Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data
"> Figure 1
<p>Conventional field-scale investigation of RHD and analysis (<b>a</b>) and prospect toward the large-scale spatiotemporal RHD mapping and the analysis of the impacts of environmental factors (<b>b</b>).</p> "> Figure 2
<p>The location of the study area NTXJ (on the northern slope of Tien Shan Mountains in Xinjiang, China) and the spatial distribution of the collected rat hole density data in this study. This map is made based on the base map service GS (2016)1613 of China.</p> "> Figure 3
<p>Vertical distribution of the vegetation types and the numbers of the collected rat hole density (n/ha) records on the northern slope of Tien Shan Mountains at Bogda Peak section. Different vertical elevation zones correspond to different landscape types and ecosystems.</p> "> Figure 4
<p>Flowchart of the analysis.</p> "> Figure 5
<p>Correlation coefficient matrix of factors affecting rat hole density throughout NTXJ. (***), (**), and (*) represent the significance level of <span class="html-italic">p</span>-value < 0.01, 0.05, and 0.1, respectively.</p> "> Figure 6
<p>Correlation coefficient matrix of the factors affecting rat hole density in plain deserts with an elevation lower than 600 m (<b>a</b>), low mountain temperate deserts with an elevation of 600 m to 1000 m (<b>b</b>), and mountain grasslands with an elevation higher than 1000 m (<b>c</b>). (***), (**), and (*) represent the significance level of <span class="html-italic">p</span>-value < 0.01, 0.05, and 0.1, respectively.</p> "> Figure 7
<p>The Bayesian network of causality among natural environmental factors influencing rat hole density. In each node, the black histogram represents the probability distribution, the values before and after the “±” indicate the mean and standard deviation of the distribution, respectively.</p> "> Figure 8
<p>The BN-based diagnostic analysis of the occurrence of high RHD (800 to 4000 n/ha) in LWR (<b>a</b>) and UPR (<b>b</b>). The values before and after the “±” indicate the mean and standard deviation of the distribution, respectively.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data
2.3. Bayesian Network
3. Results
3.1. Correlation Analysis of Environmental Factors Affecting RHD
3.2. Sensitivity Analysis of Environmental Factors Affecting RHD Based on the BN
3.3. Causal Diagnosis of High RHD and Evaluation of the Potential Ecological Amplitude of Rats in LWR and UPR Based on the BN
4. Discussion
4.1. The Effectiveness of a BN in the Attribution Analysis of RHD Distribution in NTXJ
4.2. Uncertainties and Limitations Concerning the Driving Environmental Mechanisms of RHD in NTXJ
4.3. Other Potential Impacts of Grazing on RHD
4.4. The Prospect of Combining Satellite Remote Sensing Data and RHD Modeling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Jiang, H.; Wang, X.; XU, W. Disturbance Effects of Rhombomys Opimus on Desert Plant Community in Gurbantonggut Desert. Chin. J. Ecol. 2009, 28, 2020–2025. [Google Scholar]
- Luo, G.; Feng, Y.; Zhang, B.; Cheng, W. Sustainable Land-Use Patterns for Arid Lands: A Case Study in the Northern Slope Areas of the Tianshan Mountains. J. Geogr. Sci. 2010, 20, 510–524. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, G.; Cao, X.; Hamdi, R.; Li, T.; Cai, P.; Ye, H.; He, H. Numerical Simulation of the Irrigation Effects on Surface Fluxes and Local Climate in Typical Mountain-oasis-desert Systems in the Central Asia Arid Area. J. Geophys. Res. Atmos. 2019, 124, 12485–12506. [Google Scholar] [CrossRef]
