Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data
<p>Simplified version of the main scheme of the global BA algorithm. Adapted from [<a href="#B30-remotesensing-13-04295" class="html-bibr">30</a>].</p> "> Figure 2
<p>The 10 × 10-degree tiles used for the processing of the OLCI global BA product. A total of 273 tiles were processed, of which 13 were used to adapt the algorithm (red and green tiles).</p> "> Figure 3
<p>Continental tiles of the global BA pixel product.</p> "> Figure 4
<p>Biomes representing the first stratum of validation sampling. The black locations show the 300 validation sites that were selected for 2017, 2018, and 2019 (100 for each year).</p> "> Figure 5
<p>FireCCI51 (<b>a</b>) and C3SBA10 (<b>b</b>) annual accumulated BA for the year 2019 at 0.25° spatial resolution.</p> "> Figure 6
<p>Monthly burned area for 2019 distributed along latitudes determined by FireCCI51 (<b>a</b>) and C3SBA10 (<b>b</b>).</p> "> Figure 7
<p>Monthly percent BA contribution, Pearson’s correlation and bias (slope) between the FireCCI51 and C3SBA10 products per biome (sub-figures (<b>a</b>–<b>h</b>)) and grid size for the year 2019.</p> "> Figure 8
<p>Temporal reporting accuracy assessment of both FireCCI51 and C3SBA10 products. The box represents the interquartile range (IQR), the lower and upper bounds being the 25th and 75th percentiles, respectively. The black line within the box corresponds to the median value. The whiskers represent an additional area of 1.5 × IQR.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. FireCCI51 Algorithm
2.2. Input Data for the C3SBA10 Product
2.2.1. OLCI Surface Directional Reflectances
2.2.2. Auxiliary Data
2.3. C3SBA10 Product Algorithm
2.4. Uncertainty Characterisation
2.5. Product Generation
2.6. Intercomparison between FireCCI51 and C3SBA10
2.7. Validation
2.7.1. Spatial Assessment
2.7.2. Temporal Reporting Accuracy Assessment
2.8. Analysis of the Impact of the Temporal Resolution in Burned Area
3. Results
3.1. Intercomparison between FireCCI51 and C3SBA10
3.1.1. Summary of the Annual Burned Area
3.1.2. Spatial and Temporal Agreement
3.2. Validation
3.2.1. Spatial Assessment
3.2.2. Temporal Reporting Accuracy Assessment
3.3. Impact of the Number of Input Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Additionally
Appendix A
Reporting Accuracy | Tropical Forest | Tropical Savanna | Temperate Forest | Temperate Savanna | Desert and Xeric Shrubland | Mediterranean | Boreal Forest | Tundra | Global |
---|---|---|---|---|---|---|---|---|---|
0–1 days | 16.9% | 18.5% | 14.0% | 21.4% | 24.9% | 14.2% | 6.3% | 7.3% | 17.4% |
0–3 days | 40.9% | 48.2% | 33.5% | 49.7% | 56.2% | 37.6% | 17.5% | 19.3% | 44.5% |
0–5 days | 59.5% | 68.0% | 51.0% | 69.0% | 75.0% | 59.3% | 32.0% | 33.3% | 63.6% |
0–10 days | 83.4% | 89.1% | 80.7% | 93.2% | 94.1% | 91.1% | 69.2% | 68.0% | 86.8% |
Reporting Accuracy | Tropical Forest | Tropical Savanna | Temperate Forest | Temperate Savanna | Desert and Xeric Shrubland | Mediterranean | Boreal Forest | Tundra | Global |
---|---|---|---|---|---|---|---|---|---|
0–1 days | 16.2% | 18.6% | 9.7% | 23.1% | 31.0% | 13.8% | 5.2% | 5.5% | 17.8% |
0–3 days | 40.2% | 48.7% | 27.3% | 51.6% | 61.8% | 35.7% | 15.4% | 14.7% | 45.2% |
0–5 days | 59.3% | 68.4% | 46.2% | 70.6% | 78.6% | 57.4% | 29.4% | 27.3% | 64.4% |
0–10 days | 84.3% | 89.4% | 78.3% | 93.0% | 94.4% | 92.3% | 63.7% | 62.1% | 87.1% |
Accuracy Metric | vS3A | C3SBA10 |
---|---|---|
Dice coefficient | 65.3 | 68.1 |
Commission error | 18.7 | 20.5 |
Omission error | 45.4 | 40.5 |
Relative bias | −32.9 | −25.1 |
References
