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Abstract: In this study, land use/cover change was systematically investigated in the Qeshm Island to
understand how human and nature interact in the largest island of Persian Gulf. Land-use maps
were prepared for 1996, 2002, 2008, and 2014 using Landsat satellite imagery in six classes including
agriculture, bare-land, built-up, dense-vegetation, mangrove, and water-body, and then dynamic
of changes in the classes was evaluated using intensity analysis at three levels: interval, category,
and transition. Results illustrated that, while the land changes were fast over the first and third time
intervals (1996–2002 and 2008–2014), the trend of changes was slow in the second period (2002–2008).
Driven by high demand for construction and population growth, the built-up class was identified as
an active gainer in all the three time intervals. The class of bare-land was the main supplier of the
land for other classes especially for built-up area, while built-up did not act as the active supplier of
the land for other classes. The dense-vegetation class was active in all three time intervals. As for the
mangrove class, drought and cutting by residents had negative effects, while setting up protected
areas can effectively maintain this valuable ecosystem. High demands were observed for land change
in relation to built-up and agriculture classes among other classes. The findings of this study can
advance our understanding of the relationship and behavior of land use/cover classes among each
other over 18 years in a coastal island with arid climate.

Keywords: land use/cover change (LUCC), intensity analysis; Qeshm Island; Persian Gulf

1. Introduction

Land use/cover change (LUCC) is regarded as a significant component of global environmental
change, and it is mainly linked with regional environmental changes [1]. LUCC results from interaction
among various factors such as the economy, housing, employment, environment, etc. Population growth
and its distribution has played a key role in acceleration of land-use change in recent centuries [2].
Urban development and land-use pattern change have considerable social and environmental effects
including destruction of natural habitats, increased natural hazards, severe watershed erosions,
sedimentation in seas (especially in coastal zones), biodiversity loss, water quality reduction, and loss
of areas related to suburban farmlands and green spaces. Generally, it can be claimed that, LUCC
in coastal zones leads to an increase in the vulnerability over these areas [3,4]. The aforementioned
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problems and the consequent hazards are somewhat related to land-use changes caused by human
activities, and thus, it is crucial to understand the magnitude and trend of LUCC and its spatial patterns.

Problems resulting from land-use changes are more important and intense in the coastal
areas [5], which can be regarded as an intersection between three different environments; atmosphere,
hydrosphere, and lithosphere [6]. This issue calls for more attention and supervision on coastal zones
given their limitations and special conditions. Despite the attempts made to protect the coastal regions,
the uncontrolled exploiting of coastal resources has resulted in destruction of the resources, emergence
of serious threats, and challenges to these valuable ecosystems [7]. These consequences have sometimes
been irreversible, especially in the case of biosphere reserves [8].

Undoubtedly, the first step towards sustainable usage and protection of these areas is a precise
understanding and monitoring of land-use changes. However, monitoring and analyzing of land-use
changes using in-situ and field methods is time consuming and costly. Therefore, to analyze
and understand LUCC, it is necessary to use proper technologies and innovative measurement
methods [9,10] such as remote sensing (RS) and geographical information systems (GIS). Utilization of
these powerful technologies not only accelerates the process, but also provides a thorough
understanding of status and trend of each land-use class over time and reveals the relationships
between different classes [11]. It is expected that, the use of these techniques for analysis of the
existing regional land-use changes would help specialists to prepare and implement management
plans regarding sustainable developments [12].

A traditional land-use changes matrix is not adequate for achieving quantitative and systematic
LUCC feedbacks, and there have been attempts to further clarify substantial causes and processes of
land-use change using the transition matrix analysis method [8]. Intensity analysis is one of these
methods, which in fact, provides a quantitative framework for calculation of similar class changes
during different periods constituting the rows and columns of a square transition matrix [13–15].
As a quantitative approach, this method was developed by Clark University to assess land-use
changes based on land-use classes in the following three levels: time interval, category, and transition.
Land-use change analysis during specific periods is the most common application of this method [16].
This approach can identify the deviation in all of the mentioned areas in range of the observed changes
and hypothesized uniform changes [13,17]. By applying the intensity analysis, the observed intensities
of LUCC can be calculated and compared with a uniform intensity among different land use/land
cover (LULC) classes [14].

