interpretation model obtained using difference operations (<b>e</b>). Final 3D model applied to TV-L1 filtered dataset. Details of the structure surface are visible from any viewing perspective (<b>f</b>). Highlighting of the interpreted wall in the surrounding data (<b>g</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground Penetrating Radar and the Similarity to Medical 3D Image Data
2.2. Integrated 3D Visualization for Archaeological Prospection Data
2.3. GPR Data Pre-Processing for 3D Visualization
2.3.1. Filtering of GPR Data Volumes for 3D Visualization
2.3.2. 3D Visualization of Filtered GPR Data Volumes
2.4. GPR Segmentation
2.5. Flexible GPR Volume Visualization
2.6. Local Visualization Control
3. Results
3.1. Interactive 3D Interpretation
3.2. System Requirements and Performance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaffney, C.; Gaffney, V.; Neubauer, W.; Baldwin, E.; Chapman, H.; Garwood, P.; Moulden, H.; Sparrow, T.; Bates, R.; Löcker, K.; et al. The Stonehenge Hidden Landscapes Project. Archaeol. Prospect. 2012, 19, 147–155. [Google Scholar] [CrossRef]
- Gaffney, V.; Neubauer, W.; Garwood, P.; Gaffney, C.; Löcker, K.; Bates, R.; De Smedt, P.; Baldwin, E.; Chapman, H.; Hinterleitner, A.; et al. Durrington walls and the Stonehenge Hidden Landscape Project 2010–2016. Archaeol. Prospect. 2018, 25, 255–269. [Google Scholar] [CrossRef]
- Gaffney, V.; Baldwin, E.; Bates, M.; Bates, C.; Gaffney, C.; Hamilton, W.; Kinnaird, T.; Neubauer, W.; Yorston, R.; Allaby, R.; et al. A Massive, Late Neolithic Pit Structure associated with Durrington Walls Henge. Internet Archaeol. 2020, 55. [Google Scholar] [CrossRef]
- Neubauer, W.; Wallner, M.; Gugl, C.; Loecker, K.; Vonkilch, A.; Trausmuth, T.; Nau, E.; Jansa, V.; Wilding, J.; Eder-Hinterleitner, A.; et al. Zerstörungsfreie archäologische Prospektion des römischen Carnuntumerste Ergebnisse des Forschungsprojekts “ArchPro Carnuntum”. In Carnuntum Jahrbuch; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2018; Volume 1, pp. 55–75. [Google Scholar] [CrossRef]
- Neubauer, W. Die Entdeckung des Forums der Zivilstadt. In Carnuntum. Wiedergeborene Stadt der Kaiser; Humer, F., Ed.; Von Zabern: Darmstadt, Germany, 2014. [Google Scholar]
- Neubauer, W.; Doneus, M.; Trinks, I.; Verhoeven, G.; Hinterleitner, A.; Seren, S.; Löcker, K. Long-term Integrated Archaeological Prospection at the Roman Town of Carnuntum/Austria. Oxbow Monogr. Ser. 2012, 2, 202–221. [Google Scholar] [CrossRef]
- Neubauer, W.; Eder-Hinterleitner, A.; Seren, S.; Melichar, P. Georadar in the Roman civil town Carnuntum, Austria: An approach for archaeological interpretation of GPR data. Archaeol. Prospect. 2002. [Google Scholar] [CrossRef]
- Trinks, I.; Neubauer, W.; Hinterleitner, A. First High-resolution GPR and Magnetic Archaeological Prospection at the Viking Age Settlement of Birka in Sweden. Archaeol. Prospect. 2014, 21, 185–199. [Google Scholar] [CrossRef]
- Trinks, I.; Neubauer, W.; Nau, E.; Gabler, M.; Wallner, M.; Hinterleitner, A.; Biwall, A.; Doneus, M.; Pregesbauer, M. Archaeological prospection of the UNESCO World Cultural Heritage Site Birka-Hovgården. In Archaeological Prospection: Proceedings of the 10th International Conference on Archaeological Prospection, Vienna, Austria, 29 May–2 June 2013; Austrian Academy of Sciences Press: Vienna, Austria, 2013; pp. 39–40. [Google Scholar]