- Marlon, J.R.; Bartlein, P.J.; Daniau, A.-L.; Harrison, S.P.; Maezumi, S.Y.; Power, M.J.; Tinner, W.; Vanniére, B. Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 2013, 65, 5–25. [Google Scholar] [CrossRef]
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jiménez-Guerrero, P.; Trigo, R.M. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9, 13886. [Google Scholar] [CrossRef]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate–fire relationships. Glob. Chang. Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Chang. 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Daniau, A.-L.; Sánchez Goñi, M.F.; Martinez, P.; Urrego, D.H.; Bout-Roumazeilles, V.; Desprat, S.; Marlon, J.R. Orbital-scale climate forcing of grassland burning in southern Africa. Proc. Natl. Acad. Sci. USA 2013, 110, 5069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 49. [Google Scholar] [CrossRef]
- Bowman, D.; Williamson, G.; Yebra, M.; Lizundia-Loiola, J.; Pettinari, M.L.; Shah, S.; Bradstock, R.; Chuvieco, E. Wildfires: Australia needs national monitoring agency. Nature 2020, 584, 188–191. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.E.; Morton, D.C.; Collatz, G.J. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Ward, D.; Kloster, S.; Mahowald, N.; Rogers, B.; Randerson, J.; Hess, P. The changing radiative forcing of fires: Global model estimates for past, present and future. Atmos. Chem. Phys. 2012, 12, 10857–10886. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Ciais, P.; Houghton, R.A.; Nassikas, A.A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 2020, 11, 3170. [Google Scholar] [CrossRef]
- Poulter, B.; Cadule, P.; Cheiney, A.; Ciais, P.; Hodson, E.; Peylin, P.; Plummer, S.; Spessa, A.; Saatchi, S.; Yue, C. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area. Glob. Biogeochem. Cycles 2015, 29, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Tosca, M.G.; Randerson, J.T.; Zender, C.S.; Flanner, M.G.; Rasch, P.J. Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys. 2010, 10, 3515–3528. [Google Scholar] [CrossRef] [Green Version]
- Tosca, M.G.; Diner, D.J.; Garay, M.J.; Kalashnikova, O.V. Observational evidence of fire-driven reduction of cloud fraction in tropical Africa. J. Geophys. Res. Atmos. 2014, 119, 8418–8432. [Google Scholar] [CrossRef]
- Kelly, L.T.; Brotons, L. Using fire to promote biodiversity. Science 2017, 355, 1264. [Google Scholar] [CrossRef]
- Enright, N.J.; Fontaine, J.B.; Bowman, D.M.J.S.; Bradstock, R.A.; Williams, R.J. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Higuera, P.E.; Abatzoglou, J.T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Chang. Biol. 2021, 27, 1–2. [Google Scholar] [CrossRef]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Seiler, W.; Crutzen, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Forkel, M.; Dorigo, W.; Lasslop, G.; Teubner, I.; Chuvieco, E.; Thonicke, K. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geosci. Model Dev. 2017, 10, 4443. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.; Heil, A.; et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 2019, 16, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Prentice, I.C.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Kelley, D.I.; Arneth, A.; Harrison, S.P.; Archibald, S.; Bachelet, D.; Forrest, M.; Hickler, T.; Lasslop, G.; Li, F.; et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 2020, 13, 3299–3318. [Google Scholar] [CrossRef]
- Heil, A.; Pettinari, M.L. ESA Climate Change Initiative-Fire_cci D1.1 User Requirements Document (URD), Version 7.2. 2021. Available online: https://climate.esa.int/media/documents/Fire_cci_D1.1_URD_v7.2.pdf (accessed on 21 October 2021).