- Wen, A.; Zheng, J.; Chen, M.; Mu, C.; Tao, M. Spatial Distribution of Rodent Pests in Desert Forest Based on UAV Remote Sensing. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1804–1807. [Google Scholar]
- Tianbiao, Z.; Chi, Y.; Lizhi, Z.; Zhongbing, Z.; Feihu, J.; Jianping, W.; Shulong, N. Relationship between Population Density and Rainfall in Great Gerbil (Rhombomys Opimus). Acta Theriol. Sin. 2007, 27, 195–199. [Google Scholar]
- Randall, J.A.; Rogovin, K.; Parker, P.G.; Eimes, J.A. Flexible Social Structure of a Desert Rodent, Rhombomys Opimus: Philopatry, Kinship, and Ecological Constraints. Behav. Ecol. 2005, 16, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Prakash, I.; Ghosh, P.K. Rodents in Desert Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 28, ISBN 94-010-1944-4. [Google Scholar]
- Randall, J.A. Behavioural Adaptations of Desert Rodents (Heteromyidae). Anim. Behav. 1993, 45, 263–287. [Google Scholar] [CrossRef] [Green Version]
- Mares, M.A.; Ojeda, R.A.; Borghi, C.E.; Giannoni, S.M.; Diaz, G.B.; Braun, J.K. How Desert Rodents Overcome Halophytic Plant Defenses. BioScience 1997, 47, 699–704. [Google Scholar] [CrossRef]
- Han, Q.; Luo, G.; Li, C.; Shakir, A.; Wu, M.; Saidov, A. Simulated Grazing Effects on Carbon Emission in Central Asia. Agric. For. Meteorol. 2016, 216, 203–214. [Google Scholar] [CrossRef]
- Huang, X.; Luo, G.; Han, Q. Temporospatial Patterns of Human Appropriation of Net Primary Production in Central Asia Grasslands. Ecol. Indic. 2018, 91, 555–561. [Google Scholar] [CrossRef]
- Amin, W.; JiangHua, Z.; Meng, C.; Chen, M.; Tao, M. Monitoring mouse-hole density by Rhombomys opimus in desert forests with UAV remote sensing technology. Sci. Silvae Sin. 2018, 54, 186–192. [Google Scholar]
- The National Center for Atmospheric Research Global GIMMS NDVI3g v1 Dataset (1981–2015); National Tibetan Plateau Data Center: Beijing, China, 2018.
- Yang, K.; He, J. China Meteorological Forcing Dataset (1979—2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Baltensperger, A.P.; Huettmann, F. Predictive Spatial Niche and Biodiversity Hotspot Models for Small Mammal Communities in Alaska: Applying Machine-Learning to Conservation Planning. Landsc. Ecol 2015, 30, 681–697. [Google Scholar] [CrossRef]
- Melis, C.; Szafrańska, P.A.; Jędrzejewska, B.; Bartoń, K. Biogeographical Variation in the Population Density of Wild Boar (Sus Scrofa) in Western Eurasia. J. Biogeogr. 2006, 33, 803–811. [Google Scholar] [CrossRef]
- Fischer, C.; Schröder, B. Predicting Spatial and Temporal Habitat Use of Rodents in a Highly Intensive Agricultural Area. Agric. Ecosyst. Environ. 2014, 189, 145–153. [Google Scholar] [CrossRef]
- Wiersma, Y.F.; Huettmann, F.; Drew, C.A. Introduction. Landscape Modeling of Species and Their Habitats: History, Uncertainty, and Complexity. In Predictive Species and Habitat Modeling in Landscape Ecology: Concepts and Applications; Drew, C.A., Wiersma, Y.F., Huettmann, F., Eds.; Springer: New York, NY, USA, 2011; pp. 1–6. ISBN 978-1-4419-7390-0. [Google Scholar]
- Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian Network Classifiers. Mach. Learn. 1997, 29, 131–163. [Google Scholar] [CrossRef] [Green Version]
- Pearl, J. Bayesian Netwcrks: A Model Cf Self-Activated Memory for Evidential Reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA, USA, 15–17 August 1985; pp. 15–17. [Google Scholar]
- Aguilera, P.A.; Fernández, A.; Reche, F.; Rumí, R. Hybrid Bayesian Network Classifiers: Application to Species Distribution Models. Environ. Model. Softw. 2010, 25, 1630–1639. [Google Scholar] [CrossRef]
- Albuquerque, M.T.D.; Gerassis, S.; Sierra, C.; Taboada, J.; Martín, J.E.; Antunes, I.M.H.R.; Gallego, J.R. Developing a New Bayesian Risk Index for Risk Evaluation of Soil Contamination. Sci. Total Environ. 2017, 603–604, 167–177. [Google Scholar] [CrossRef]
- Couture, R.-M.; Moe, S.J.; Lin, Y.; Kaste, Ø.; Haande, S.; Lyche Solheim, A. Simulating Water Quality and Ecological Status of Lake Vansjø, Norway, under Land-Use and Climate Change by Linking Process-Oriented Models with a Bayesian Network. Sci. Total Environ. 2018, 621, 713–724. [Google Scholar] [CrossRef] [PubMed]
- McCann, R.K.; Marcot, B.G.; Ellis, R. Bayesian Belief Networks: Applications in Ecology and Natural Resource Management. Can. J. For. Res. 2006, 36, 3053–3062. [Google Scholar] [CrossRef]
- Milns, I.; Beale, C.M.; Smith, V.A. Revealing Ecological Networks Using Bayesian Network Inference Algorithms. Ecology 2010, 91, 1892–1899. [Google Scholar] [CrossRef]
- Trifonova, N.; Kenny, A.; Maxwell, D.; Duplisea, D.; Fernandes, J.; Tucker, A. Spatio-Temporal Bayesian Network Models with Latent Variables for Revealing Trophic Dynamics and Functional Networks in Fisheries Ecology. Ecol. Inform. 2015, 30, 142–158. [Google Scholar] [CrossRef] [Green Version]
- Cai, P.; Hamdi, R.; Luo, G.; He, H.; Zhang, M.; Termonia, P.; De Maeyer, P. Agriculture Intensification Increases Summer Precipitation in Tianshan Mountains, China. Atmos. Res. 2019, 227, 140–146. [Google Scholar] [CrossRef]
- Liao, C.; Morreale, S.J.; Kassam, K.-A.S.; Sullivan, P.J.; Fei, D. Following the Green: Coupled Pastoral Migration and Vegetation Dynamics in the Altay and Tianshan Mountains of Xinjiang, China. Appl. Geogr. 2014, 46, 61–70. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, G.; Chen, C.; Ochege, F.U.; Hellwich, O.; Zheng, H.; Hamdi, R.; Wu, S. Quantifying the Contribution of Climate Change and Human Activities to Biophysical Parameters in an Arid Region. Ecol. Indic. 2021, 129, 107996. [Google Scholar] [CrossRef]
- Shi, H.; Luo, G.; Zheng, H.; Chen, C.; Hellwich, O.; Bai, J.; Liu, T.; Liu, S.; Xue, J.; Cai, P.; et al. A Novel Causal Structure-Based Framework for Comparing a Basin-Wide Water–Energy–Food–Ecology Nexus Applied to the Data-Limited Amu Darya and Syr Darya River Basins. Hydrol. Earth Syst. Sci. 2021, 25, 901–925. [Google Scholar] [CrossRef]
- CGIAR-CSI SRTM DEM Dataset in China (2000); National Tibetan Plateau Data Center: Beijing, China, 2013.
- Shouzhang Peng 1-Km Monthly Precipitation Dataset for China (1901–2017); National Tibetan Plateau Data Center: Beijing, China, 2020.
- Shouzhang Peng 1-Km Monthly Mean Temperature Dataset for China (1901–2017); National Tibetan Plateau Data Center: Beijing, China, 2019.
- Shouzhang Peng 1-Km Monthly Maximum Temperature Dataset for China (1901–2017); National Tibetan Plateau Data Center: Beijing, China, 2020.
