Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future
<p>Location of the study area.</p> "> Figure 2
<p>LC change trends in the study area, 1996–2016.</p> "> Figure 3
<p>LC map of Lumbini Province (<b>a</b>) 1996; (<b>b</b>) 2006; (<b>c</b>) 2016.</p> "> Figure 4
<p>Gains and losses of LC classes between 1996 and 2006 (area in km<sup>2</sup>) based on the total LC values.</p> "> Figure 5
<p>Gains and losses of LC classes between 2006 and 2016 (area in km<sup>2</sup>) based on the total LC values.</p> "> Figure 6
<p>Trend of LULC changes in the study area from 2016 to 2036.</p> "> Figure 7
<p>LC-Projected map of Lumbini Province: (<b>a</b>) 2016; (<b>b</b>) 2026; (<b>c</b>) 2036.</p> "> Figure A1
<p>Map 1: Protected area, Sub-Metropolitan City, Municipality and Rural Municipality of Lumbini Province.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data
2.3. Simulation of LC Change
2.4. Land-Cover Modeling and Validation
2.5. Accuracy Assessment
3. Results
3.1. LC Dynamics
3.2. Spatial Transitions
3.3. CA–Markov Model
3.3.1. Analysis of Transition Matrix
3.3.2. Analysis of the Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
LULC. | Other Area. | Cultivated. | Forest. | Shrub. | Barren. | Sand. | Water. | Grass. | Ice & Snow. | |
---|---|---|---|---|---|---|---|---|---|---|
1996–2006 | Other area. | 0.9357 | 0.0122 | 0.0424 | 0.0007 | 0.0002 | 0.0078 | 0.0010 | 0.0000 | 0.0000 |
Cultivated | 0.0189 | 0.9364 | 0.0044 | 0.0224 | 0.0000 | 0.0122 | 0.0054 | 0.0003 | 0.0000 | |
Forest | 0.0005 | 0.0035 | 0.9368 | 0.0279 | 0.0003 | 0.0157 | 0.0140 | 0.0013 | 0.0000 | |
Shrub | 0.0037 | 0.0156 | 0.0863 | 0.8561 | 0.0003 | 0.0326 | 0.0008 | 0.0046 | 0.0000 | |
Barren | 0.0026 | 0.0003 | 0.0018 | 0.0129 | 0.8377 | 0.0090 | 0.0016 | 0.1287 | 0.0055 | |
Sand | 0.0046 | 0.0555 | 0.0120 | 0.0042 | 0.0078 | 0.8260 | 0.0778 | 0.0121 | 0.0000 | |
Water | 0.0040 | 0.0610 | 0.0012 | 0.0029 | 0.0050 | 0.1175 | 0.8050 | 0.0033 | 0.0000 | |
Grass | 0.0006 | 0.0032 | 0.0020 | 0.2237 | 0.0088 | 0.0690 | 0.0083 | 0.6844 | 0.0001 | |
Ice & Snow | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.3183 | 0.0020 | 0.0013 | 0.0191 | 0.6593 | |
2006–2016 | Other area | 0.9500 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 | 0.0063 |
Cultivated | 0.0383 | 0.9202 | 0.0038 | 0.0154 | 0.0006 | 0.0028 | 0.0070 | 0.0118 | 0.0000 | |
Forest | 0.0036 | 0.0281 | 0.9333 | 0.0179 | 0.0003 | 0.0018 | 0.0029 | 0.0121 | 0.0000 | |
Shrub | 0.0039 | 0.0228 | 0.1575 | 0.7025 | 0.0044 | 0.0036 | 0.0053 | 0.1000 | 0.0001 | |
Barren | 0.0064 | 0.0046 | 0.0028 | 0.0402 | 0.8041 | 0.0252 | 0.0032 | 0.0876 | 0.0259 | |
Sand | 0.0120 | 0.0743 | 0.0903 | 0.0190 | 0.0022 | 0.7215 | 0.0562 | 0.0242 | 0.0004 | |
Water | 0.0051 | 0.0388 | 0.0350 | 0.0015 | 0.0005 | 0.1593 | 0.7518 | 0.0081 | 0.0000 | |
Grass | 0.0022 | 0.0188 | 0.0777 | 0.0140 | 0.0472 | 0.0088 | 0.0034 | 0.8280 | 0.0000 | |
Ice & Snow | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.1960 | 0.0006 | 0.0003 | 0.0922 | 0.7110 | |
1996–2016 | Other area | 0.9459 | 0.0165 | 0.0151 | 0.0040 | 0.0001 | 0.0081 | 0.0102 | 0.0000 | 0.0000 |
Cultivated | 0.0443 | 0.9149 | 0.0039 | 0.0161 | 0.0005 | 0.0045 | 0.0053 | 0.0104 | 0.0000 | |
Forest | 0.0034 | 0.0245 | 0.9307 | 0.0188 | 0.0004 | 0.0018 | 0.0102 | 0.0102 | 0.0000 | |
Shrub | 0.0077 | 0.0187 | 0.1942 | 0.7278 | 0.0043 | 0.0211 | 0.0062 | 0.0198 | 0.0001 | |
Barren | 0.0091 | 0.0050 | 0.0032 | 0.0456 | 0.7460 | 0.0290 | 0.0040 | 0.1503 | 0.0077 | |
Sand | 0.0120 | 0.0497 | 0.0429 | 0.0069 | 0.0072 | 0.7580 | 0.1004 | 0.0226 | 0.0002 | |
Water | 0.0089 | 0.0540 | 0.0068 | 0.0034 | 0.0034 | 0.1878 | 0.7246 | 0.0111 | 0.0000 | |
Grass | 0.0029 | 0.0154 | 0.0533 | 0.0425 | 0.0179 | 0.0601 | 0.0161 | 0.7918 | 0.0000 | |
Ice & Snow | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.2789 | 0.0031 | 0.0017 | 0.0795 | 0.6368 |