Intensity analysis is very effective in determining the size and strength of changes in various
land categories over time intervals between the observed changes and supposed uniform changes.
Intensity analysis can detect pattern of changes in which changes are constant or variable during
different time intervals to make a better understanding of the process of land-use changes [17,18].
Due to these abilities, numerous studies have investigated the temporal and spatial process of LULC
using intensity analysis. For example, Zhou et al. (2014) analyzed land-use changes at three levels:
time interval, category, and transition in Jiulong River watershed in China using intensity analysis
method [17]. Akinyemi et al. (2016) investigated the land-use changes using intensity analysis in
Kigali, Rwanda in a 25-year period [18]. Shoyama et al. (2018) analyzed the effects of crop expansion
on natural vegetation distribution using intensity analysis in northern Ghana in three time intervals
(from 1984 to 2015) [19]. Da et al. (2019) characterized the spatiotemporal changes of land use/land
cover in the Shule river basin using the intensity analysis [20]. Huang et al. (2018) compared intensity
analysis and the land-use dynamic degrees’ methods, and analyzed the land-use changes in the coastal
zone of Longhai in Southeast China [21].

Qeshm Island suited in south of Iran at the intersection of the Persian Gulf and the Oman Sea,
plays an important role as a free trade zone in the economy of Iran [22]. Besides its strategic position,
this island is also one of the unique tourist attractions of Iran and has a unique marine and terrestrial
environment. However, recent decades, the ecological environment and ecosystem of the coastal
area have been deteriorated due to urbanization and significant economic developments. In order to
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understand the extent and distribution of changes, it is necessary to investigate and assess the trend of
LUCC in space and time in this island. Thus, the intensity analysis was used in this study to measure
the spatiotemporal changes of LULC in Qeshm Island. To our knowledge, our study is the first that
applied this method at a local scale in the south of Iran. This study would be an example that links the
patterns of land-use changes to the processes, thus providing a spatial basis for land-use policy and
decision-making based on sustainable development to protect the island environment.

2. Materials and Methods

2.1. Study Area

Case under study is the Qeshm Island suited in the south of Iran close to the Strait of Hormuz
in the Persian Gulf (Figure 1) from 55◦14′58′′ E to 56◦17′27′′ E and from 27◦00′00′′ N to 26◦32′04′′ N.
As the country’s biggest free trade zone with respect to the landmass [23], Qeshm is one of the most
densely populated islands in Iran, with an area of 1491 square kilometers, approximately two times
bigger than Bahrain as the second largest island in the Persian Gulf [24].

Qeshm Island has great landscape diversity representing great ecological richness due to its
unique environment in the Persian Gulf [25]. Due to particular environment of the Qeshm, in 2006,
UNESCO introduced this island as the first geo-park in the Middle East [26]. Beautiful coral reef
colonies, the largest Mangrove community in Iran, and its integration with historical places has created
tourism attractions in the island. In addition, active ports, fisheries, and different commercial activities
have been shown to highly influence economic performance of this area.
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Figure 1. Location of the study area located in south of Iran.

2.2. Data

Landsat series of images including Landsat 5, 7, and 8 have been used in this research. All satellite
images (a total of eight scenes) have downloaded from USGS archive (http://earthexplorer.usgs.gov) [27].
Table 1 shows specifications of images including the satellite, sensors, path, row, and acquired date.

http://earthexplorer.usgs.gov
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Lack of cloud cover, time synchronization, and being near to the season of precipitation were considered
in selection of these images. Also, a topographic map of Qeshm Island generated by Iran’s National
Cartographic Center at the scale of 1:25,000 and the Google Earth images were used to extract
training data.

Table 1. List of Landsat satellite images used in the research.

