Abstract
We evaluate the applicability and the effectiveness of texture attribute analysis of 2-D and 3-D GPR datasets obtained in different archaeological environments. Textural attributes are successfully used in seismic stratigraphic studies for hydrocarbon exploration to improve the interpretation of complex subsurface structures. We use a gray-level co-occurrence matrix (GLCM) algorithm to compute second-order statistical measures of textural characteristics, such as contrast, energy, entropy, and homogeneity. Textural attributes provide specific information about the data, and can highlight characteristics as uniformity or complexity, which complement the interpretation of amplitude data and integrate the features extracted from conventional attributes. The results from three archaeological case studies demonstrate that the proposed texture analysis can enhance understanding of GPR data by providing clearer images of distribution, volume, and shape of potential archaeological targets and related stratigraphic units, particularly in combination with the conventional GPR attributes. Such strategy improves the interpretability of GPR data, and can be very helpful for archaeological excavation planning and, more generally, for buried cultural heritage assessment.
Similar content being viewed by others
References
Angelo, S.M., Matos, M., Marfurt, K.J. (2009). Integrated seismic texture segmentation and clustering analysis to improved delineation of reservoir geometry. In 2009 SEG Annual Meeting. Society of Exploration Geophysicists.
Annan, A. P. (2003). Ground penetrating radar applications principles, procedures and applications. Mississauga: Sensors & Software Inc.
Bini, M., Fornaciari, A., Ribolini, A., Bianchi, A., Sartini, S., & Coschino, F. (2010). Medieval phases of settlement at Benabbio castle, Apennine mountains, Italy: evidence from ground penetrating radar survey. Journal of Archaeological Science, 37(12), 3059–3067.
Böniger, U., & Tronicke, J. (2010). Integrated data analysis at an archaeological site: a case study using 3D GPR, magnetic, and high-resolution topographic data. Geophysics, 75(4), B169–B176.
Cavalier, M. (1981). Stromboli: villaggio preistorico di S. Vincenzo. Scavi Giugno 1980. Sicilia Archeologica Trapani, 14(46–47), 27–54.
Chopra, S., & Alexeev, V. (2006). Applications of texture attribute analysis to 3D seismic data. The Leading Edge, 25(8), 934–940.
Chopra, S., & Marfurt, K.J. (2007). Seismic attributes for prospect identification and reservoir characterization: SEG/EAGE. (p. 464).
Conyers, L. B. (2013). Ground-penetrating radar for archaeology (3rd ed., p. 258). Latham: Alta Mira Press.
Conyers, L. B., & Leckebusch, J. (2010). Geophysical archaeology research agendas for the future: some ground-penetrating radar examples. Archaeological Prospection, 17(2), 117–123.
Creasman, P. P., Sassen, D., Koepnick, S., & Doyle, N. (2010). Ground-penetrating radar survey at the pyramid complex of Senwosret III at Dahshur, Egypt, 2008: search for the lost boat of a Pharaoh. Journal of Archaeological Science, 37(3), 516–524.
de Matos, M. C., Yenugu, M., Angelo, S. M., & Marfurt, K. J. (2011). Integrated seismic texture segmentation and cluster analysis applied to channel delineation and chert reservoir characterization. Geophysics, 76(5), P11–P21.
Deiana, D. (2008). A texture analysis of 3D GPR images. Doctoral dissertation, TU Delft, Delft University of Technology, p. 71.
Eichkitz, C. G., Amtmann, J., & Schreilechner, M. G. (2013). Calculation of grey level co-occurrence matrix-based seismic attributes in three dimensions. Computers and Geosciences, 60, 176–183.
Forte, E., & Pipan, M. (2008). Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). Journal of Archaeological Science, 35(9), 2614–2623.
Forte, E., Pipan, M., Casabianca, D., Di Cuia, R., & Riva, A. (2012). Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics, 81, 76–87.
Gao, D. (2003). Volume texture extraction for 3D seismic visualization and interpretation. Geophysics, 68(4), 1294–1302.
Gao, D. (2011). Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: a review. Geophysics, 76(2), W1–W13.
Goodman, D., Nishimura, Y., & Rogers, J. D. (1995). GPR time slices in archaeological prospection. Archaeological prospection, 2, 85–90.
Grasmueck, M. (1996). 3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics, 61(4), 1050–1064.
Hall-Beyer, M. (2007). GLCM texture tutorial, 2007. University of Calgary, 21 (Online document).
Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 6, 610–621.
Kaizer, H. (1955). A quantification of textures on aerial photographs. M.S. thesis, Boston University.
Kokelaar, P., & Romagnoli, C. (1995). Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: stromboli, Italy. Bulletin of Volcanology, 57(4), 240–262.
Leckebusch, J., & Peikert, R. (2001). Investigating the true resolution and three-dimensional capabilities of ground-penetrating radar data in archaeological surveys: measurements in a sand box. Archaeological Prospection, 8(1), 29–40.
Love, P. L., & Simaan, M. (1984). Segmentation of stacked seismic data by the classification of image texture. SEG Technical Program Expanded Abstracts, 3, 480–482.
Lualdi, M., & Lombardi, F. (2014). Effects of antenna orientation on 3-D ground penetrating radar surveys: an archaeological perspective. Geophysical Journal International, 196(2), 818–827.
McClymont, A. F., Green, A. G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D. C., et al. (2008). Visualization of active faults using geometric attributes of 3D GPR data: an example from the Alpine Fault Zone, New Zealand. Geophysics, 73(2), B11–B23.
Moysey, S., Knight, R. J., & Jol, H. M. (2006). Texture-based classification of ground-penetrating radar images. Geophysics, 71(6), K111–K118.