- Shouzhang Peng 1-Km Monthly Minimum Temperature Dataset for China (1901–2017); National Tibetan Plateau Data Center: Beijing, China, 2020.
- Moon, T.K. The Expectation-Maximization Algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [Google Scholar] [CrossRef]
- Castillo, E.; Gutiérrez, J.M.; Hadi, A.S. Sensitivity Analysis in Discrete Bayesian Networks. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 1997, 27, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Laskey, K.B. Sensitivity Analysis for Probability Assessments in Bayesian Networks. IEEE Trans. Syst. Man Cybern. 1995, 25, 901–909. [Google Scholar] [CrossRef] [Green Version]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian Network Modelling: Integration of Modelling Technologies. Environ. Model. Softw. 2019, 111, 386–393. [Google Scholar] [CrossRef]
- Xiang, Y.; Wang, Z.; Lyu, X.; He, Y.; Li, Y.; Zhuang, L.; Zhao, W. Effects of Rodent-Induced Disturbance on Eco-Physiological Traits of Haloxylon Ammodendron in the Gurbantunggut Desert, Xinjiang, China. J. Arid Land 2020, 12, 508–521. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Yang, W.; Wang, M.; Xu, F.; Blank, D. Impact of Great Gerbils (Rhombomys Opimus) on Desert Plant Communities. J. Arid Land 2015, 7, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Cheng, X.; Dong, Y.; Wang, Q.; Lin, X. Analysis of the Activity Rhythms of the Great Gerbil (Rhombomys Opimus) and Its Predators and Their Correlations Based on Infrared Camera Technology. Glob. Ecol. Conserv. 2020, 24, e01337. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Okuro, T.; Buuveibaatar, B.; Undarmaa, J.; Takeuchi, K. Complementary Effects of Disturbance by Livestock and Marmots on the Spatial Heterogeneity of Vegetation and Soil in a Mongolian Steppe Ecosystem. Agric. Ecosyst. Environ. 2010, 135, 155–159. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Liu, T.; Zhang, C. The Potential Geographical Distribution of Haloxylon across Central Asia under Climate Change in the 21st Century. Agric. For. Meteorol. 2019, 275, 243–254. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, G.-L.; Zhang, Y.-M. Dune-Scale Distribution Pattern of Herbaceous Plants and Their Relationship with Environmental Factors in a Saline–Alkali Desert in Central Asia. Sci. Total Environ. 2017, 576, 473–480. [Google Scholar] [CrossRef] [PubMed]
- McConnaughay, K.D.M.; Coleman, J.S. Biomass Allocation in Plants: Ontogeny or Optimality? A Test Along Three Resource Gradients. Ecology 1999, 80, 2581–2593. [Google Scholar] [CrossRef]
- Ngugi, M.R.; Hunt, M.A.; Doley, D.; Ryan, P.; Dart, P. Dry Matter Production and Allocation in Eucalyptus Cloeziana and Eucalyptus Argophloia Seedlings in Response to Soil Water Deficits. New For. 2003, 26, 187–200. [Google Scholar] [CrossRef]
- Xu, Z.-Z.; Zhou, G.-S. Effects of Water Stress and Nocturnal Temperature on Carbon Allocation in the Perennial Grass, Leymus Chinensis. Physiol. Plant. 2005, 123, 272–280. [Google Scholar] [CrossRef]
- Frank, D.A.; Kuns, M.M.; Guido, D.R. Consumer Control of Grassland Plant Production. Ecology 2002, 83, 602–606. [Google Scholar] [CrossRef]