- Gustavsen, L.; Cannell, R.J.; Nau, E.; Tonning, C.; Trinks, I.; Kristiansen, M.; Gabler, M.; Paasche, K.; Gansum, T.; Hinterleitner, A.; et al. Archaeological prospection of a specialized cooking-pit site at Lunde in Vestfold, Norway. Archaeol. Prospect. 2018, 25, 17–31. [Google Scholar] [CrossRef]
- Tonning, C.; Schneidhofer, P.; Nau, E.; Gansum, T.; Lia, V.; Gustavsen, L.; Filzwieser, R.; Wallner, M.; Kristiansen, M.; Neubauer, W.; et al. Halls at Borre: The discovery of three large buildings at a Late Iron and Viking Age royal burial site in Norway. Antiquity 2020, 94, 145–163. [Google Scholar] [CrossRef]
- Draganits, E.; Doneus, M.; Gansum, T.; Gustavsen, L.; Nau, E.; Tonning, C.; Trinks, I.; Neubauer, W. The late Nordic Iron Age and Viking Age royal burial site of Borre in Norway: ALS- and GPR-based landscape reconstruction and harbour location at an uplifting coastal area. Quat. Int. 2015, 367, 96–110. [Google Scholar] [CrossRef]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzwieser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Hinterleitner, A.; Löcker, K.; Neubauer, W.; Trinks, I.; Sandici, V.; Wallner, M.; Pregesbauer, M. Kastowsky-Priglinger, K. Automatic detection, outlining and classification of magnetic anomalies in large-scale archaeological magnetic prospection data. In Archaeological Prospection, Proceedings of the 11th International Conference on Archaeological Prospection, Warsaw, Poland, 15–19 September 2015; Rzeszotarska-Nowakiewicz, A., Ed.; The Institute of Archaeology and Ethnology, Polish Academy of Sciences: Warsaw, Poland, 2015; pp. 296–299. [Google Scholar]
- Poscetti, V.; Zotti, G.; Neubauer, W. Improving the GIS-based 3D mapping of archeological features in GPR data. In Archaeological Prospection, Proceedings of the 11th International Conference on Archaeological Prospection, Warsaw, Poland, 15–19 September 2015; Rzeszotarska-Nowakiewicz, A., Ed.; The Institute of Archaeology and Ethnology, Polish Academy of Sciences: Warsaw, Poland, 2015; pp. 603–607. [Google Scholar]
- Küçükdemirci, M.; Sarris, A. Deep learning based automated analysis of archaeo-geophysical images. Archaeol. Prospect. 2020, 27, 107–118. [Google Scholar] [CrossRef]
- Seren, S.; Eder-Hinterleitner, A.; Neubauer, W.; Melichar, P. New Results on Comparison of Different GPR Systems and Antenna Configurations at the Roman Site Carnuntum. In Proceedings of the 20th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, Denver, CO, USA, 1–5 April 2007; pp. 6–12. [Google Scholar] [CrossRef]
- Poscetti, V.; Neubauer, W.; Trinks, I. Archaeological interpretation of GPR data: State-of-the-art and the road ahead. In Archaeological Prospection, Proceedings of the 9th International Conference on Archaeological Prospection, Izmir, Turkey, 19–24 September 2011; Drahor, M.G., Berge, M.A., Eds.; Archaeology and Art Publications: Istanbul, Turkey, 2011; pp. 145–148. [Google Scholar]
- Bornik, A.; Urschler, M.; Schmalstieg, D.; Bischof, H.; Krauskopf, A.; Schwark, T.; Scheurer, E.; Yen, K. Integrated computer-aided forensic case analysis, presentation, and documentation based on multimodal 3D data. Forensic Sci. Int. 2018, 287, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Kainz, B.; Grabner, M.; Bornik, A.; Hauswiesner, S.; Muehl, J.; Schmalstieg, D. Ray casting of multiple volumetric datasets with polyhedral boundaries on manycore GPUs. ACM Trans. Graph. 2009, 28. [Google Scholar] [CrossRef] [Green Version]