No. Satellite Sensors Path Row Date

1 Landsat5 Thematic Mapper (TM)

172

041 16 May 1996
2 Landsat5 Thematic Mapper (TM) 042 16 May 1996
3 Landsat7 Enhanced Thematic Mapper Plus (ETM+) 041 25 May 2002
4 Landsat7 Enhanced Thematic Mapper Plus (ETM+) 042 9 May 2002
5 Landsat5 Thematic Mapper (TM) 041 17 May 2008
6 Landsat5 Thematic Mapper (TM) 042 17 May 2008
7 Landsat8 Operational Land Imager (OLI) 041 18 May 2014
8 Landsat8 Operational Land Imager (OLI) 042 18 May 2014

2.3. Preparing LULC Maps

In this study, a combination of on-screen digitizing and supervised classification was used to
prepare LULC maps during the years of 1996, 2002, 2008, and 2014. So that, in data collection phase,
Landsat images were selected (level 1 products) and downloaded from the USGS archive knowing that
the images lacked cloudiness, dates of the images were close to plant growing season, and there were
no or slight intervals between the dates.

In the preprocessing phase, the study area was identified on the images, and it was masked
based on different image layers. Afterward, to use all the image bands in the classification process,
different bands of each image were combined using the ‘layer-stacking’ command and the mosaic
of images was created for further processing. In the processing stage, initially 6 LULC classes were
described as presented in Table 2, and then to increase accuracy of the output maps, built-up and
agriculture classes were extracted using Google Earth, topographic maps, aerial imagery, and the
pan-sharped Landsat images.

Table 2. List of LULC classes and description for each class.

No. Class Name Description

1 Agriculture Land used for cultivation including orchards, cultivated land of all kinds of
agricultural products.

2 Bare-land Unused land, including barren land, wild grass ground, alkaline land, wetland,
sand, waste land.

3 Built-up Residential area, including urban, rural, industrial, all kinds of road, airport,
surrounded enterprise area and generally human-made area.

4 Dense-vegetation Densely covered vegetation range is recognizable on Landsat which are outside
the range of the built-up and agriculture classes.

5 Mangrove The range of mangroves, both natural and artificial.
6 Water-body Includes sea area and water bodies inside the island.

Then, masks were prepared for the two extracted classes, and supervised classification was
used to automatically extract four other classes including dense-vegetation, mangrove, water body,
and bare-land from the images. Maximum likelihood classification method, which is still one of the
most common supervised classification algorithms [28] was used at this stage. To conduct a supervised
classification of satellite images, the training data must be determined precisely. Selection of the
training data is the most challenging and critical part of the supervised classification method [29–31].
The training points were obtained using Google Earth images, topographic maps (including maps of
constructed lands, roads, and airports), and Landsat pan-sharped images. Then, six extracted classes
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were combined to prepare four time intervals in the GIS environment, and final maps were provided for
change detection step. Finally, to verify results of this step, error matrix as the most common method
of evaluating accuracy regarding using remote sensing data [32] was formed to measure accuracy of
the maps. This matrix is the result of a comparison between the pixels including known pixels or
ground control pixels with the corresponding pixels in the classification results. Figure 2 illustrates the
overall framework of this study.
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2.4. Intensity Analysis

Amounts of land-use changes are visible in the framework of traditional changes; but, a more
profound investigation is necessary in order to describe the linkage between patterns in different classes
with the corresponding processes [33]. Intensity analysis is a complex method, providing the possibility
of doing more detailed investigation for the researchers. This approach is a computational framework to
demonstrate interactions between categorical factors during the time intervals as well as quantifying the
grade and intensity where changes are non-uniform in different levels of details [13,34,35]. According to
advantages of the intensity analysis and regarding the fact that, whether an occurred transition from
one class of land-use to another class deviates from a uniform operation, it can be acknowledged that
this method is important for analyzing land-use changes. Intensity analysis takes place at three levels
including time intervals, category, and transition.

The time interval corresponds to overall changes within one specific interval compared to the
overall changes within other interval(s). Then, any changes in gross loss/gain intensity among different
categories are separately described by the category level during time intervals, the extent to which
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the level of changes is an indicator of how the intensity would change. Such change results from a
specific category of changes among other categories during each time interval [13–18]. With regard to
the study by Aldwaik and Pontius, our analysis is based on five equations as notated in Table 3.