Appendix B
References
- de Jong, W.; Galloway, G.; Pierce Colfer, C.J.; Katila, P.; Winkel, G.; Pacheco, P. Synergies, Trade-Offs and Contextual Conditions Shaping Impacts of the Sustainable Development Goals on Forests and People. In Sustainable Development Goals: Their Impacts on Forests and People; Pierce Colfer, C.J., Winkel, G., Galloway, G., Pacheco, P., Katila, P., de Jong, W., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 577–600. [Google Scholar]
- FAO. The State of the World’s Forests 2018—Forest Pathways to Sustainable Development; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- UNDESA. The Global Forest Goals Report 2021, Realizing the Importance of Forests in A Changing World; United Nation Department of Economic and Social Affairs: New York, NY, USA, 2021. [Google Scholar]
- Löf, M.; Madsen, P.; Metslaid, M.; Witzell, J.; Jacobs, D.F. Restoring forests: Regeneration and ecosystem function for the future. New For. 2019, 50, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Noulèkoun, F.; Mensah, S.; Birhane, E.; Son, Y.; Khamzina, A. Forest Landscape Restoration under Global Environmental Change: Challenges and a Future Roadmap. Forests 2021, 12, 276. [Google Scholar] [CrossRef]
- UN. The 2030 Agenda for Sustainable Development- SDGs 15; United Nations: New York, NY, USA, 2015. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Dave, R.; Saint-Laurent, C.; Murray, L.; Antunes Daldegan, G.; Brouwer, R.; de Mattos Scaramuzza, C.A.; Raes, L.; Simonit, S.; Catapan, M.; García Contreras, G.; et al. Second Bonn Challenge Progress Report. Application of the Barometer in 2018; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- UN. United Nations General Assembly, United Nations Decade on Ecosystem Restoration 2021–2030; United Nations: New York, NY, USA, 2019. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020, Key Findings; Food and Agriculture Organization: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Borah, B.; Bhattacharjee, A.; Ishwar, N. Bonn Challenge and India: Progress on Restoration Efforts across States and Landscapes; IUCN: Gland, Switzerland, 2018. [Google Scholar]
- Choi, G.; Jeong, Y.; Kim, S.-I. Success Factors of National-Scale Forest Restorations in South Korea, Vietnam, and China. Sustainability 2019, 11, 3488. [Google Scholar] [CrossRef] [Green Version]
- Van Oosten, C.; Gunarso, P.; Koesoetjahjo, I.; Wiersum, F. Governing Forest Landscape Restoration: Cases from Indonesia. Forests 2014, 5, 1143–1162. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed]
- Djenontin, I.N.S.; Zulu, L.C.; Etongo, D. Ultimately, what is Forest Landscape Restoration in Practice? Embodiments in Sub-Saharan Africa and Implications for Future Design. Environ. Manag. 2020, 1–23. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.; Liu, J.; Long, H. The forest restoration frontier. Ambio 2021, 1–14. [Google Scholar] [CrossRef]
- Oosthoek, K.J.; Hölzl, R. (Eds.) Managing Northern Europe’s Forests, Histories from the Age of Improvement to the Age of Ecology, 1st ed.; Berghahn Books: New York, NY, USA, 2018; Volume 12, pp. i–iv. [Google Scholar]
- Oli, B.N.; Shrestha, K. Carbon status in forests of Nepal: An overview. For. Trees Livelihoods 2009, 8, 62–66. [Google Scholar]
- FAO. Global Forest Resources Assessment Country Reports, Nepal; Forestry Department Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- DFRS. State of Nepal’s Forests; DFRS: Kathmandu, Nepal, 2015. [Google Scholar]
- Sudhakar Reddy, C.; Vazeed Pasha, S.; Satish, K.V.; Saranya, K.R.L.; Jha, C.S.; Krishna Murthy, Y.V.N. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodivers. Conserv. 2018, 27, 91–107. [Google Scholar] [CrossRef]
