The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive
"> Figure 1
<p>Flow chart of the Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI) algorithm. AOT stands for aerosol optical thickness, Θv and Θs are the view angle and the solar angle, respectively.</p> "> Figure 2
<p>Sentinel-3 OLCI spectral bands over a typical vegetation spectral response (<b>a</b>). The red bars represent the bands used for the computation of Sentinel-3 OTCI while grey bars are the other 18 OLCI bands. OLCI bands 10, 11, and 12 centred at 681.25, 708.75, and 753.75 nm and MERIS bands 8, 9, and 10 also centred at 681.25, 708.75, and 753.75 nm (<b>b</b>).</p> "> Figure 3
<p>Temporal profiles of MTCI (2008 to 2012) and OTCI (2016 to 2019) acquisitions (left), Sentinel-3 OTCI acquisitions and monthly mean Envisat MTCI values derived from the MERIS climatology by day of year (middle) and scatterplot of monthly means (right) for (<b>a</b>) US-Talledaga (ENF), (<b>b</b>) AU-Robson-Creek (EBF), (<b>c</b>) FR-Montiers (DBF), (<b>d</b>) BR-Mataseca (non-forest), and (<b>e</b>) IT-Lison (cultivated).</p> "> Figure 4
<p>Comparison of monthly mean Sentinel-3 OTCI (2016 to 2019) and Envisat MTCI (2002 to 2012) values over the 37 validation sites (<a href="#remotesensing-12-02652-t004" class="html-table">Table 4</a>). Red and grey lines represent the modelled and 1:1 lines, respectively. OLCI data acquisition is up to 15 January 2020 (S3A orbital cycle 53).</p> "> Figure 5
<p>Global composites of the Sentinel-3 OTCI (mean of 2016 to 2019) and Envisat MTCI (mean of 2002 to 2012) for winter—i.e., Dec, Jan, Feb (<b>a</b>,<b>b</b>)—and spatial distribution of differences (<b>c</b>). Index value frequency distribution (<b>d</b>), density scatterplot of the agreement between the two products (<b>e</b>), and frequency distribution of differences (<b>f</b>). For (<b>c</b>) and (<b>f</b>), difference is expressed in percentage computed as the ratio of per pixel absolute difference to the mean of the two pixels. Blue indicates areas where the Sentinel-3 OTCI is greater than the Envisat MTCI, conversely, red indicates areas where the Envisat MTCI is greater than the Sentinel-3 OTCI. Grey pixels are areas where the difference between the Envisat MTCI and Sentinel-3 OTCI is within ±5%.</p> "> Figure 6
<p>Global composites of Sentinel-3 OTCI (mean of 2016 to 2019) and Envisat MTCI (mean of 2002 to 2012) values for summer—i.e. Jun, Jul, Aug (<b>a</b>,<b>b</b>)—and spatial distribution of differences (<b>c</b>). Index value frequency distribution (<b>d</b>), density scatterplot of agreement between the two products (<b>e</b>), and frequency distribution of differences (<b>f</b>). For (<b>c</b>) and (<b>f</b>), difference is expressed in percentage computed as the ratio of per pixel absolute difference to the mean. Blue indicates areas where the Sentinel-3 OTCI is greater than the Envisat MTCI, conversely, red indicates areas where the Envisat MTCI is greater than the Sentinel-3 OTCI. Grey pixels are areas where the difference between the Envisat MTCI and Sentinel-3 OTCI is within ±5%.</p> "> Figure 7
<p>Latitudinal variation of Envisat MTCI (mean of 2002 to 2012) and Sentinel-3 OTCI (mean of 2016 to 2019) seasonal values. The seasons correspond to the northern hemisphere, for reference months are added in brackets. Blue and red lines show the mean latitudinal values and the dashed lines represents ±1 standard deviation.</p> "> Figure 8
<p>Monthly evolution of Envisat MTCI (mean of 2002 to 2012) and Sentinel-3 OTCI (mean of 2016 to 2019) values by land cover for the northern and southern hemispheres. The land cover classes are: evergreen needleleaf (ENF), evergreen broadleaf (EBF), deciduous needleleaf (DNF), deciduous broadleaf (DBF), non-forest, and cultivated. The boxes embody the median, the first, and the third quartile of the long-term monthly Envisat MTCI and Sentinel-3 OTCI values. ENF and DNF are missing for the southern hemisphere because these land cover types did not have a significant number of pixels.</p> ">
