Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images
<p>The geographic location of the study area.</p> "> Figure 2
<p>The methodological framework of this study.</p> "> Figure 3
<p>Land cover classification with different levels of cloud coverage. (<b>a</b>,<b>e</b>,<b>i</b>,<b>m</b>) are the cloud-contaminated optical images with cloud coverage of 0, 6%, 30%, and 50%, respectively, (<b>b</b>,<b>f</b>,<b>j</b>,<b>n</b>) are the land cover classification maps of single optical images, (<b>c</b>,<b>g</b>,<b>k</b>,<b>o</b>) are the land cover classification maps of single SAR images, and (<b>d</b>,<b>h</b>,<b>l</b>,<b>p</b>) are the land cover classification maps of fused optical and SAR images.</p> "> Figure 4
<p>Detailed classification maps on cloud-free and cloud-covered images. (<b>a</b>,<b>f</b>,<b>k</b>,<b>p</b>) are the cloud-free images, (<b>b</b>,<b>g</b>,<b>l</b>,<b>q</b>) are classification maps of the cloud-free images, (<b>c</b>,<b>h</b>,<b>m</b>,<b>r</b>) are the cloud-covered images, (<b>d</b>,<b>i</b>,<b>n</b>,<b>s</b>) are the classification maps of the single cloud-covered images, and (<b>e</b>,<b>j</b>,<b>o</b>,<b>t</b>) are the classification maps of fused optical and SAR images.</p> "> Figure 5
<p>The overall accuracy of three classifiers under different cloud coverage using single optical data and combined optical and SAR data.</p> "> Figure 6
<p>The spectral values of the five cloud-free and cloud-covered land cover samples in 12 bands.</p> "> Figure 7
<p>The overall accuracy of training with/without cloud-covered samples under different types of cloud coverage using single optical data and combined optical and SAR data.</p> "> Figure 8
<p>The spectral values of five land cover samples covered by “thin cirrus” and “high-probability clouds” in 12 bands.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Satellite Data
3. Methodology
3.1. Framework of the Research
3.2. Feature Extraction from Both Optical and SAR Images
3.3. Urban Land Cover Classification
3.3.1. Support Vector Machine (SVM)
3.3.2. Random Forest (RF)
3.3.3. GoogLeNet
3.4. Sample Collection and Results Validation
4. Results and Discussion
4.1. Overview of the Impacts of Clouds
4.2. Quantifying the Impacts of Different Levels of Cloud Coverage
4.3. Investigate the Mechanism of Cloud Impact during ULC Classification
4.4. Further Exploration of the Impacts of Clouds
4.4.1. The Impact of Training Samples
4.4.2. The Impacts of Cloud Types
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohki, M.; Shimada, M. Large-area land use and land cover classification with quad, compact, and dual polarization SAR data by PALSAR-2. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5550–5557. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L.; Zhong, L. Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sens. Environ. 2015, 158, 193–206. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Li, J.; Chang, X.; Cao, Y.; Xie, J.; Gong, J. High-resolution urban land-cover mapping and landscape analysis of the 42 major cities in China using ZY-3 satellite images. Sci. Bull. 2020, 65, 1039–1048. [Google Scholar] [CrossRef]
- Rosenberg, B.D.; Schroth, A.W. Coupling of reactive riverine phosphorus and iron species during hot transport moments: Impacts of land cover and seasonality. Biogeochemistry 2017, 132, 103–122. [Google Scholar] [CrossRef]
- Li, X.; Lei, L.; Sun, Y.; Li, M.; Kuang, G. Collaborative Attention-Based Heterogeneous Gated Fusion Network for Land Cover Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3829–3845. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Pan, H. Integrating Multiresolution and Multitemporal Sentinel-2 Imagery for Land-Cover Mapping in the Xiongan New Area, China. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1029–1040. [Google Scholar] [CrossRef]
- Ji, S.; Wang, D.; Luo, M. Generative Adversarial Network-Based Full-Space Domain Adaptation for Land Cover Classification From Multiple-Source Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3816–3828. [Google Scholar] [CrossRef]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, Q.; Li, J.; Zhang, H.; Su, X. Cloud removal with fusion of high resolution optical and SAR images using generative adversarial networks. Remote Sens. 2020, 12, 191. [Google Scholar] [CrossRef] [Green Version]