- Luo, G.; Han, Q.; Zhou, D.; Li, L.; Chen, X.; Li, Y.; Hu, Y.; Li, B.L. Moderate Grazing Can Promote Aboveground Primary Production of Grassland under Water Stress. Ecol. Complex. 2012, 11, 126–136. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Travers, S.K.; Val, J.; Zaja, A.; Veblen, K.E. Horse Activity Is Associated with Degraded Subalpine Grassland Structure and Reduced Habitat for a Threatened Rodent. Rangel. Ecol. Manag. 2019, 72, 467–473. [Google Scholar] [CrossRef]
- Morgia, V.L.; Balbo, C.; Memoli, S.; Isaia, M. Rodents in Grassland Habitats: Does Livestock Grazing Matter? A Comparison of Two Alpine Sites with Different Grazing Histories. Zoos 2015, 37, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Sun, Y.; Chang, S.; Wang, Z.; Li, G.; Hou, F. Pika Burrow and Zokor Mound Density and Their Relationship with Grazing Management and Sheep Production in Alpine Meadow. Ecosphere 2020, 11, e03088. [Google Scholar] [CrossRef]
- Speakman, J.R.; Chi, Q.; Ołdakowski, Ł.; Fu, H.; Fletcher, Q.E.; Hambly, C.; Togo, J.; Liu, X.; Piertney, S.B.; Wang, X.; et al. Surviving Winter on the Qinghai-Tibetan Plateau: Pikas Suppress Energy Demands and Exploit Yak Feces to Survive Winter. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef] [PubMed]
Environmental Factors | Explanation | Raw Dataset Source | Spatiotemporal Resolution |
---|---|---|---|
Elevation | SRTM DEM dataset in China (2000) [31] | 90 m | |
Slope | SRTM DEM dataset in China (2000) [31] | 90 m | |
Aspect | SRTM DEM dataset in China (2000) [31] | 90 m | |
Sand | Percentage of sand content in topsoil | Harmonized World Soil Database | |
Silt | Percentage of silt content in topsoil | Harmonized World Soil Database | |
Clay | Percentage of clay content in topsoil | Harmonized World Soil Database | |
P_yr | Annual precipitation | 1 km monthly precipitation dataset for China (1901–2017) [32]. The dataset was made through a fusion of remote sensing products, a reanalysis dataset, and in situ observation data at weather stations. | 1 km, yearly |
P_3mon_lag_pre | Precipitation in the three months before the survey | 1 km monthly precipitation dataset for China (1901–2017) [32] | 1 km, monthly |
T_avg_yr | Annual average temperature | 1 km monthly mean temperature dataset for china (1901–2017) [33] | 1 km, yearly |
T_max_yr | Monthly maximum temperature | 1 km monthly maximum temperature dataset for China (1901–2017) [34] | 1 km, monthly |
T_min_yr | Monthly minimum temperature | 1 km monthly minimum temperature dataset for China (1901–2017) [35] | 1 km, monthly |
T_mon | Monthly average temperature | 1 km monthly mean temperature dataset for china (1901–2017) [33] | 1 km, monthly |
NDVI | Normalized vegetation index | NOAA Global Inventory Monitoring and Modeling System (GIMMS), version number 3g.v1 | 8 km, monthly (Maximum Value Composites with 15-day raw data) from 1981 to 2015 |
LAI | Leaf area index | NOAA Climate Data Record (CDR) of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Version 4 | 8 km, monthly (mean value of daily raw data) from 1982 through the present |
Grazing intensity | Grazing intensity (number of livestock per hectare) | FAO (http://www.fao.org/livestock-systems/en/, last accessed: 10 November 2021), field data in 2015, Xinjiang statistical yearbook [10,11] | 0.08333°, yearly |