Abstract
:1. Introduction
- To introduce the Sentinel-3 OTCI and describe updates and algorithm improvements with respect to the Envisat MTCI algorithm
- To assess the spatiotemporal consistency between the Sentinel-3 OTCI and Envisat MTCI using a comparison with the MERIS climatology
2. Description of the OTCI Product
Quality Flags
3. Methods
3.1. Evaluating Temporal Consistency at Specific Validation Sites
3.2. Evaluating Spatial Consistency at the Global Scale
3.3. Statistical Analysis
4. Results
4.1. Temporal Consistency at Specific Validation Sites
4.2. Spatial Consistency at the Global Scale
4.2.1. Northern Hemisphere Winter (Dec, Jan, Feb)
4.2.2. Northern Hemisphere Summer (Jun, Jul, Aug)
4.2.3. Latitudinal Variation
4.2.4. Consistency by Land Cover
5. Discussion
5.1. Product Performance
5.2. OTCI Applications and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gitelson, A.A.; Peng, Y.; Viña, A.; Arkebauer, T.; Schepers, J.S. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops. J. Plant. Physiol. 2016, 201, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Chang. Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef]
- Ogutu, B.O.; Dash, J.; Dawson, T.P. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data. Glob. Chang. Biol. 2013, 19, 2878–2892. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Gitelson, A.A. Remote estimation of gross primary productivity in soybean and maize based on total crop chlorophyll content. Remote Sens. Environ. 2012, 117, 440–448. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 517–520. [Google Scholar] [CrossRef]
- Sampson, P.H.; Zarco-Tejada, P.J.; Mohammed, G.H.; Miller, J.R.; Noland, T.L. Hyperspectral Remote Sensing of Forest Condition: Estimating Chlorophyll Content in Tolerant Hardwoods. For. Sci. 2003, 49, 381–391. [Google Scholar] [CrossRef]
- Houlès, V.; Guérif, M.; Mary, B. Elaboration of a nitrogen nutrition indicator for winter wheat based on leaf area index and chlorophyll content for making nitrogen recommendations. Eur. J. Agron. 2007, 27, 1–11. [Google Scholar] [CrossRef]
- Heege, H.J.; Reusch, S.; Thiessen, E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis. Agric. 2008, 9, 115–131. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant. Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Richardson, A.D.; Duigan, S.P.; Berlyn, G.P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Ciganda, V.; Gitelson, A.; Schepers, J. Non-destructive determination of maize leaf and canopy chlorophyll content. J. Plant. Physiol. 2009, 166, 157–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 360–374. [Google Scholar] [CrossRef]
- Vuolo, F.; Dash, J.; Curran, P.J.; Lajas, D.; Kwiatkowska, E. Methodologies and Uncertainties in the Use of the Terrestrial Chlorophyll Index for the Sentinel-3 Mission. Remote Sens. 2012, 4, 1112–1133. [Google Scholar] [CrossRef] [Green Version]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; De Bruin, S. Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J. Photogramm. Remote Sens. 2015, 108, 234–244. [Google Scholar] [CrossRef]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Dash, J.; Ogutu, B.O. Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Prog. Phys. Geogr. Earth Environ. 2016, 40, 322–351. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Rast, M.; Bézy, J.L.; Bruzzi, S. The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission. Int. J. Remote Sens. 1999, 20, 1681–1702. [Google Scholar] [CrossRef]