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Otón, G.; Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. Development of a consistent global long-term burned area product (1982–2018) based on AVHRR-LTDR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102473. [Google Scholar] [CrossRef]
- Thépaut, J.; Dee, D.; Engelen, R.; Pinty, B. The Copernicus Programme and its Climate Change Service. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1591–1593. [Google Scholar]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Ahmad, Z.; Holben, B.N.; Smirnov, A.; Thomas, G.E.; Zhang, J. SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Bettenhausen, C.; Kim, W.V.; Smirnov, A. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the “Deep Blue” Aerosol Project. J. Geophys. Res. Atmos. 2018, 123, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Kim, W.; Bettenhausen, C.; Tsay, S.C. VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long-Term Aerosol Data Records. J. Geophys. Res. Atmos. 2019, 124, 4026–4053. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Carletta, N.; Chen, S.H.; Smirnov, A. Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements. J. Geophys. Res. Atmos. 2017, 122, 9945–9967. [Google Scholar] [CrossRef] [PubMed]
- Embury, O.; Good, S. Product User Guide and Specification–Sea Surface Temperature, D3.SST.1-v2.2_PUGS_of_v2SST_products_v6.0. 2020. Available online: https://datastore.copernicus-climate.eu/documents/satellite-sea-surface-temperature/v2.0/D3.SST.1-v2.2_PUGS_of_v2SST_products_v6.0_APPROVED_Ver1.pdf (accessed on 21 October 2021).
- Merchant, C.J.; Block, T.; Corlett, G.K.; Embury, O.; Mittaz, J.P.D.; Mollard, J.D.P. Harmonization of Space-Borne Infra-Red Sensors Measuring Sea Surface Temperature. Remote. Sens. 2020, 12, 1048. [Google Scholar] [CrossRef] [Green Version]
- Merchant, C.I. Sea Surface Temperature CCI Phase-II Algorithm Theoretical Basis Document (v2 Reprocessing), SST_CCI-ATBD-UOR-203 (ATBD), Issue 3. 2019. Available online: https://climate.esa.int/media/documents/SST_cci_PUG_v2.pdf (accessed on 21 October 2021).
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhao, L.; Lin, A. Evaluating the performance of Sentinel-3A OLCI land products for gross primary productivity estimation using ameriflux data. Remote Sens. 2020, 12, 1927. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Brown, L.; Morris, H.; Bourg, L.; Goryl, P.; Dransfeld, S.; Dash, J. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sens. 2020, 12, 2652. [Google Scholar] [CrossRef]
- Alonso-Canas, I.; Chuvieco, E. Global Burned Area Mapping from ENVISAT-MERIS data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- López, G.; Muller, J.-P.; Potts, D.; Shane, N.; Kharbouche, S.; Fisher, D.; Lewis, P.; Brockmann, C.; Danne, O.; Krueger, O.; et al. GlobAlbedo Algorithm Theoretical Basis Document Version 4.12 2013. Available online: http://globalbedo.org/docs/GlobAlbedo_Albedo_ATBD_V4.12.pdf (accessed on 21 October 2021).
- Giglio, L.; Schroeder, W.; Hall, J.V.; Justice, C.O. Modis Collection 6 Active Fire Product User’s Guide Revision B. 2018. Available online: https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_B.pdf (accessed on 21 October 2021).
- Wolters, E.; Dierckx, W.; Lordache, M.D.; Swinnen, E. PROBA-V Products User Manual v. 3.01. 2018. Available online: https://proba-v.vgt.vito.be/sites/proba-v.vgt.vito.be/files/products_user_manual.pdf (accessed on 21 October 2021).
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375m active fire detection product for direct burned area mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Oliva, P.; Martin, P.; Chuvieco, E. Burned area mapping with MERIS post-fire image. Int. J. Remote Sens. 2011, 32, 4175–4201. [Google Scholar] [CrossRef]
- Merchant, C.J.; Paul, F.; Popp, T.; Ablain, M.; Bontemps, S.; Defourny, P.; Hollmann, R.; Lavergne, T.; Laeng, A.; de Leeuw, G. Uncertainty information in climate data records from Earth observation. Earth Syst. Sci. Data 2017, 9, 511–527. [Google Scholar] [CrossRef] [Green Version]
- Mittaz, J.; Merchant, C.J.; Woolliams, E.R. Applying principles of metrology to historical Earth observations from satellites. Metrologia 2019, 56, 032002. [Google Scholar] [CrossRef]
- Sayer, A.M.; Govaerts, Y.; Kolmonen, P.; Lipponen, A.; Luffarelli, M.; Mielonen, T.; Patadia, F.; Popp, T.; Povey, A.C.; Stebel, K. A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing. Atmos. Meas. Tech. Discuss 2019, 13, 373–404. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Pettinari, M.L.; Heil, A.; Storm, T. ESA CCI EVC Fire Disturbance: D1.2 Product Specification Document, Version 6.3. 2017. Available online: https://climate.esa.int/media/documents/Fire_cci_D1.2_PSD_v6.3.pdf (accessed on 21 October 2021).