- Paris, C.; Bruzzone, L.; Fernández-Prieto, D. A novel approach to the unsupervised update of land-cover maps by classification of time series of multispectral images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4259–4277. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Hu, T.; Jia, X.; Benediktsson, J.A. A novel unsupervised sample collection method for urban land-cover mapping using landsat imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3933–3951. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, X.; You, S.; Duan, K.; Xiang, H.; Luo, H. A novel feature-level fusion framework using optical and SAR remote sensing images for land use/land cover (LULC) classification in cloudy mountainous area. Appl. Sci. 2020, 10, 2928. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, R. Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 87–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, B.; Zhang, J.; Zhang, Y. Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features. EURASIP J. Adv. Signal Process. 2009, 2010, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient saliency-based object detection in remote sensing images using deep belief networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 137–141. [Google Scholar] [CrossRef]
- Clinton, N.; Yu, L.; Gong, P. Geographic stacking: Decision fusion to increase global land cover map accuracy. ISPRS J. Photogramm. Remote Sens. 2015, 103, 57–65. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-resolution urban land mapping in China from sentinel 1A/2 imagery based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote Sens. 2016, 8, 945. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Luo, J.; Wu, Z.; Wu, T.; Zhou, Y.N.; Gao, L.; Dong, W.; Liu, H.; Liu, W.; Yang, Y. Crop classification in cloudy and rainy areas based on the optical-synthetic aperture radar response mechanism. J. Appl. Remote Sens. 2020, 14, 028501. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, Z.; Luo, D.; Luo, H.; You, S.; Zhang, T. Combined Multi-Time Series SAR Imagery and InSAR Technology for Rice Identification in Cloudy Regions. Appl. Sci. 2021, 11, 6923. [Google Scholar] [CrossRef]
- Yang, F.; Yang, X.; Wang, Z.; Lu, C.; Li, Z.; Liu, Y. Object-based classification of cloudy coastal areas using medium-resolution optical and SAR images for vulnerability assessment of marine disaster. J. Oceanol. Limnol. 2019, 37, 1955–1970. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Saepuloh, A.; van der Meer, F. Land cover classification in the tropics, solving the problem of cloud covered areas using topographic parameters. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 84–93. [Google Scholar] [CrossRef]
- Zhou, N.; Li, X.; Shen, Z.; Wu, T.; Luo, J. Geo-Parcel-Based Change Detection Using Optical and SAR Images in Cloudy and Rainy Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1326–1332. [Google Scholar] [CrossRef]
- Fan, F.; Wang, Y.; Wang, Z. Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environ. Monit. Assess. 2008, 137, 127–147. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Wang, T.; Lin, H.; Zheng, Z.; Li, Y.; Lu, Y. A manifold learning approach to urban land cover classification with optical and radar data. Landsc. Urban Plan. 2018, 172, 11–24. [Google Scholar] [CrossRef]
- Okada, Y.; Nakamura, S.; Iribe, K.; Yokota, Y.; Tsuji, M.; Tsuchida, M.; Hariu, K.; Kankaku, Y.; Suzuki, S.; Osawa, Y. System design of wide swath, high resolution, full polarimietoric L-band SAR onboard ALOS-2. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; pp. 2408–2411. [Google Scholar]
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 12 November 2021).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Sen2Cor v2.8. Available online: http://step.esa.int/main/snap-supported-plugins/sen2cor/sen2cor_v2-8/ (accessed on 10 May 2021).
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. In NASA/GSFC Type III Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; Volume 371. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Wang, F.; Huang, J.; Yang, L.; Kanu, A.S. Accuracies of support vector machine and random forest in rice mapping with Sentinel-1A, Landsat-8 and Sentinel-2A datasets. Geocarto Int. 2020, 35, 1088–1108. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Yao, X.; Wang, X.; Karaca, Y.; Xie, J.; Wang, S. Glomerulus Classification via an Improved GoogLeNet. IEEE Access 2020, 8, 176916–176923. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Wu, P.; Yin, Y.; Liu, S. A complex junction recognition method based on GoogLeNet model. Trans. GIS 2020, 24, 1756–1778. [Google Scholar] [CrossRef]
- Kim, J.-H.; Seo, S.-Y.; Song, C.-G.; Kim, K.-S. Assessment of electrocardiogram rhythms by GoogLeNet deep neural network architecture. J. Healthc. Eng. 2019, 2019, 2826901. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Vastaranta, M.; Holopainen, M.; Viitala, R. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J. Photogramm. Remote Sens. 2011, 66, 28–37. [Google Scholar] [CrossRef]
- Girija, S.S. Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 2016. Available online: www.tensorflow.org (accessed on 25 May 2021).