- Curran, P.J.; Steele, C.M. MERIS: The re-branding of an ocean sensor. Int. J. Remote Sens. 2005, 26, 1781–1798. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Dawson, T.P.; Curran, P.J. Technical note A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Numerical procedures and computer program for fitting an inverted gaussian model to vegetation reflectance data. Comput. Geosci. 1988, 14, 339–356. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F.; Jacquemoud, S. Imaging spectroscopy for vegetation studies. Imaging Spectrosc. Fundam. Prospect. Appl. 1992, 2, 145–165. [Google Scholar]
- Fernandes, R.; Plummer, S.E.; Nightingale, J.; Baret, F.; Camacho, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; et al. Global Leaf Area Index Product Validation Good Practices. Version 2.0. Best Pract. Satelitte-Derived L. Prod. Valid. L. Prod. Valid. Subgr. 2014, 1–78. [Google Scholar] [CrossRef]
- Yoder, B.J.; Johnson, L.F. Seedling Canopy Chemistry, 1992–1993 (ACCP); ORNL DAAC: Oak Ridge, TN, USA, 1999. [CrossRef]
- Dash, J.; Curran, P.J.; Tallis, M.J.; Llewellyn, G.M.; Taylor, G.; Snoeijf, P. Validating the MERIS terrestrial chlorophyll index (MTCI) with ground chlorophyll content data at MERIS spatial resolution. Int. J. Remote Sens. 2010, 31, 5513–5532. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.; Jeganathan, C.; Atkinson, P.M. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sens. Environ. 2010, 114, 1388–1402. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Dash, J.; Atkinson, P.M. Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sens. 2015, 7, 9390–9409. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.S.; Almond, S.; Dash, J.; Curran, P.J.; Hill, R.A. Phenology of vegetation in southern england from envisat meris terrestrial chlorophyll index (MTCI) data. Int. J. Remote Sens. 2011, 32, 8421–8447. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Jiang, H.; Zhang, X.; Wang, Y. Characterizing spatial-temporal variations in vegetation phenology over the north-south transect of northeast asia based upon the MERIS terrestrial chlorophyll index. Terr. Atmos. Ocean. Sci. 2012, 23, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Jeganathan, C.; Dash, J.; Atkinson, P.M. Mapping the phenology of natural vegetation in India using a remote sensing-derived chlorophyll index. Int. J. Remote Sens. 2010, 31, 5777–5796. [Google Scholar] [CrossRef]
- Zurita-Milla, R.; Clevers, J.G.P.W.; Van Gijsel, J.A.E.; Schaepman, M.E. Using MERIS fused images for land-cover mapping and vegetation status assessment in heterogeneous landscapes. Int. J. Remote Sens. 2011, 32, 973–991. [Google Scholar] [CrossRef]
- Dash, J.; Mathur, A.; Foody, G.M.; Curran, P.J.; Chipman, J.W.; Lillesand, T.M. Land cover classification using multi-temporal MERIS vegetation indices. Int. J. Remote Sens. 2007, 28, 1137–1159. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Si, Y.; Schlerf, M.; Skidmore, A.K.; Shafique, M.; Iqbal, I.A. Estimation of grassland biomass and nitrogen using MERIS data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 196–204. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; Karssenberg, D.; Wassen, M.J.; Sardans, J.; Peñuelas, J.; De Jong, S.M. Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index. Biogeosciences 2018, 15, 2723–2742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Liu, L. The potential of the MERIS Terrestrial Chlorophyll Index for crop yield prediction. Remote Sens. Lett. 2014, 5, 733–742. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. Relationship between the MERIS vegetation indices and crop yield for the state of South Dakota, USA. In Proceedings of the European Space Agency, (Special Publication) ESA SP, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Chiwara, P.; Ogutu, B.O.; Dash, J.; Milton, E.J.; Ardö, J.; Saunders, M.; Nicolini, G. Estimating terrestrial gross primary productivity in water limited ecosystems across Africa using the Southampton Carbon Flux (SCARF) model. Sci. Total Environ. 2018, 630, 1472–1483. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.S.; Almond, S.; Dash, J.; Curran, P.J.; Hill, R.A.; Foody, G.M. Evaluation of envisat MERIS terrestrial chlorophyll index-based models for the estimation of terrestrial gross primary productivity. IEEE Geosci. Remote Sens. Lett. 2012, 9, 457–461. [Google Scholar] [CrossRef]
- Harris, A.; Dash, J. A new approach for estimating northern peatland gross primary productivity using a satellite-sensor-derived chlorophyll index. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Brown, L.A.; Dash, J.; Lidon, A.L.; Lopez-Baeza, E.; Dransfeld, S. Synergetic Exploitation of the Sentinel-2 Missions for Validating the Sentinel-3 Ocean and Land Color Instrument Terrestrial Chlorophyll Index over a Vineyard Dominated Mediterranean Environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2244–2251. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786. [Google Scholar] [CrossRef]
- Camacho, F.; Cernicharo, J.; Lacaze, R.; Baret, F.; Weiss, M. GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sens. Environ. 2013, 137, 310–329. [Google Scholar] [CrossRef]
- Martínez, B.; Camacho, F.; Verger, A.; García-Haro, F.J.; Gilabert, M.A. Intercomparison and quality assessment of MERIS, MODIS and SEVIRI FAPAR products over the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 463–476. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.; Knyazikhin, Y.; Myneni, R. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Garrigues, S.; Lacaze, R.; Baret, F.; Morisette, J.T.; Weiss, M.; Nickeson, J.E.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Bézy, J.-L.; Huot, J.-P.M.; Delwart, S.M.; Bourg, L.; Bessudo, R.; Delclaud, Y. Medium Resolution Imaging Spectrometer for Ocean Colour onboard ENVISAT. In Optical Payloads for Space Missions; John Wiley & Sons, Ltd.: New York, NY, USA, 2015; pp. 91–120. [Google Scholar]
- Nieke, J.; Mavrocordatos, C.; Donlon, C.; Berruti, B.; Garnier, T.; Riti, J.-B.; Delclaud, Y. Ocean and Land Color Imager on Sentinel-3. In Optical Payloads for Space Missions; John Wiley & Sons, Ltd.: New York, NY, USA, 2015; pp. 223–245. [Google Scholar]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Vincent, E.; Muguet, I. OLCI Level 2 Algorithm Theoretical Basis Document Instrumental Corrections; ACRI-ST: Sophia-Antipolis, France, 2010. [Google Scholar]
- Bourg, L. MERIS Level 2 Detailed Processing Model. ACRI-ST: Sophia Antipolis, France, 2011. [Google Scholar]
- Santer, R.; Lavender, S. OLCI Level 2 Algorithm Theoretical Basis Document Rayleigh Correction Over Land; ARGANS: Plymouth, UK, 2010. [Google Scholar]
- Miura, T. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- QA4EO Task Team. A Quality Assurance Framework for Earth Observation. In Principles; Simon & Schuster: New York, NY, USA, 2010; p. 19. Available online: http://qa4eo.org/docs/Guidelines_Framework_v3.0.pdf (accessed on 11 August 2020).
- Dash, J. Algorithm Theoretical Basis Document OLCI Terrestrial Chlorophyll Index (OTCI); University of Southampton: Southampton, UK, 2012. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- UK Multi-Mission Product Archive Facility; Infoterra, L.; Reese, H.; Joyce, S.; Olsson, H.; Curran, P.; Dash, J. MERIS Terrestrial Chlorophyll Index (MTCI) Level 3 composites: Global. NERC Earth Observation Data Centre. Available online: https://catalogue.ceda.ac.uk/uuid/70057c3172ea4c04b42bf48b3eda9870 (accessed on 15 November 2019).