- Amos, J. Arctic Wildfires: How Bad Are They and What Caused Them? Available online: https://www.bbc.com/news/world-europe-49125391 (accessed on 21 October 2021).
- Evangeliou, N.; Kylling, A.; Eckhardt, S.; Myroniuk, V.; Stebel, K.; Paugam, R.; Zibtsev, S.; Stohl, A. Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 2019, 2, 1393–1411. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, L.; Eva, H.D.; Brivio, P.A.; Gregoire, J.M. Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophys. Res. Lett. 2004, 31, L21501. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeo Sci. Discuss 2010, 7, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth 2018, 12, 460–484. [Google Scholar] [CrossRef]
- Turco, M.; Herrera, S.; Tourigny, E.; Chuvieco, E.; Provenzale, A. A comparison of remotely-sensed and inventory datasets for burned area in Mediterranean Europe. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101887. [Google Scholar] [CrossRef] [Green Version]
- Bistinas, I.; Oom, D.; Sá, A.C.L.; Harrison, S.P.; Prentice, I.C.; Pereira, J.M.C. Relationships between human population density and burned area at continental and global scales. PLoS ONE 2013, 8, e81188. [Google Scholar] [CrossRef] [PubMed]
- Knorr, W.; Kaminski, T.; Arneth, A.; Weber, U. Impact of human population density on fire frequency at the global scale. Biogeosciences 2014, 11, 1085–1102. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Heil, A.; Andreae, M.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.; Suttie, M. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- Aleksankina, K.; Heal, M.R.; Dore, A.J.; Van Oijen, M.; Reis, S. Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: The FRAME model (version 9.15.0) as a case study. Geosci. Model Dev. 2018, 11, 1653–1664. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Keller, C.A.; Long, M.S.; Sherwen, T.; Auer, B.; Da Silva, A.; Nielsen, J.E.; Pawson, S.; Thompson, M.A.; Trayanov, A.L. Global simulation of tropospheric chemistry at 12.5 km resolution: Performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM). Geosci. Model Dev. 2018, 11, 4603–4620. [Google Scholar] [CrossRef] [Green Version]
- Morisette, J.T.; Baret, F.; Liang, S. Special issue on global land product validation. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Gallego, F.J. Stratified sampling of satellite images with a systematic grid of points. ISPRS J. Photogramm. Remote Sens. 2005, 59, 369–376. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.; Stehman, S.V.; Chuvieco, E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. Remote Sens. Environ. 2014, 144, 187–196. [Google Scholar] [CrossRef]
- Padilla, M.; Olofsson, P.; Stehman, S.V.; Tansey, K.; Chuvieco, E. Stratification and sample allocation for reference burned area data. Remote Sens. Environ. 2017, 203, 240–255. [Google Scholar] [CrossRef]
- Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E. BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data. Remote Sens. 2014, 6, 12360–12380. [Google Scholar] [CrossRef] [Green Version]
- Franquesa, M.; Lizundia-Loiola, J.; Stehman, S.V.; Chuvieco, E. Using long temporal reference units to assess the spatial accuracy of global satellite-derived burned area products. Remote Sens. Environ. 2021. in review. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Padilla, M.; Stehman, S.V.; Hantson, S.; Oliva, P.; Alonso-Canas, I.; Bradley, A.; Tansey, K.; Mota, B.; Pereira, J.M.; Chuvieco, E. Comparing the Accuracies of Remote Sensing Global Burned Area Products using Stratified Random Sampling and Estimation. Remote Sens. Environ. 2015, 160, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, L.; Roy, D.P.; Justice, C.O.; Giglio, L. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. Int. J. Wildland Fire 2010, 19, 705–709. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Libonati, R.; Rodrigues, J.A.; Pereira, J.M.C. A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sens. Environ. 2021, 252, 112115. [Google Scholar] [CrossRef]
- Schroeder, W.; Giglio, L. Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products, Product User’s Guide Version 1.4. 2018. Available online: https://viirsland.gsfc.nasa.gov/PDF/VIIRS_activefire_User_Guide.pdf (accessed on 21 October 2021).