- Conyers, L.B. Ground-Penetrating Radar for Archaeology; AltaMira Press: Walnut Creek, CA, USA, 2004. [Google Scholar]
- Goodman, D.; Piro, S. GPR Remote Sensing in Archaeology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2013; 233p. [Google Scholar] [CrossRef]
- Conyers, L.B. Chapter 2—Basic Method and Theory of Ground-penetrating Radar. In Ground-Penetrating Radar for Geoarchaeology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; Chapter 2; pp. 12–33. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M. Texture Attribute Analysis of GPR Data for Archaeological Prospection. Pure Appl. Geophys. 2016, 173, 2737–2751. [Google Scholar] [CrossRef]
- Trinks, I.; Hinterleitner, A. Beyond Amplitudes: Multi-Trace Coherence Analysis for Ground-Penetrating Radar Data Imaging. Remote Sens. 2020, 12, 1583. [Google Scholar] [CrossRef]
- Verhoeven, G.J.J. TAIFU—Toolbox for Archaeological Image FUsion. In Proceedings of the Aerial Archaeology Research Group (AARG) 2015 Annual Conference, Santiago de Compostela, Spain, 9 September 2015; p. 36. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating Radar for Archaeological Mapping. In Remote Sensing in Archaeology; Wiseman, J., El-Baz, F., Eds.; Interdisciplinary Contributions to Archaeology; Springer: Berlin/Heidelberg, Germany, 2006; pp. 329–344. [Google Scholar] [CrossRef]
- Neubauer, W. Magnetische Prospektion in der Archäologie. Ph.D. Thesis, University of Vienna, Vienna, Austria, 2001. [Google Scholar]
- Neubauer, W.; Seren, S.; Hinterleitner, A.; Löcker, K.; Melichar, P. Archaeological interpretation of combined magnetic and GPR surveys of the Roman town Flavia Solva, Austria. ArchéoSciences 2009, 33, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-penetrating radar mapping using multiple processing and interpretation methods. Remote Sens. 2016, 8, 562. [Google Scholar] [CrossRef] [Green Version]
- Leckebusch, J.; Peikert, R. Investigating the true resolution and three-dimensional capabilities of ground-penetrating radar data in archaeological surveys: Measurements in a sand box. Archaeol. Prospect. 2001, 8, 29–40. [Google Scholar] [CrossRef]
- Novo, A.; Grasmueck, M.; Viggiano, D.A.; Lorenzo, H. 3D GPR in Archeology: What can be gained from dense Data Acquisition and Processing? In Proceedings of the 12th International Conference on Ground Penetrating Radar, Birmingham, UK, 15–19 June 2008; pp. 2–6. [Google Scholar]
- Verdonck, L.; Launaro, A.; Vermeulen, F.; Millett, M. Ground-penetrating radar survey at Falerii Novi: A new approach to the study of Roman cities. Antiquity 2020, 94, 705–723. [Google Scholar] [CrossRef]
- Kadiolu, S.; Daniels, J.J. 3D visualization of integrated ground penetrating radar data and EM-61 data to determine buried objects and their characteristics. J. Geophys. Eng. 2008, 5, 448–456. [Google Scholar] [CrossRef]
- Andres, J.; Davis, M.; Fujiwara, K.; Anderson, J.; Fang, T.; Nedbal, M. A geospatially enabled, PC-based, software to fuse and interactively visualize large 4D/5D data sets. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W.; Ibrahim, A.N. Visualizing 3D atmospheric data with spherical volume texture on virtual globes. Comput. Geosci. 2014, 68, 81–91. [Google Scholar] [CrossRef]
- Engel, K.; Hadwiger, M.; Kniss, J.M.; Lefohn, A.E.; Salama, C.R.; Weiskopf, D. Real-Time Volume Graphics; Taylor & Francis Ltd.: Abingdon, UK, 2006; pp. 47–186. [Google Scholar]