- Curran, P.J.; Robert, S.; Airbus, H. Global Composites of the MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2007, 28, 3757–3758. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100m: Eepoch 2015: Globe. 2019. Available online: https://zenodo.org/record/3243509#.XzU_eegzZPY (accessed on 11 August 2020). [CrossRef]
- Bourg, L.; Smith, D.; Rouffi, F.; Henocq, C.; Bruniquel, J.; Cox, C.; Etxaluze, M.; Polehampton, E. S3MPC OPT Annual Performance Report-Year 2019; ACRI-ST: Sophia-Antipolis, France, 2020. [Google Scholar]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
Band Centre | OLCI SNR | MERIS SNR |
---|---|---|
681.25 | 1048 | 485 |
708.75 | 1148 | 531 |
753.75 | 861 | 373 |
Bit | Indicator | Value | Quality | Description | |
---|---|---|---|---|---|
8–7 | Bad data | 1 | 1 | Very good | ρred < 0.2; ρNIR > 0.1; (ρNIR-ρred) > 0.1 |
0 | 0 | Poor | ρred > 0.2; ρNIR < 0.1; (ρNIR-ρred) < 0.1 | ||
6–5 | View angle | 1 | 1 | Very good | VZA < 30°; SZA > 40° |
1 | 0 | Good | VZA 30°< 40°; SZA > 30° ≤ 40° | ||
0 | 1 | Fair | VZA ≥ 40° < 50°; SZA > 20° ≤ 30° | ||
0 | 0 | Poor | VZA ≥ 50°; SZA ≤ 20⁰ | ||
4–3 | Aerosol | 1 | 1 | Very good | AOT440 < 0.3 |
1 | 0 | Good | AOT440 0.3–0.7 | ||
0 | 1 | Fair | AOT440 0.7–1.4 | ||
0 | 0 | Poor | AOT440 > 1.4 | ||
2–1 | Soil | 1 | 1 | Very good | ≥0.9 Land cover non-soil |
1 | 0 | Good | ≥0.9 Land cover non-soil | ||
0 | 1 | Fair | <0.9 Land cover soil | ||
0 | 0 | Poor | <0.9 Land cover soil |
Product | Quality Flag | Description |
---|---|---|
LQSF.CLOUD | Indicates cloudy pixel. | |
LQSF.CLOUD_AMBIGUOUS | Possibility of cloudy pixel. | |
OTCI | LQSF.CLOUD_MARGIN | A margin of 2 pixels around pixels identified as CLOUD & CLOUD_AMBIGUOUS. |
LQSF.SNOW_ICE | Potential presence of ice or snow. | |
LQSF.OTCI_FAIL | Denotes that OTCI inputs or outputs are out of range or that Rayleigh correction failed. | |
L2_FLAGS.CLOUD | Pixel classification algorithm retrieved a cloudy pixel. | |
MTCI | L2_FLAGS.WATER | Raised when inland water is detected. |
LS_FLAGS.PCD_17 | Atmospheric correction failed or that MTCI inputs or outputs are outside the expected range. |
No | Site Acronym | Land Cover | Lat | Lon | MTCI vs. OTCI | |||
---|---|---|---|---|---|---|---|---|
n | R2 | NRMSD | Bias | |||||
1 | AU-Cumberland | EBF | −33.62 | 150.72 | 12 | 0.91 | 0.02 | 0 |
2 | AU-Great-Western | DBF | −30.19 | 120.65 | 12 | 0.96 | 0.02 | 0.12 |
3 | AU-Litchfield | EBF | −13.18 | 130.79 | 12 | 0.92 | 0.02 | −0.01 |