Patel, D., Giertsen, C., Thurmond, J., Gjelberg, J., & Grller, E. (2008). The seismic analyzer: interpreting and illustrating 2d seismic data. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1571–1578.
Pérez-Gracia, V., Caselles, J. O., Clapes, J., Osorio, R., Martínez, G., & Canas, J. A. (2009). Integrated near-surface geophysical survey of the Cathedral of Mallorca. Journal of Archaeological Science, 36(7), 1289–1299.
Pipan, M., Baradello, L., Forte, E., & Finetti, I. (2001). Ground penetrating radar study of iron age tombs in southeastern Kazakhstan. Archaeological Prospection, 8(3), 141–155.
Pipan, M., Baradello, L., Forte, E., Prizzon, A., & Finetti, I. (1999). 2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site. Journal of Applied Geophysics, 41(2), 271–292.
Piro, S., Goodman, D., & Nishimura, Y. (2003). The study and characterization of Emperor Traiano’s Villa (Altopiani di Arcinazzo, Roma) using high-resolution integrated geophysical surveys. Archaeological Prospection, 10(1), 1–25.
Piro, S., Peloso, D., & Gabrielli, R. (2007). Integrated geophysical and topographical investigation in the territory of Ancient Tarquinia (Viterbo, central Italy). Archaeological Prospection, 14(3), 191–201.
Pitas, I., & Kotropoulos, C. (1992). A texture-based approach to the segmentation of seismic images. Pattern Recognition, 25(9), 929–945.
Randen, T., Monsen, E., Signer, C., Abrahamsen, A., Hansen, J.O., Sæter, T., Schlaf, J., Sønneland, L. (2000). Three-dimensional texture attributes for seismic data analysis. In 70th Annual International Meeting, Society of Exploration Geophysics Expanded Abstracts, Calgary, Canada, 668–671.
Reed, T. R., & Dubuf, J. H. (1993). A review of recent texture segmentation and feature extraction techniques. CVGIP: Image understanding, 57(3), 359–372.
Reed, T. B., & Hussong, D. (1989). Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery. Journal of Geophysical Research: Solid Earth (1978–2012), 94(B6), 7469–7490.
Rosi, M., Bertagnini, A., & Landi, P. (2000). Onset of the persistent activity at Stromboli volcano (Italy). Bulletin of volcanology, 62(4–5), 294–300.
Sassen, D. S., & Everett, M. E. (2009). 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics, 74(3), J23–J34.
Tavano, S. (1986). Aquileia e Grado: storia, arte e cultura, Ed. LINT, Trieste (in Italian).
Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustafsson, C., et al. (2010). Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeological Prospection, 17, 175–186.
Urban, T. M., Rowan, Y. M., & Kersel, M. M. (2014). Ground-penetrating radar investigations at Marj Rabba, a Chalcolithic site in the lower Galilee of Israel. Journal of Archaeological Science, 46, 96–106.
Van der Baan, M., & Jutten, C. (2000). Neural networks in geophysical applications. Geophysics, 65(4), 1032–1047.
Vaughan, C. J. (1986). Ground-penetrating radar surveys used in archaeological investigations. Geophysics, 51(3), 595–604.
Verdonck, L., Vermeulen, F., Docter, R., Meyer, C., & Kniess, R. (2013). 2D and 3D ground-penetrating radar surveys with a modular system: data processing strategies and results from archaeological field tests. Near Surface Geophysics, 11(2), 239–252.
West, B. P., May, S. R., Eastwood, J. E., & Rossen, C. (2002). Interactive seismic facies classification using textural attributes and neural networks. The Leading Edge, 21(10), 1042–1049.
Yenugu, M., Marfurt, K. J., & Matson, S. (2010). Seismic texture analysis for reservoir prediction and characterization. The Leading Edge, 29(9), 1116–1121.
Zhang, Z., & Simaan, M. (1987). A rule-based interpretation system for segmentation of seismic images. Pattern Recognition, 20(1), 45–53.
Zhao, W., Forte, E., Pipan, M., & Tian, G. (2013a). Ground penetrating radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97, 107–117.
Zhao, W., Tian, G., Wang, B., Forte, E., Pipan, M., Lin, J., et al. (2013b). 2D and 3D imaging of a buried prehistoric canoe using GPR attributes: a case study. Near Surface Geophysics, 11(4), 457–464.
Zhao, W., Forte, E., Levi, S. T., Pipan, M., & Tian, G. (2015a). Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. Journal of Archaeological Science, 54, 77–85.
Zhao, W., Tian, G., Forte, E., Pipan, M., Wang, Y., Li, X., et al. (2015b). Advances in GPR data acquisition and analysis for archaeology. Geophysical Journal International, 202(1), 62–71.
Zhao, W., Forte, E., Colucci, R. R., & Pipan, M. (2016). High-resolution glacier imaging and characterization by means of GPR attribute analysis. Geophysical Journal International, 206, 1366–1374.
Acknowledgments
We gratefully acknowledge the support of the International Centre for Theoretical Physics (ICTP, Trieste, Italy) Training on Research in Italian Laboratories (TRIL) programme, which sponsored the scholarship of the first author. We also thank dGB Earth Sciences for the OpendTect open source seismic data analysis software, and two anonymous reviewers for providing thoughtful and useful suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, W., Forte, E. & Pipan, M. Texture Attribute Analysis of GPR Data for Archaeological Prospection. Pure Appl. Geophys. 173, 2737–2751 (2016). https://doi.org/10.1007/s00024-016-1355-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00024-016-1355-3