- MSFP. Scientific Forest Management Initiatives in Nepal; Multi-Stakeholder Forestry Program, Government of Nepal, Singhadurbar: Kathmandu, Nepal, 2016. [Google Scholar]
- Agrawal, A.; Chhatre, A. Explaining success on the commons: Community forest governance in the Indian Himalaya. World Dev. 2006, 34, 149–166. [Google Scholar] [CrossRef]
- Niraula, R.R.; Gilani, H.; Pokharel, B.K.; Qamer, F.M. Measuring impacts of community forestry program through repeat photography and satellite remote sensing in the Dolakha district of Nepal. J. Environ. Manag. 2013, 126, 20–29. [Google Scholar] [CrossRef]
- Kanel, K.R.; Niraula, D.R. Can rural livelihood be improved in Nepal, through community forestry? Banko Janakari 2004, 14, 19–26. [Google Scholar] [CrossRef] [Green Version]
- GoN. Forest Act 1993; Government of Nepal (His Majesty’s): Kathmandu, Nepal, 1993. [Google Scholar]
- GoN. Forest Regulation 1995; Government of Nepal (His Majesty’s): Kathmandu, Nepal, 1995. [Google Scholar]
- Paudel, N.; Adhikary, A.; Mbairamadji, J.; Nguyen, T. Small-Scale Forest Enterprise Development in Nepal: Overview, Issues and Challenges; FAO: Rome, Italy, 2018. [Google Scholar]
- Rizvi, A.R.; Baig, S.; Barrow, E.; Kumar, C. Synergies between Climate Mitigation and Adaptation in Forest Landscape Restoration; IUCN: Gland, Switzerland, 2015. [Google Scholar]
- Jacobs, D.F.; Oliet, J.A.; Aronson, J.; Bolte, A.; Bullock, J.M.; Donoso, P.J.; Landhäusser, S.M.; Madsen, P.; Peng, S.; Rey-Benayas, J.M.; et al. Restoring forests: What constitutes success in the twenty-first century? New For. 2015, 46, 601–614. [Google Scholar] [CrossRef]
- Milder, J.C.; Scherr, S.J.; Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 2010, 15, 4. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Nepal Emission Reductions Program in the Terai Arc Landscape (p165375), Report no: 156033-np; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- GoN. Constitution of Nepal, 2015; Government of Nepal, Singha Durbar: Kathmandu, Nepal, 2015. [Google Scholar]
- Chaudhary, R.; Uprety, Y.; Rimal, S. Deforestation in Nepal; Elsevier: Amsterdam, The Netherlands, 2016; pp. 335–372. [Google Scholar]
- World Bank. Valuing Green Infrastructure, Case Study of Kali Gandaki Watershed, Nepal; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Kharal, D.K.; Ddhungana, M. Forest Coverage and Biodiversity in Nepal; Dhakal, M., Lamichhane, D., Ghimire, M.D., Poudyal, A., Uprety, Y., Svich, T., Pandey, M., Eds.; Ministry of Forest and Environment (MoFE), Singhadurbar: Kathmandu, Nepal, 2018. [Google Scholar]
- Oli, B.N.; Dhakal, M. Policy and Institutional Reform to Biodiversity Conservation in Nepal; Dhakal, M., Lamichhane, D., Ghimire, M.D., Poudyal, A., Uprety, Y., Svich, T., Pandey, M., Eds.; Ministry of Forest and Environment (MoFE), Singhadurbar: Kathmandu, Nepal, 2018. [Google Scholar]
- Aryal, K.; Rijal, A.; Maraseni, T.; Parajuli, M. Why is the Private Forest Program Stunted in Nepal? Environ. Manag. 2020, 66, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Garrard, R.; Kohler, T.; Price, M.F.; Byers, A.C.; Sherpa, A.R.; Maharjan, G.R. Land Use and Land Cover Change in Sagarmatha National Park, a World Heritage Site in the Himalayas of Eastern Nepal. Mt. Res. Dev. 2016, 36, 299–310. [Google Scholar] [CrossRef]
- Wang, S.W.; Gebru, B.M.; Lamchin, M.; Kayastha, R.B.; Lee, W.-K. Land Use and Land Cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Tripathi, S.; Subedi, R.; Adhikari, H. Forest Cover Change Pattern after the Intervention of Community Forestry Management System in the Mid-Hill of Nepal: A Case Study. Remote Sens. 2020, 12, 2756. [Google Scholar] [CrossRef]
- Paudel, B.; Gao, J.; Zhang, Y.; Wu, X.; Li, S.; Yan, J. Changes in Cropland Status and Their Driving Factors in the Koshi River Basin of the Central Himalayas, Nepal. Sustainability 2016, 8, 933. [Google Scholar] [CrossRef] [Green Version]