4 | AU-Robson-Creek | EBF | −17.12 | 145.63 | 12 | 0.96 | 0.02 | −0.04 |
5 | IT-Tra | Cultivated | 37.65 | 12.87 | 12 | 0.74 | 0.02 | −0.07 |
6 | SP-Ali | Cultivated | 38.45 | −1.07 | 12 | 0.94 | 0.02 | 0.06 |
7 | US-Moab-Site | Non-forest | 38.25 | −109.39 | 12 | 0.56 | 0.02 | 0.05 |
8 | US-Talladega | ENF | 32.95 | −87.39 | 12 | 0.98 | 0.02 | −0.14 |
9 | AU-Wombat | EBF | −37.42 | 144.09 | 12 | 0.91 | 0.03 | 0.2 |
10 | FR-Guayaflux | EBF | 5.28 | −52.93 | 12 | 0.73 | 0.03 | −0.18 |
11 | FR-Hesse | DBF | 48.67 | 7.07 | 12 | 0.99 | 0.03 | 0.01 |
12 | US-Harvard | DBF | 42.54 | −72.17 | 12 | 0.99 | 0.03 | −0.12 |
13 | US-Mountain-Lake | DBF | 37.38 | −80.53 | 12 | 0.99 | 0.03 | −0.22 |
14 | AU-Calperum | Non-forest | −34.00 | 140.59 | 12 | 0.46 | 0.04 | 0.1 |
15 | AU-Cape-Tribulation | EBF | −16.11 | 145.38 | 12 | 0.86 | 0.04 | −0.06 |
16 | AU-Rushworth | DBF | −36.75 | 144.97 | 12 | 0.84 | 0.04 | 0.22 |
17 | AU-Tumbarumba | EBF | −35.66 | 148.15 | 12 | 0.91 | 0.04 | 0.4 |
18 | FR-Puechabon | ENF | 43.74 | 3.60 | 12 | 0.76 | 0.04 | −0.07 |
19 | IT-Cat | Cultivated | 37.28 | 14.88 | 12 | 0.61 | 0.04 | −0.36 |
20 | IT-Lison | Cultivated | 45.74 | 12.75 | 12 | 0.97 | 0.04 | −0.04 |
21 | US-Central-Plains | Non-forest | 40.82 | −104.75 | 12 | 0.69 | 0.04 | −0.07 |
22 | US-Oak-Rige | DBF | 35.96 | −84.28 | 12 | 0.99 | 0.04 | −0.04 |
23 | AU-Watts-Creek | EBF | −37.69 | 145.69 | 12 | 0.7 | 0.05 | 0.12 |
24 | CR-Santa-Rosa | EBF | 10.84 | −85.62 | 12 | 0.97 | 0.05 | 0.16 |
25 | FR-Montiers | DBF | 48.54 | 5.31 | 12 | 0.99 | 0.05 | −0.09 |
26 | UK-Wytham-Woods | DBF | 51.77 | −1.34 | 12 | 0.97 | 0.05 | 0.08 |
27 | US-Bartlett | DBF | 44.06 | −71.29 | 12 | 0.94 | 0.05 | −0.03 |
28 | AU-Warra-Tall | EBF | −43.10 | 146.65 | 12 | 0.7 | 0.06 | −0.03 |
29 | BR-Mata-Seca | Non-forest | −14.88 | −43.97 | 12 | 0.96 | 0.06 | −0.09 |
30 | IT-Collelongo | DBF | 41.85 | 13.59 | 12 | 0.98 | 0.06 | −0.01 |
31 | SE-Dahra | Cultivated | 15.40 | −15.43 | 12 | 0.6 | 0.06 | −0.04 |
32 | AU-Zigzag-Creek | EBF | −37.47 | 148.34 | 12 | 0.63 | 0.07 | 0.3 |
33 | FR-Estrees-Mons | Cultivated | 49.87 | 3.02 | 12 | 0.94 | 0.08 | 0.06 |
34 | DE-Selhausen | Cultivated | 50.87 | 6.45 | 12 | 0.87 | 0.09 | −0.01 |
35 | NE-Loobos | ENF | 52.17 | 5.74 | 12 | 0.55 | 0.09 | 0.07 |
36 | DE-Geb | Cultivated | 51.10 | 10.91 | 12 | 0.89 | 0.1 | −0.1 |
37 | FR-Aurade | Cultivated | 43.55 | 1.11 | 12 | 0.78 | 0.12 | 0.09 |