Pace of transitions in an interval is calculated based on Equation (1), by dividing size of the
transition by length of the time interval resulting in a percentage of spatial extent. A category’s yearly
gross loss intensity in an interval is obtained by Equation (2), by dividing the size of the category’s
yearly gross loss by the size of the category at the starting point of each interval. Using Equation (3),
a category’s yearly gross gain intensity in an interval is determined; to this end, the size of the
category’s yearly gross gain is divided by the size of the category at the final stage of each time interval.
Common hypothesis regarding the category level for each interval suggests that, all categories undergo
gross loss and gross gain with the same yearly intensity. This amount is equal to pace of transition
in the interval, in other words, St. In case Lti < St, the loss of i, is stopped all along the interval t;
quite similarly, if Gt j < St, it means that gain of j is withheld within the interval t. In the case Lti > St,
loss of i is considered active along the interval t; consequently, if Gt j > St, gain of j is called active
within that time interval.

Table 3. Mathematical notation following Aldwaik and Pontius (2012).

Symbol Description

T number of time points
Yt year at time point t
t index for the initial time point of an interval [Y t −Yt+1], where t ranges from 1 to T − 1
J number of categories
i index for a category at the initial time point of an interval
j index for a category at the latter time point of an interval
n index of the gaining category for the selected transition

Cti j size of transition from category i to category j during interval [Y t −Yt+1]
St annual change during interval [Y t −Yt+1]

Gt j
intensity of annual gain of category j during interval [Y t −Yt+1] relative to size of category j at

time t + 1

Lti
intensity of annual loss of category i during interval [Y t −Yt+1] relative to size of category i at

time t

Rtin
intensity of annual transition from category i to category n during interval [Y t −Yt+1] relative to

size of category i at time t

Wtn
uniform intensity of annual transition from all non-n categories to category n during interval

[Y t −Yt+1] relative to size of all non-n categories at time t

St =
Change during[Yt, Yt+1]

(Duration o f [Yt, Yt+1])(Extent Size)
100% =

∑J
j=1[(

∑J
i=1 Ctij) −Ctij

(Yt+1, Yt])
(∑J

j=1
∑J

j=1 Ctij

)100% (1)

Lti =
Annual loss o f i during[Yt, Yt+1]

Size o f i at Yt
100% =

[(∑J
i=1 Ctij

)
− Ctij

]
/(Yt+1 − Yt)∑J

j=1 Ctij
100% (2)

Gtj =
Annual gain o f j during[Yt, Yt+1]

Size o f j at Yt+1
100% =

[(∑J
i=1 Ctij

)
−Ctij

]
/(Yt+1 − Yt)∑J

i=1 Ctij
100% (3)

Rtin
Annual transition f rom i to n during [Yt, Yt+1]

Size o f i at Yt
100% =

Ctin/(Yt+1 − Yt)∑J
i=1 Ctij

100% (4)

Wtn
Annual gain o f n during [Yt, Yt+1]

Size o f non− n at Yt
100% =

[(∑J
i=1 Ctin

)
− Ctnn

]
/(Yt+1 − Yt)∑J

j=1[
(∑J

i=1 Ctij
)
−Ctnj

100% (5)
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Equation (4) determines the intensity of annual transition of the gain of a specific category n from
other categories i, that is the quantity of the yearly transition to the specific category n from the other
category divided by quantity of another category at starting point of each interval. The predominant
hypothesis at the level of transition for intervals suggests that specific category n transitions to all other
categories with a similar yearly intensity [18]. This amount is calculated by Equation (5), by dividing
the size of the yearly gain of category n by the total amount of sizes of all other categories at the starting
point of time intervals. Therefore, if Rtin <Wtn, hence gain of n stops i all along interval t. In case Rtin >

Wtn, then, gain of n targets i within interval t. A comprehensive description of intensity analysis was
given by Aldwaik and Pontius [18,34]. There are also case studies in which intensity analysis has been
applied including Southeast China [4,8,17], Rwanda [18], Indonesia [16], and Southern Nigeria [35].