- Rijal, S.; Rimal, B.; Acharya, R.P.; Stork, N.E. Land use/land cover change and ecosystem services in the Bagmati River Basin, Nepal. Environ. Monit. Assess. 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Tuladhar, D.; Dewan, A.; Kuhn, M.; Corner, R.J. The Influence of Rainfall and Land Use/Land Cover Changes on River Discharge Variability in the Mountainous Catchment of the Bagmati River. Water 2019, 11, 2444. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.K.; Basnet, L. Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas. Sustainability 2018, 10, 3052. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, H.; Voigt, W. Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecol. Inform. 2016, 32, 145–155. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Oduro Appiah, J.; Agyemang-Duah, W.; Sobeng, A.K.; Kpienbaareh, D. Analysing patterns of forest cover change and related land uses in the Tano-Offin forest reserve in Ghana: Implications for forest policy and land management. Trees For. People 2021, 5, 100105. [Google Scholar] [CrossRef]
- Lister, A.J.; Andersen, H.; Frescino, T.; Gatziolis, D.; Healey, S.; Heath, L.S.; Liknes, G.C.; McRoberts, R.; Moisen, G.G.; Nelson, M.; et al. Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory. Forests 2020, 11, 1364. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Dewan, A.M.; Kabir, M.H.; Nahar, K.; Rahman, M.Z. Urbanisation and environmental degradation in Dhaka Metropolitan Area of Bangladesh. Int. J. Environ. Sustain. Dev. 2012, 11, 118–147. [Google Scholar] [CrossRef]
- Eastman, J.; Van Fossen, M.E.; Solo’rzano, L.A. Transition Potential Modeling for Land-Cover Change, 1st ed.; ESRI Press: New York, NY, USA, 2005. [Google Scholar]
- Sloan, S.; Zamora Pereira, J.C.; Labbate, G.; Asner, G.P.; Imbach, P. The cost and distribution of forest conservation for national emissions reductions. Glob. Environ. Chang. 2018, 53, 39–51. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Yin, D.; Liu, Z. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the beijing-tianjin-hebei urban agglomeration, China. Science 2018, 96, 559–571. [Google Scholar] [CrossRef]
- Rijal, S.; Rimal, B.; Stork, N.; Sharma, H.P. Quantifying the drivers of urban expansion in Nepal. Environ. Monit. Assess. 2020, 192, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Kargel, J.; Regmi, D.; Rupper, S.; Maurer, J.; Karki, A. Shrinkage of Nepal’s Second Largest Lake (Phewa Tal) Due to Watershed Degradation and Increased Sediment Influx. Remote Sens. 2019, 11, 444. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M. Mangrove conversion and aquaculture development in Vietnam: A remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Chang. 2007, 17, 486–500. [Google Scholar] [CrossRef]
- Rodrigues, H.; Soares-Filho, B. A Short Presentation of Dinamica EGO. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 493–498. [Google Scholar]
- Clarke, K.C. Land Use Change Modeling with SLEUTH: Improving Calibration with a Genetic Algorithm. In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 139–161. [Google Scholar]
- Theobald, D. Landscape Patterns of Exurban Growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 1–35. Available online: http://www.ecologyandsociety.org/vol10/iss1/art32/ (accessed on 30 August 2021). [CrossRef]
- Verburg, P.H.; Veldkamp, A. Projecting land use transitions at forest fringes in the Philippines at two spatial scales. Landsc. Ecol. 2004, 19, 77–98. [Google Scholar] [CrossRef]
- Sloan, S.; Pelletier, J. How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Glob. Environ. 2012, 22, 440–453. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Wood, N.J.; Soulard, C.E.; Wilson, T.S. Projecting community changes in hazard exposure to support long-term risk reduction: A case study of tsunami hazards in the U.S. Pacific Northwest. Int. J. Disaster Risk Reduct. 2017, 22, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, R.; Zheng, X.Q. Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomat. Nat. Hazards Risk 2016, 7, 918–932. [Google Scholar] [CrossRef] [Green Version]