Hemisphere | Cover | Winter Dec, Jan, Feb | Spring Mar, Apr, May | Summer Jun, Jul, Aug | Autumn Sep, Oct, Nov | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | R2 | NRMSD | Bias | N | R2 | NRMSD | Bias | N | R2 | NRMSD | Bias | N | R2 | NRMSD | Bias | ||
ENF | 188,711 | 0.66 | 0.10 | 0.10 | 280,023 | 0.89 | 0.09 | −0.03 | 281,429 | 0.91 | 0.07 | −0.06 | 281,443 | 0.91 | 0.08 | 0.01 | |
EBF | 159,333 | 0.78 | 0.08 | 0.05 | 159,295 | 0.81 | 0.07 | −0.03 | 159,242 | 0.72 | 0.06 | −0.10 | 159,357 | 0.72 | 0.07 | −0.05 | |
Northern | DNF | 60,637 | 0.69 | 0.13 | 0.10 | 152,654 | 0.69 | 0.08 | 0.00 | 152,682 | 0.76 | 0.07 | 0.00 | 152,681 | 0.71 | 0.08 | 0.01 |
DBF | 310,958 | 0.75 | 0.11 | 0.09 | 378,122 | 0.85 | 0.07 | 0.01 | 379,087 | 0.71 | 0.07 | −0.01 | 379,095 | 0.89 | 0.07 | 0.02 | |
Non-forest | 799,813 | 0.71 | 0.09 | 0.08 | 1,124,841 | 0.81 | 0.08 | 0.01 | 1,155,969 | 0.85 | 0.08 | −0.05 | 1,156,648 | 0.87 | 0.06 | 0.02 | |
Cultivated | 797,428 | 0.74 | 0.12 | 0.12 | 919,764 | 0.83 | 0.10 | 0.04 | 920,133 | 0.83 | 0.10 | 0.00 | 920,388 | 0.82 | 0.09 | 0.05 | |
EBF | 243,118 | 0.81 | 0.06 | −0.18 | 243,146 | 0.71 | 0.07 | −0.08 | 242,667 | 0.77 | 0.08 | −0.03 | 243,159 | 0.84 | 0.06 | −0.11 | |
Southern | DBF | 169,079 | 0.94 | 0.05 | −0.14 | 169,079 | 0.88 | 0.06 | −0.02 | 168,556 | 0.83 | 0.07 | 0.02 | 169,078 | 0.88 | 0.07 | −0.06 |
Non-forest | 708,946 | 0.90 | 0.08 | −0.09 | 709,024 | 0.88 | 0.09 | −0.02 | 704,668 | 0.84 | 0.09 | 0.01 | 708,718 | 0.90 | 0.07 | −0.03 | |
Cultivated | 131,860 | 0.84 | 0.11 | 0.00 | 131,866 | 0.74 | 0.14 | 0.09 | 131,862 | 0.73 | 0.11 | 0.05 | 131,869 | 0.78 | 0.08 | −0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor-Guzman, J.; Brown, L.; Morris, H.; Bourg, L.; Goryl, P.; Dransfeld, S.; Dash, J. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sens. 2020, 12, 2652. https://doi.org/10.3390/rs12162652
Pastor-Guzman J, Brown L, Morris H, Bourg L, Goryl P, Dransfeld S, Dash J. The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sensing. 2020; 12(16):2652. https://doi.org/10.3390/rs12162652
Chicago/Turabian StylePastor-Guzman, J., L. Brown, H. Morris, L. Bourg, P. Goryl, S. Dransfeld, and J. Dash. 2020. "The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive" Remote Sensing 12, no. 16: 2652. https://doi.org/10.3390/rs12162652
APA StylePastor-Guzman, J., Brown, L., Morris, H., Bourg, L., Goryl, P., Dransfeld, S., & Dash, J. (2020). The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm Improvements, Spatiotemporal Consistency and Continuity with the MERIS Archive. Remote Sensing, 12(16), 2652. https://doi.org/10.3390/rs12162652