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, R.; Padilla, M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.P.; Boschetti, L.; Justice, C.O. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Hall, J.V.; Loboda, T.V.; Giglio, L.; McCarty, G.W. A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sens. Environ. 2016, 184, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kobayashi, H.; Kanaya, Y.; Saito, M. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands. Sci. Rep. 2017, 7, 4181. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef] [PubMed]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef] [PubMed]
- McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The spatial and temporal distribution of crop residue burning in the contiguous United States. Sci. Total Environ. 2009, 407, 5701–5712. [Google Scholar] [CrossRef]
- Randerson, J.; Chen, Y.; Werf, G.; Rogers, B.; Morton, D. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. (2005–2012) 2012, 117, G040012. [Google Scholar] [CrossRef]
- Benali, A.; Mota, B.; Carvalhais, N.; Oom, D.; Miller, L.M.; Campagnolo, M.L.; Pereira, J.M.C. Bimodal fire regimes unveil a global-scale anthropogenic fingerprint. Glob. Ecol. Biogeogr. 2017, 26, 799–811. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Crowley, M.A. Detection and impacts of tiling artifacts in MODIS burned area classification. IOP SciNotes 2021, 2, 014003. [Google Scholar] [CrossRef]
- Giglio, L.; Kendall, J.D.; Mack, R. A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int. J. Remote Sens. 2003, 24, 4505–4525. [Google Scholar] [CrossRef]
- Campagnolo, M.L.; Oom, D.; Padilla, M.; Pereira, J.M.C. A patch-based algorithm for global and daily burned area mapping. Remote Sens. Environ. 2019, 232, 111288. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. First study of Sentinel-3 SLSTR active fire detection and FRP retrieval: Night-time algorithm enhancements and global intercomparison to MODIS and VIIRS AF products. Remote Sens. Environ. 2020, 248, 111947. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Franquesa, M.; Boettcher, M.; Kirches, G.; Pettinari, M.L.; Chuvieco, E. C3SBA10: OLCI C3S Burned Area v1.0. Clim. Data Store 2020. [Google Scholar] [CrossRef]
- Franquesa, M.; Vanderhoof, M.K.; Stavrakoudis, D.; Gitas, I.; Roteta, E.; Padilla, M.; Chuvieco, E. BARD: A global and regional validation burned area database, V5. e-cienciaDatos 2020. [Google Scholar] [CrossRef]
Band | Band Centre (nm) | Bandwidth (nm) | MERIS Heritage |
---|---|---|---|
Oa01 | 400 | 15 | No |
Oa02 | 412.5 | 10 | Yes |
Oa03 | 442.5 | 10 | Yes |
Oa04 | 490 | 10 | Yes |
Oa05 | 510 | 10 | Yes |
Oa06 | 560 | 10 | Yes |
Oa07 | 620 | 10 | Yes |
Oa08 | 665 | 10 | Yes |
Oa09 | 673.75 | 7.5 | No |
Oa10 | 681.25 | 7.5 | Yes |
Oa11 | 708.75 | 10 | Yes |
Oa12 | 753.75 | 7.5 | Yes |
Oa13 | 761.25 | 2.5 | Yes |
Oa14 | 764.375 | 3.75 | No |
Oa15 | 767.5 | 2.5 | No |
Oa16 | 778.75 | 15 | Yes |
Oa17 | 865 | 20 | Yes |
Oa18 | 885 | 10 | Yes |
Oa19 | 900 | 10 | Yes |
Oa20 | 940 | 20 | No |
Oa21 | 1020 | 40 | No |
Product | Spatial Resolution | Layers | Description |
---|---|---|---|
Pixel | 300 m | JD | Julian day or day of the year when the burned pixel was detected |