- Keshtkar, H.; Voigt, W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Syst. Environ. 2016, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Chang, N.-B.; Joyce, J.; Chen, A.S.; Savic, D.A.; Djordjevic, S.; Fu, G. Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Comput. Environ. Urban. Syst. 2017, 68, 121–132. [Google Scholar] [CrossRef]
- Id, M. Simulation and Prediction of Land Surface Temperature (LST) Dynamics within Ikom City in Nigeria Using Artificial Neural Network (ANN). J. Remote Sens. GIS 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Puertas, O.L.; Henríquez, C.; Meza, F.J. Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
- Pahlavani, P.; Askarian Omran, H.; Bigdeli, B. A multiple land use change model based on artificial neural network, markov chain, and multi objective land allocation. Earth Obs. Geomat. Eng. 2017, 1, 82–99. [Google Scholar]
- Tang, J.; Di, L. Past and Future Trajectories of Farmland Loss Due to Rapid Urbanization Using Landsat Imagery and the Markov-CA Model: A Case Study of Delhi, India. Remote Sens. 2019, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant. Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Storey, J.; Scaramuzza, P.; Schmidt, G. Landsat 7 Scan Line Corrector-Off Gap-Filled Product Development. In Proceedings of the Pecora 16 “Global Priorities in Land Remote Sensing”, Sioux Falls, SD, USA, 23–27 October 2005. [Google Scholar]
- Zhang, C.; Li, W.; Travis, D. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach. Int. J. Remote Sens. 2007, 28, 5103–5122. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, Q.; Zeng, C.; Li, X.; Wei, Y. Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4274–4288. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Liu, D.; Chen, J. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote. Sens. Environ. 2012, 124, 49–60. [Google Scholar] [CrossRef]
- GoN. Topographical Map; Survey Department of Nepal: Kathmanu, Nepal, 1996. [Google Scholar]
- Rimal, B.; Zhang, L.; Stork, N.; Sloan, S.; Rijal, S. Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016. Sustainability 2018, 10, 1341. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- Steiner, D. Automation in photo interpretation. Geoforum 1970, 1, 75–88. [Google Scholar] [CrossRef]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; The Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Rimal, B.; Rijal, S.; Kunwar, R. Comparing Support Vector Machines and Maximum Likelihood Classifiers for Mapping of Urbanization. J. Indian Soc. Remote Sens. 2019, 48, 71–79. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2018, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Rimal, B.; Keshtkar, H.; Sharma, R.; Stork, N.; Rijal, S.; Kunwar, R. Simulating urban expansion in a rapidly changing landscape in eastern Tarai, Nepal. Environ. Monit. Assess. 2019, 191, 1–19. [Google Scholar] [CrossRef]
- Niya, A.K.; Huang, J.; Kazemzadeh-Zow, A.; Karimi, H.; Keshtkar, H.; Naimi, B. Comparison of three hybrid models to simulate land use changes: A case study in Qeshm Island, Iran. Environ. Monit. Assess. 2020, 192, 1–19. [Google Scholar] [CrossRef]
- Santé, I.; García, A.; Miranda, D.; Crecente Maseda, R. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landsc. Urban. Plan. 2010, 96, 108–122. [Google Scholar] [CrossRef]