3. Results

3.1. Land Use/Cover Maps

The land-use maps of Qeshm Island (Figure 3), prepared using the integration of on-screen
digitizing and the supervised classification (maximum likelihood), were classified in six classes and as it
is visible on the map, the most area of Qeshm Island belongs to the bare-land class. In addition, the maps
show that the built-up areas are mostly located around the coastline. Furthermore, the mangrove
forest is visible in central north part of the island.
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The matrix of variations in land-use classes (Table 4) that was prepared based on the number of
pixels belong to each class illustrates that the built-up is the only class upgraded in each period, so that,
6954 and 24,326 pixels were changed in the first and second periods, respectively in this class among
other classes. In fact, this class showed an increase by more than 34% in the final year compared to the
initial one, as a result of the development plans in the Qeshm Free Trade Zone. On the other hand,
during the time of the study, only 24 pixels of this class have been changed to agriculture and bare-land
classes. At the same time, the bare-land class is the only class experienced a decrease in each time
interval, due to vast expanse of this class in Qeshm Island and lower legal limits for changing this
class of land-use to other classes. The reduction of the agriculture class in the first period is another
remarkable point in the table, which by the way has happened in a small amount (250 pixels in total).
Also, the increment in the mangroves level due to protective actions and artificial implantation of
mangroves in the first period and also its reduction in the second period, probably due to periods of
drought in this region during this period [36] is another important point in the table.
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Table 4. Variation matrix for each land-use class based on the number of pixels.

2014

2008

Categories Agriculture Bare-land Built-up Dense-vegetation Mangrove Water-body Total
Agriculture 46,966 1266 415 686 0 0 49,333
Bare-land 4122 1,502,515 22,951 11,247 2594 7565 1,550,994
Built-up 0 0 66,958 0 0 0 66,958

Dense-vegetation 864 1144 30 3890 443 70 6441
Mangrove 0 3104 0 13 69,600 10,942 83,659

Water-body 1 6376 930 0 915 1,002,535 1,010,757
Total 51,953 1,514,405 91,284 15,836 73,552 1,021,114 2,768,142

2008

2002

Categories Agriculture Bare-land Built-up Dense-vegetation Mangrove Water-body Total
Agriculture 47,252 1450 510 370 0 1 49,583
Bare-land 1958 1,536,543 5978 3355 3672 1483 1,552,989
Built-up 2 22 59,980 0 0 0 60,004

Dense-vegetation 121 6629 90 2381 130 5 9356
Mangrove 0 1565 0 328 73,535 383 75,811

Water-body 0 4785 400 7 6322 1,008,885 1,020,399
Total 49,333 1,550,994 66,958 6441 83,659 1,010,757 2,768,142

2002

1996

Categories Agriculture Bare-land Built-up Dense-vegetation Mangrove Water-body Total
Agriculture 45,660 5643 19 293 0 0 51,615
Bare-land 3043 1,531,873 3927 6821 8823 17,278 1,571,765
Built-up 0 0 55,525 0 0 0 55,525

Dense-vegetation 813 7049 34 1839 52 0 9787
Mangrove 41 970 0 21 64,992 648 66,672

Water-body 26 7454 499 382 1944 1,002,473 1,012,778
Total 49,583 1,552,989 60,004 9356 75,811 1,020,399 2,768,142

In this research, the total accuracy and also the standard Kappa were used to verify the accuracy of
classifications. Accuracy of the maps was evaluated based on 300 control points for each year from the study
area using topographic maps, Google Earth, and Landsat pan-sharped images. Then, these points were
compared with produced maps, and ultimately, total accuracy and the Kappa coefficient were calculated
for the result maps. Accuracy assessment of the maps extracted from the method used in this study showed
that, overall accuracy is at least 88% and at most 91%. Also, the Kappa coefficient in the final maps is equal
to 0.85, 0.87, 0.86, and 0.89, respectively, for the years 1996, 2002, 2008, and 2014 (Table 5).

Table 5. Overall accuracy for the land-use maps.