CL | Confidence level of the classified pixel (both burned and unburned) | ||
LC | Land cover class that was burned | ||
Grid | 0.25° | Burned area | Sum of the burned area within the grid cell |
Standard error | Estimation of the standard error of the burned area | ||
Fraction of burnable area | Fraction of the grid cell that could burn (vegetated land covers) | ||
Fraction of observed area | Fraction of the burnable area that was observed during the month | ||
Burned area of each land cover class | Sum of the burned area within the grid cell per land cover class |
Biome | C3SBA10 Burned Area (km2) | Difference C3SBA10–FireCCI51 | ||||
---|---|---|---|---|---|---|
2017 1 | 2018 1 | 2019 2 | 2017 1 | 2018 1 | 2019 2 | |
Tropical savanna | 2,782,564 | 2,801,290 | 2,701,210 | −17.7% | −16.4% | −9.5% |
Tropical forest | 335,032 | 313,597 | 411,926 | −22.3% | −17.6% | −5.2% |
Temperate savanna | 210,382 | 135,370 | 164,995 | −9.8% | −3.9% | −0.4% |
Deserts and xeric shrubland | 258,622 | 148,073 | 113,707 | −20.7% | −19.4% | −2.8% |
Temperate forest | 89,537 | 111,662 | 110,884 | −8.9% | −11.5% | −1.0% |
Boreal forest | 61,173 | 74,014 | 90,503 | +4.5% | +2.4% | +4.4% |
Mediterranean | 27,421 | 8884 | 24,975 | −18.9% | −32.8% | −16.8% |
Tundra | 5734 | 1697 | 13,044 | +3.8% | +4.1% | +13.1% |
Global | 3,770,465 | 3,594,588 | 3,631,243 | −17.3% | −15.7% | −7.8% |
Year | Grid Size | ||||
---|---|---|---|---|---|
0.05° | 0.10° | 0.25° | 0.50° | ||
Pearson’s r | 2017 1 | 0.937 | 0.962 | 0.981 | 0.988 |
2018 1 | 0.943 | 0.966 | 0.983 | 0.989 | |
2019 2 | 0.952 | 0.972 | 0.986 | 0.992 | |
Slope | 2017 1 | 0.870 | 0.864 | 0.858 | 0.856 |
2018 1 | 0.882 | 0.875 | 0.870 | 0.868 | |
2019 2 | 0.923 | 0.919 | 0.916 | 0.915 | |
RMSE | 2017 1 | 1.347 | 4.029 | 17.810 | 57.404 |
2018 1 | 1.279 | 3.807 | 16.800 | 54.338 | |
2019 2 | 1.073 | 3.060 | 12.577 | 38.092 |
Accuracy Metrics | 2017 1 | 2018 1 | 2019 2 | |||
---|---|---|---|---|---|---|
FireCCI51 | C3SBA10 | FireCCI51 | C3SBA10 | FireCCI51 | C3SBA10 | |
Dice coefficient (DC) | 66.9 (2.3) | 62.3 (2.6) | 69.2 (2.7) | 64.8 (2.9) | 63.9 (2.8) | 61.7 (2.9) |
Commission error (Ce) | 21.4 (2.2) | 19.5 (2.1) | 15.7 (1.4) | 13.1 (1.3) | 20.8 (1.7) | 18.6 (1.7) |
Omission error (Oe) | 41.8 (3.1) | 49.2 (3.2) | 41.3 (3.4) | 48.3 (3.4) | 46.5 (3.4) | 50.3 (3.4) |
Relative bias (relB) | −26.0 (4.1) | −36.9 (4.0) | −30.4 (3.3) | −40.5 (3.5) | −32.5 (3.4) | −39.0 (3.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizundia-Loiola, J.; Franquesa, M.; Boettcher, M.; Kirches, G.; Pettinari, M.L.; Chuvieco, E. Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. Remote Sens. 2021, 13, 4295. https://doi.org/10.3390/rs13214295
Lizundia-Loiola J, Franquesa M, Boettcher M, Kirches G, Pettinari ML, Chuvieco E. Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data. Remote Sensing. 2021; 13(21):4295. https://doi.org/10.3390/rs13214295
Chicago/Turabian StyleLizundia-Loiola, Joshua, Magí Franquesa, Martin Boettcher, Grit Kirches, M. Lucrecia Pettinari, and Emilio Chuvieco. 2021. "Implementation of the Burned Area Component of the Copernicus Climate Change Service: From MODIS to OLCI Data" Remote Sensing 13, no. 21: 4295. https://doi.org/10.3390/rs13214295