- Andaryani, S.; Sloan, S.; Nourani, V.; Keshtkar, H. The utility of a hybrid GEOMOD-Markov Chain model of land-use change in the context of highly water-demanding agriculture in a semi-arid region. Ecol. Inform. 2021, 64, 101332. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and Modeling of Urban Land Cover Change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef] [Green Version]
- Kourosh Niya, A.; Huang, J.; Karimi, H.; Keshtkar, H.; Naimi, B. Use of Intensity Analysis to Characterize Land Use/Cover Change in the Biggest Island of Persian Gulf, Qeshm Island, Iran. Sustainability 2019, 11, 4396. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Processing: A Remote Sensing Perspective; Prentice-Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Sexton, J.O.; Song, X.-P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, D.; Moran, E.; Dutra, L.; Calvi, M.; de Oliveira, M. Examining Spatial Distribution and Dynamic Change of Urban Land Covers in the Brazilian Amazon Using Multitemporal Multisensor High Spatial Resolution Satellite Imagery. Remote Sens. 2017, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Neupane, P.; Dhakal, A. Is the contribution of community forest users financially efficient? A household level benefit-cost analysis of community forest management in Nepal. Int. J. Commons 2016, 10, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Tamrakar, P.R.; Mohans, B. Forest Restoration at Landscape Level in Nepal; Asia Pacific Forestry Commission: Kathmandu, Nepal, 2013. [Google Scholar]
- Thapa, K.; Wikramanayake, E.; Malla, S.; Acharya, K.P.; Lamichhane, B.R.; Subedi, N.; Pokharel, C.P.; Thapa, G.J.; Dhakal, M.; Bista, A.; et al. Tigers in the Terai: Strong evidence for meta-population dynamics contributing to tiger recovery and conservation in the Terai Arc Landscape. PLoS ONE 2017, 12, e0177548. [Google Scholar] [CrossRef]
- Jaquet, S.; Shrestha, G.; Kohler, T.; Schwilch, G. The Effects of Migration on Livelihoods, Land Management, and Vulnerability to Natural Disasters in the Harpan Watershed in Western Nepal. Mt. Res. Dev. 2016, 36, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.; Conway, D. The Environment. In Contemporary Environmental Problems in Nepal-Geographic Perspective; Springer Nature: Basingstoke, UK, 2021; pp. 115–199. [Google Scholar] [CrossRef]
- Pokharel, B.K.; Byrne, S. Climate Change Mitigation and Adaptation Strategies in Nepal’s Forest Sector: How Can Rural Communities Benefit? Rights and Resources Initiative: Washington, DC, USA, 2009. [Google Scholar]
- DFRS. Terai Forests of Nepal. Forest. Resource Assessment Nepal Project; Department of Forest Research and Survey: Kathmandu, Nepal, 2014. [Google Scholar]
- Kandel, P.; Chapagain, P.S.; Sharma, L.N.; Vetaas, O.R. Consumption Patterns of Fuelwood in Rural Households of Dolakha District, Nepal: Reflections from Community Forest User Groups. Small-Scale For. 2016, 15, 481–495. [Google Scholar] [CrossRef]
- Bhandari, R.; Pandit, S. Electricity as a Cooking Means in Nepal—A Modelling Tool Approach. Sustainability 2018, 10, 2841. [Google Scholar] [CrossRef] [Green Version]
- Dhungana, S.P. REDD+ and Biodiversity Conservation; Dhakal, M., Lamichhane, D., Ghimire, M.D., Poudyal, A., Uprety, Y., Svich, T., Pandey, M., Eds.; Ministry of Forest and Environment (MoFE), Singhadurbar: Kathmandu, Nepal, 2018. [Google Scholar]
- Baral, S.; Vacik, H. What Governs Tree Harvesting in Community Forestry—Regulatory Instruments or Forest Bureaucrats’ Discretion? Forests 2018, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- REED. Preparation of Land Use Plans of Municipalities in and around the Emission Reduction Program Area: Cluster-2; REED: Babarmahal, Kathmandu, 2021. [Google Scholar]
- MoFSC. Nepal REDD+ Strategy, Part 1: Operational Summary; Ministry of Forest and Soil Conservation (MoFSC): Kathmandu, Nepal, 2015. [Google Scholar]