Year Error Count Samples Count Overall
Accuracy

User’s
Accuracy

Producer’s
Accuracy K-Standard

1996 36 300 88.00 89.81 88.00 0.85
2002 32 300 89.33 90.35 89.33 0.87
2008 33 300 89.00 89.72 89.00 0.86
2014 27 300 91.00 90.18 91.33 0.89

3.2. Intensity Analysis

According to the transfer matrix of land-use change in three time intervals, total amount of
land-use change in each period, annual change intensity, and change intensity in all periods are
presented in Figure 4. Each of the bars extending from the center axis to the left shows percentage of
change level in time intervals of the study. Also, the bars developed from the center axis to the right
express the intensity of the changes in the study periods. As can be seen, total land-use changes were
fast during two periods: from 1996 to 2002, and from 2008 to 2014, while changes were slow in the time
interval from 2002 to 2008. Accordingly, annual intensity of the changes was evaluated as slow in the
period of 2002–2008, and intensity of the changes was evaluated as rapid in the period of 2008–2014.
These changes are certainly associated with the policies adapted for development of free trade zones
and increasing activities of this region in order to sustain country’s economy.
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Figure 5 shows intensity of the changes in study periods with respect to the land-use classes.
As shown in Figure 5, in all three time intervals of the study, intensity of changes in gain and loss was
evaluated to be more in the dense-vegetation class than other classes, indicating instability of this class of
land-use in the region because of the severe effect of amount and distribution of precipitation on this class.
The built-up class is the next class experiencing major changes, due to the high interest of the stakeholders
for construction in the study region and development plans in the free economic zone of Qeshm Island.
Of course, as noted above, changes in this class of land-use were merely incremental. On the other hand,
although bare-land-use changes declined in all periods, and the highest numbers of pixels changed in this
class compared to others, but, due to its large area, overall change in this class is not intense.Sustainability 2019, 11, x FOR PEER REVIEW 10 of 17 
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Figure 6 illustrates the intensity of the observed transitions for agriculture, dense-vegetation,
and mangrove classes according to the amount of gained pixels for all the three-time intervals. If a bar
passes the uniform line in the graph, it indicates that the category’s gain targets the losing category,
while stopping a bar before the uniform line indicates that the category’s gain avoids the losing category.
As it appears in graphs, valuable classes (built-up and agriculture) have no active role as a supplier of
land for other classes while the bare-land has been main supplier for built-up land in all the three-time
intervals. As shown in Figure 6, bare-land and dense-vegetation tend to be main targets of mangrove
loss in the first and second periods; however, in the third period, water-body gained more intensively
than bare-land and dense-vegetation classes. Bare-land tends to be targeted more intensively by the
built-up than other classes in all the three periods.Sustainability 2019, 11, x FOR PEER REVIEW 11 of 17 
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4. Discussion

4.1. Patterns to Processes in LUCC

Qeshm Island with its unique environment plays an important role in country’s economy, but it
has faced severe land-use changes during recent years. Intensity analysis method was used in this
study to analyze transition of changes among land categories during three time intervals in this island.
Previous studies conducted in Iran have not yet used the intensity analysis method for LULC studies;
however, some studies in other countries have applied this method and analyzed LULC patterns in
three levels: interval, category, and transition, especially in the coastal areas. These studies have found
that process of land-use change has happened quickly in the coastal areas, and proposed insights into
patterns and the underlying processes of LUCC similar to our research.

Time intervals analysis indicated that, overall land-use change was faster in the first (1996–2002)
and third time intervals (2008–2014) than the second time interval (2002–2008). Recent significant
development, and economic growth of the Qeshm Island have accelerated these changes. Overall policy
of the country has made this island an economic and strategic pole in the region. Several studies
concluded findings similar to our study in terms of time interval analysis. For instance, Zuo et al. (2011)
analyzed the land-use changes of several coastal cities in China and found that, the first interval
has experienced smaller land-use change rate compared to other intervals [37]. Huang et al. (2012)
quantified intensity of land-use changes during three time points (1986–1996, 1996–2002, and 2002–2007)
in the coastal watershed of southeast China [8]. They concluded that, intensity of land-use change is
associated with intensity of development in the study area.