- Bornik, A.; Wallner, M.; Hinterleitner, A.; Verhoeven, G.; Neubauer, W. Integrated volume visualisation of archaeological ground penetrating radar data. In Eurographics Workshop on Graphics and Cultural Heritage; Robert, S., Michael, W., Eds.; The Eurographics Association: Geneve, Switzerland, 2018. [Google Scholar] [CrossRef]
- Neubauer, W.; Bornik, A.; Wallner, M.; Verhoeven, G. Novel volume visualisation of GPR data inspired by medical applications. In Proceedings of the 13th International Conference on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the 6th IEEE International Conference on Computer Vision, Bombay, India, 7 January 1998. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Weickert, J. Theoretical Foundations of Computer Vision. In Anisotropic Diffusion in Image Processing; Springer: Wien, Austria, 1996. [Google Scholar]
- Weickert, J. Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor; Technical Report 110; Fachbereich Mathematik: Hamburg, Germany, 1994. [Google Scholar]
- Weickert, J. Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 1999, 31, 111–127. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Urschler, M.; Leitinger, G.; Pock, T. Interactive 2D/3D Image Denoising and Segmentation Tool for Medical Applications. In Proceedings of the MICCAI 2014 Interactive Medical Image Computing (IMIC) Workshop, Boston, MA, USA, 14 September 2014; p. 209. [Google Scholar]
- Toennies, K.D. Guide to Medical Image Analysis: Methods and Algorithms, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Zhuang, X.; Li, L.; Payer, C.; Štern, D.; Urschler, M.; Heinrich, M.P.; Oster, J.; Wang, C.; Smedby, Ö.; Bian, C.; et al. Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge. Med. Image Anal. 2019, 58, 101537. [Google Scholar] [CrossRef]
- Lefebvre, S.; Hornus, S.; Lasram, A. HA-Buffer: Coherent Hashing for Single-Pass A-Buffer. Research Report RR-8282, INRIA. 2013. Available online: https://hal.inria.fr/hal-00811585 (accessed on 29 January 2022).
- Sirk, C.; Kalkofen, D.; Schmalstieg, D.; Bornik, A.; Schmalstieg, D. Dynamic Label Placement for Forensic Case Visualization. In EuroVis 2017—Short Papers; Kozlikova, B., Wischgoll, T., Schreck, T., Eds.; The Eurographics Association: Geneve, Switzerland, 2017. [Google Scholar] [CrossRef]
- Jacobson, A.; Panozzo, D. libigl: A Simple C++ Geometry Processing Library. 2018. Available online: https://libigl.github.io/ (accessed on 29 January 2022).
- Hachenberger, P.; Kettner, L. 3D Boolean Operations on Nef Polyhedra. In CGAL User and Reference Manual, Version 5.2.1; CGAL Editorial Board: New York, NY, USA, 2021. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bornik, A.; Neubauer, W. 3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data. Remote Sens. 2022, 14, 1709. https://doi.org/10.3390/rs14071709
Bornik A, Neubauer W. 3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data. Remote Sensing. 2022; 14(7):1709. https://doi.org/10.3390/rs14071709
Chicago/Turabian StyleBornik, Alexander, and Wolfgang Neubauer. 2022. "3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data" Remote Sensing 14, no. 7: 1709. https://doi.org/10.3390/rs14071709
APA StyleBornik, A., & Neubauer, W. (2022). 3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data. Remote Sensing, 14(7), 1709. https://doi.org/10.3390/rs14071709