- Upreti, B.C.; Wollenberg, E.K.; Edmunds, D.; Buck, L.E.; Fox, J.; Brodt, S.B. Beyond Rhetorical Success: Advancing the Potential for the Community Forestry Programme in Nepal to Address Equity Concerns. In Social Learning in Community Forests; CIFOR: Bogor, Indonesia, 2001. [Google Scholar]
- Banjade, M. Community Forestry and Local Development: Experiences from the Koshi Hills of Nepal. J. For. Livelihoods 2009, 8, 78–92. [Google Scholar] [CrossRef]
- Rimal, B.; Rijal, S.; Stork, N.; Keshtkar, H.; Zhang, L. Forest restoration and support for sustainable ecosystems in the Gandaki Basin, Nepal. Environ. Monit. Assess. 2021, 193, 563. [Google Scholar] [CrossRef] [PubMed]
- Baral, P.; Wen, Y.; Urriola, N.N. Forest Cover Changes and Trajectories in a Typical Middle Mountain Watershed of Western Nepal. Land 2018, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Paudyal, K.; Baral, H.; Bhandari, S.P.; Bhandari, A.; Keenan, R.J. Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosystem Services 2019, 36, 100895. [Google Scholar] [CrossRef]
- Ahammad, R.; Stacey, N.; Sunderland, T. Analysis of forest-related policies for supporting ecosystem services-based forest management in Bangladesh. Ecosyst. Serv. 2021, 48, 101235. [Google Scholar] [CrossRef]
Path/Row | 1996 (Landsat 5 TM) | 2006 (Landsat 5 TM and ETM +) | 2016 (Landsat 8 OLI) |
---|---|---|---|
142/041 | 10-November | 5-October TM | 1-November |
143/040/41 | 17-November | 2-March TM | 8-November |
144/040 | 10-December | 27-October-ETM+ (SLC, OFF) | 30-October |
LULC Types | Description |
---|---|
Cultivated land | Orchards, wet and dry crop lands |
Forest | Evergreen broad leaf forest, deciduous forest, temperate forest, low-density sparse forest, degraded forest, mix of trees, and other natural covers |
Shrub | Mix of short trees, other natural covers, and highly degraded forest |
Barren land | Cliffs/small landslides, bare rocks, other unused land |
Sand | sandy areas, river banks, other areas |
Water | Reservoir, river, lake/pond, canal, and swamp areas |
Grass | Mainly grass fields (dense coverage grass, moderate coverage grass, and low coverage grass) |
Ice and snow cover | Perpetual/temporary snow cover, perpetual ice/glacier |
Other Areas | Airports, public service areas (e.g., school, college, hospital, and occupied areas), industrial areas, construction areas, residential areas (urban and rural settlements), commercial areas, road networks, and other areas |
Factors | Suitability | Control Points | Functions | Weights |
---|---|---|---|---|
Distance roads | High Medium No | 0–500 mts 500–5000 mts >5000 mts | J-shaped | 0.25 |
Distance forests | No Medium High | 0–500 mts 500–5000 mts >5000 mts | Linear | 0.12 |
Distance water bodies | No Medium High | 0–100 mts 100–7500 mts >7500 mts | Linear | 0.12 |
Distance from Other area | High Medium Low | 0–100 mts 100–5000 >5000 | Linear | 0.35 |
Slope | High Medium No | 0% 0–15% >15% | Sigmoid | 0.16 |
LC Classes | 1996 | % | 2006 | % | Change in % (1996–2006) | 2016 | % | Change in % (2006–2016) |
---|---|---|---|---|---|---|---|---|
Other Area | 183.24 | 0.95 | 216.38 | 1.12 | 18.09 | 336.9 | 1.75 | 55.7 |
Cultivated Land | 6542.50 | 33.98 | 6504.93 | 33.78 | –0.57 | 6426.91 | 33.38 | –1.2 |
Forest Land | 9491.65 | 49.29 | 9447.80 | 49.06 | –0.46 | 9691.15 | 50.33 | 2.58 |
Shrub Land | 1248.76 | 6.49 | 1339.45 | 6.96 | 7.26 | 958.28 | 4.98 | –28.46 |
Barren Land | 291.07 | 1.51 | 334.08 | 1.73 | 14.77 | 350.25 | 1.82 | 4.84 |
Sand | 476.27 | 2.47 | 556.36 | 2.89 | 16.82 | 476.98 | 2.48 | –14.27 |
Water body | 272.99 | 1.42 | 302 | 1.57 | 10.62 | 310 | 1.61 | 2.65 |
Grassland | 596.36 | 3.10 | 471.99 | 2.45 | –20.86 | 652.08 | 3.39 | 38.16 |
Ice and snow cover | 153.7 | 0.80 | 83.6 | 0.43 | –45.61 | 54.01 | 0.28 | –35.39 |
Total | 19,256.00 | 100 | 19,256.00 | 100 | 19,256.00 | 100 |
Year | 2006 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1996 | LULC | UB | CL | FL | SL | BL | SA | WB | GL | SC | Total |