- Zhang, H.; Luoma, W.; Ting, W.; Yinyi, L.; Hui, L.; Zheng, Z. A Comparative Study of Impervious Surface Estimation from Optical and Sar Data Using Deep Convolutional Networks. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018; pp. 1656–1659. [Google Scholar]
- Hao, D.; Zhang, L.; Sumkin, J.; Mohamed, A.; Wu, S. Inaccurate labels in weakly-supervised deep learning: Automatic identification and correction and their impact on classification performance. IEEE J. Biomed. Health Inform. 2020, 24, 2701–2710. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, E.; Uhl, A. Finger-vein recognition using deep fully convolutional neural semantic segmentation networks: The impact of training data. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018; pp. 1–8. [Google Scholar]
- Zhang, H.; Zhang, Y.; Lin, H. Compare different levels of fusion between optical and SAR data for impervious surfaces estimation. In Proceedings of the 2012 Second International Workshop on Earth Observation and Remote Sensing Applications, Shanghai, China, 8–11 June 2012; pp. 26–30. [Google Scholar]
Cloud-Free Samples | Cloud-Covered Samples | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sen2+ ALOS2 | VEG | SOI | BIS | DIS | WAT | UA(%) | VEG | SOI | BIS | DIS | WAT | UA(%) | ||
VEG | 4632 | 61 | 13 | 77 | 19 | 96.46 | VEG | 1976 | 129 | 120 | 243 | 8 | 79.81 | |
SOI | 43 | 3215 | 77 | 56 | 0 | 94.81 | SOI | 97 | 1626 | 67 | 104 | 4 | 85.67 | |
BIS | 3 | 128 | 2918 | 94 | 0 | 92.84 | BIS | 58 | 76 | 1589 | 211 | 11 | 81.70 | |
DIS | 82 | 121 | 140 | 5227 | 3 | 93.79 | DIS | 232 | 137 | 154 | 2855 | 3 | 84.44 | |
WAT | 4 | 5 | 0 | 0 | 4915 | 99.82 | WAT | 10 | 3 | 5 | 8 | 1494 | 98.29 | |
PA(%) | 97.23 | 91.08 | 92.69 | 95.84 | 99.55 | - | PA(%) | 83.27 | 82.50 | 82.12 | 83.46 | 98.29 | - | |
OA: 95.76% | OA: 85.03% | |||||||||||||
Sen2 | VEG | SOI | BIS | DIS | WAT | UA(%) | VEG | SOI | BIS | DIS | WAT | UA(%) | ||
VEG | 4626 | 67 | 12 | 80 | 19 | 96.29 | VEG | 1858 | 139 | 167 | 275 | 16 | 75.68 | |
SOI | 43 | 3206 | 142 | 71 | 0 | 92.61 | SOI | 82 | 1559 | 72 | 116 | 68 | 82.18 | |
BIS | 5 | 133 | 2850 | 77 | 0 | 92.99 | BIS | 109 | 64 | 1515 | 215 | 26 | 78.54 | |
DIS | 85 | 121 | 144 | 5226 | 4 | 93.66 | DIS | 284 | 168 | 158 | 2782 | 24 | 81.44 | |
WAT | 5 | 3 | 0 | 0 | 4914 | 99.84 | WAT | 40 | 41 | 23 | 33 | 1386 | 91.00 | |
PA(%) | 97.10 | 90.82 | 90.53 | 95.82 | 99.53 | - | PA(%) | 78.30 | 79.10 | 78.29 | 81.32 | 91.18 | - | |
OA: 95.37% | OA: 81.11% |
ALOS-2 | ||||||
---|---|---|---|---|---|---|
VEG | SOI | BIS | DIS | WAT | UA(%) | |
VEG | 3836 | 339 | 136 | 393 | 93 | 79.97 |
SOI | 410 | 2629 | 61 | 191 | 89 | 77.78 |
BIS | 208 | 98 | 2303 | 626 | 34 | 70.45 |
DIS | 329 | 78 | 474 | 4442 | 43 | 82.78 |
WAT | 66 | 91 | 17 | 42 | 4805 | 95.70 |
PA(%) | 79.11 | 81.27 | 77.00 | 78.01 | 94.89 | - |
OA: 82.51% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, J.; Zhang, H.; Lin, Y. Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images. Remote Sens. 2021, 13, 4708. https://doi.org/10.3390/rs13224708
Ling J, Zhang H, Lin Y. Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images. Remote Sensing. 2021; 13(22):4708. https://doi.org/10.3390/rs13224708
Chicago/Turabian StyleLing, Jing, Hongsheng Zhang, and Yinyi Lin. 2021. "Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images" Remote Sensing 13, no. 22: 4708. https://doi.org/10.3390/rs13224708
APA StyleLing, J., Zhang, H., & Lin, Y. (2021). Improving Urban Land Cover Classification in Cloud-Prone Areas with Polarimetric SAR Images. Remote Sensing, 13(22), 4708. https://doi.org/10.3390/rs13224708