Shortwave radiation | China meteorological forcing dataset (1979–2018) [14] | 0.1°, monthly (mean value of 3-hour raw data) |
Variables | Status Levels | Unit |
---|---|---|
RHD | 0 to 300, 300 to 800, 800 to 4000 | n/ha |
Elevation | 200 to 600, 600 to 1000, 1000 to 1600, 1600 to 2500 | m |
P_yr | 0 to 150, 150 to 250, 250 to 600 | mm |
T_avg_yr | −3 to 8, 8 to 10, 10 to 12 | °C |
P_3mon_lag_pre | 0 to 10, 10 to 30, 30 to 60 | mm |
NDVI | 0 to 0.1, 0.1 to 0.2, 0.2 to 0.6 | |
LAI | 0 to 0.15, 0.15 to 0.3, 0.3 to 1 | |
Slope | 0 to 2, 2 to 10 | ° |
Sand | 0 to 40, 40 to 55, 55 to 100 |
Environmental Variables | NTXJ | Plain Desert (200 to 600 m) | Desert & low Mountain (600 to 1000 m) | Grassland & Low Mountain (1000 to 1600 m) | Grassland/Coniferous Forest & Mid Mountain(1600 to 2500 m) |
---|---|---|---|---|---|
Elevation | 0.01215 | no value | no value | no value | no value |
LAI | 0.06445 | 0.03561 | 0.08259 | 0.07575 | 0.08313 |
NDVI | 0.03974 | 0.02737 | 0.05708 | 0.01535 | 0.00865 |
Sand | 0.02447 | 0.03586 | 0.02840 | 0.00477 | 0.00398 |
Slope | 0.02698 | 0.02163 | 0.05088 | 0.00481 | 0.00454 |
P_yr | 0.01492 | 0.00236 | 0.02017 | 0.02246 | 0.00046 |
P_3mon_lag_pre | 0.01062 | 0.01160 | 0.01405 | 0.00807 | 0.01112 |
T_avg_yr | 0.00739 | 0.00912 | 0.00142 | 0 | 0 |
Environmental Variables | Probabilistic Changes in the Status of Environmental Variables Due to the Determination of the High RHD Status in LWR (%) | Probabilistic Changes in the Status of Environmental Variables Due to the Determination of the High RHD Status in UPR (%) | ||||
---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |
LAI | +2.6 | −8.7 | +6.1 | −0.5 | −12.0 | +12.5 |
NDVI | +5.6 | −11.6 | +6.0 | +1.8 | −18.0 | +16.2 |
Sand | −17.9 | +13.4 | +4.5 | −6.5 | +3.2 | +3.3 |
Slope | −9.6 | no value | +9.6 | −12.5 | no value | +12.5 |
P_yr | −2.8 | +2.8 | 0 | −12.8 | +11.2 | +1.6 |
P_3mon_lag_pre | −5.5 | +3.4 | +2.1 | −5.5 | +2.8 | +2.7 |
T_avg_yr | +1.1 | −0.5 | −0.6 | +3.7 | −3.7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Pan, Q.; Luo, G.; Hellwich, O.; Chen, C.; Voorde, T.V.d.; Kurban, A.; De Maeyer, P.; Wu, S. Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sens. 2021, 13, 4709. https://doi.org/10.3390/rs13224709
Shi H, Pan Q, Luo G, Hellwich O, Chen C, Voorde TVd, Kurban A, De Maeyer P, Wu S. Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sensing. 2021; 13(22):4709. https://doi.org/10.3390/rs13224709
Chicago/Turabian StyleShi, Haiyang, Qun Pan, Geping Luo, Olaf Hellwich, Chunbo Chen, Tim Van de Voorde, Alishir Kurban, Philippe De Maeyer, and Shixin Wu. 2021. "Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data" Remote Sensing 13, no. 22: 4709. https://doi.org/10.3390/rs13224709
APA StyleShi, H., Pan, Q., Luo, G., Hellwich, O., Chen, C., Voorde, T. V. d., Kurban, A., De Maeyer, P., & Wu, S. (2021). Analysis of the Impacts of Environmental Factors on Rat Hole Density in the Northern Slope of the Tienshan Mountains with Satellite Remote Sensing Data. Remote Sensing, 13(22), 4709. https://doi.org/10.3390/rs13224709