OA | 182.33 | 0.52 | 00.00 | 00.00 | 0.01 | 0.33 | 0.04 | 0.00 | 00.00 | 183.24 | |
CL | 26.31 | 6448.64 | 8.30 | 32.98 | 0.03 | 17.96 | 7.88 | 0.41 | 0.00 | 6542.50 | |
FL | 1.16 | 7.65 | 9359.18 | 58.14 | 0.59 | 33.01 | 29.25 | 2.67 | 0.00 | 9491.65 | |
SL | 3.20 | 13.43 | 74.04 | 1125.23 | 0.30 | 27.99 | 0.64 | 3.93 | 0.00 | 1248.76 | |
BL | 0.55 | 0.07 | 0.46 | 2.73 | 256.57 | 1.90 | 0.35 | 27.29 | 1.16 | 291.07 | |
SA | 1.68 | 19.85 | 4.34 | 1.51 | 2.78 | 413.61 | 27.77 | 4.72 | 0.00 | 476.27 | |
WB | 0.85 | 13.05 | 0.29 | 0.63 | 1.08 | 25.10 | 231.29 | 0.71 | 0.00 | 272.99 | |
GL | 0.31 | 1.72 | 1.19 | 118.14 | 4.63 | 36.46 | 4.37 | 429.50 | 0.05 | 596.36 | |
SC | 00.00 | 00.00 | 00.00 | 0.09 | 68.10 | 00.00 | 0.36 | 2.77 | 82.38 | 153.70 | |
Total | 216.38 | 6504.93 | 9447.80 | 1339.45 | 334.08 | 556.36 | 301.96 | 471.99 | 83.59 | 19,256.54 |
Year | 2016 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2006 | LULC | UB | CL | FL | SL | BL | SA | WB | GL | SC | Total |
OA | 215.67 | 0.10 | 00.00 | 00.00 | 0.01 | 0.50 | 0.10 | 00.00 | 00.00 | 216.38 | |
CL | 97.44 | 6275.04 | 11.69 | 39.25 | 12.47 | 12.12 | 17.88 | 39.04 | 0.00 | 6504.93 | |
FL | 9.45 | 69.85 | 9281.43 | 44.61 | 0.68 | 4.49 | 7.26 | 30.04 | 0.00 | 9447.80 | |
SL | 4.78 | 28.08 | 317.36 | 849.33 | 5.41 | 4.38 | 6.72 | 123.30 | 0.10 | 1339.45 | |
BL | 1.67 | 1.21 | 0.72 | 10.52 | 282.62 | 6.60 | 0.84 | 22.12 | 7.78 | 334.08 | |
SA | 5.86 | 36.20 | 44.02 | 9.28 | 1.06 | 405.14 | 37.23 | 16.55 | 1.02 | 556.36 | |
WB | 1.28 | 9.83 | 8.88 | 0.38 | 0.13 | 40.40 | 238.75 | 2.30 | 0.00 | 301.95 | |
GL | 0.76 | 6.61 | 27.35 | 4.91 | 16.62 | 3.10 | 1.20 | 411.44 | 00.00 | 471.99 | |
SC | 00.00 | 00.00 | 00.00 | 00.00 | 31.27 | 0.04 | 0.02 | 7.28 | 45.11 | 83.72 | |
Total | 336.90 | 6426.91 | 9691.45 | 958.28 | 350.26 | 476.78 | 310.00 | 652.06 | 54.01 | 19,256.66 |
LULC | 2016 | 2026 | 2036 | Change 2016–2026 | Change 2016–2036 | Change 2026–2036 |
---|---|---|---|---|---|---|
Other area | 336.9 1.75% | 496.46 2.58% | 593.79 3.08% | 159.56 47.36% | 256.89 76.25% | 97.33 19.6% |
Cultivated Land | 6426.91 33.38% | 6164.51 32.01% | 6089.78 31.63% | –262.4 –4.08% | –337.13 –5.24% | –74.73 –1.21% |
Forest Land | 9691.15 50.33% | 9771.05 50.74% | 9966.29 51.76% | 79.9 0.82% | 275.14 2.84% | 195.24 1.99% |
Shrub land | 958.28 4.98% | 913.85 4.75% | 815.21 4.23% | –44.43 –4.64% | –143.07 –14.92% | –98.64 –10.79 |
Barren Land | 350.25 1.82% | 338.61 1.76% | 320.05 1.66% | –11.64 –3.32% | –30.2 –8.62 | –18.56 –5.48 |
Sand | 476.98 2.48% | 554.65 2.88% | 422.91 2.20% | 77.67 16.28% | –54.07 –11.33% | –131.74 –23.75 |
Water Body | 310 1.61% | 323.39 1.68% | 359.71 1.87% | 13.39 4.32% | 49.71 16.03% | 36.32 11.23% |
Grassland | 652.08 3.39% | 639.94 3.32% | 645.74 3.35% | –12.14 –1.86% | –6.34 –0.97% | 5.8 0.9% |
Ice and Snow Cover | 54.01 0.28% | 53.55 0.28% | 42.51 0.22% | –0.46 –0.85% | –11.5 –21.29% | –11.04 –20.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimal, B.; Keshtkar, H.; Stork, N.; Rijal, S. Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future. Remote Sens. 2021, 13, 4093. https://doi.org/10.3390/rs13204093
Rimal B, Keshtkar H, Stork N, Rijal S. Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future. Remote Sensing. 2021; 13(20):4093. https://doi.org/10.3390/rs13204093
Chicago/Turabian StyleRimal, Bhagawat, Hamidreza Keshtkar, Nigel Stork, and Sushila Rijal. 2021. "Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future" Remote Sensing 13, no. 20: 4093. https://doi.org/10.3390/rs13204093
APA StyleRimal, B., Keshtkar, H., Stork, N., & Rijal, S. (2021). Forest Cover and Sustainable Development in the Lumbini Province, Nepal: Past, Present and Future. Remote Sensing, 13(20), 4093. https://doi.org/10.3390/rs13204093