Intensity analysis at the category level showed that, the built-up class has been an active gainer
during each of the three time intervals and has separated sections of other land-use classes. This can be
justified by rising demand for construction and converting the lands to built-up areas. The agriculture
class is important from two perspectives. On the one hand, agriculture is classified as a built-up
margin that has been on the verge of becoming a built-up class, and on the other hand, it is of high
value as supplier of required food supplies (especially given the limited area for preparing agricultural
land), that is protected by local government. However, high demand for construction and high
value of the land on the island has led to the largest change of agriculture class to the built-up class.
Previous studies conducted on land-use changes in coastal areas are in good agreement with our
findings. For instance, Yang et al. (2017) characterized the land-use changes in Zhenlai County in
the northeast of China. They concluded that, the most prevalent changes happened in built-up lands
mainly influenced by economic and political reasons, while arable lands experienced less intensively
gains and losses [38]. Huang et al. (2018) measured the land use changes in coastal zones around
urban areas that have experienced rapid growth in China. They reported similar results, so that they
found that the urbanization, built-up gains, and cropland losses were active for all time intervals [4].

Analysis of intensity of changes in the three periods indicated high level of change in
dense-vegetation class, attributing to high dependence and direct relation of this class to extent
of precipitation and rainfall instability in the arid and ultra-arid climates. This has been especially
evident from several droughts in the region as shown in the study by Mafi-Gholami (2017), who showed
that the SPI index has been significantly less compared to previous years [36]. Also, the mangrove
class showed significant changes compared to other classes. On the one hand, being recognized as the
protected area may protect this ecosystem and, on the other hand, natural factors and direct (cutting the
trees by local people) and indirect (marine transportation and pollution into the sea) human uses cause
damages to mangrove trees. Results of the present study revealed that the above-mentioned resultant
factors increased area of the mangrove class in the first and second time intervals and decreased
area of this class in the third period, as confirmed in the study conducted by Khoorani et al. (2015),
who indicated an average increasing rate (18.28 hectares per year) for the mean change in the breadth
of mangroves in the Khamir and Qeshm habitat zones between 1984 and 2009 [39].
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In terms of transition intensity, analysis showed some differences in the transited class and the
year. The transition from bare-land to built-up, bare-land to agriculture, bare-land and agriculture to
dense-vegetation, and dense-vegetation to mangrove has been the target for all three time intervals.
However, transition rate from water-body and mangrove to agriculture and built-up classes were zero in
all three periods. The mangrove forest is protected by both local and international conservation efforts,
and protection alarms of the mangrove ecosystem have been increased in recent years. Also, due to high
value of land and construction costs, transition from built-up and agriculture classes to other classes
has been zero in three periods. However, lands surrounding the urban areas are used for agriculture,
which resulted in transition from agriculture to built-up in Qeshm Island. Therefore, urban expansion
occurs mostly adjacent to the cultivated lands. Some studies conducted in the coastal regions showed
a similar pattern so that, spatial increase in the residential regions has been found to be usually
accompanied by loss of agriculture lands [2,8,37,40].

Intensity analysis technique was applied in this study to characterize LULC changes in the
study area. Intensity analysis is a powerful method used to characterize LULC changes among
categories over time [41]. Various studies have used methods such as Markov transition matrix-based
and the land-use dynamic degree to characterize land-use changes among categories over the
time. However, these methods are neither particularly helpful to understand patterns of land-use
changes nor show size of category loss and gain. Some researchers have compared intensity
analysis with other methods. Aldwaik and Pontius (2012) compared the intensity analysis and
Markov-based transition matrix [13]. They reported that intensity analysis is much more effective in
additional analysis and explain matrices in more details in consecutive time intervals than Markov
matrices. Also, Huang et al. (2018) compared intensity analysis and land-use dynamic degrees to
quantify temporal change among categories in China’s southeast coastal region [4]. They found that,
comprehensive land-use dynamic degree (CLUDD) cannot show size and intensity of changes at
consecutive levels, while intensity analysis spatially characterizes changes in three levels of time,
category, and transition.

4.2. Driving Forces of LUCC

Since 1996, intensive changes in land use/land cover change have been undoubtedly influenced
by formation of the Qeshm Free Zone Organization in the early 1990s. The government approved
establishment of Qeshm Free Trade Zone to utilize economic potential of Qeshm Island and create
economic mobility. As a result of this decision and increasing amount of investment and carrying
out industrial activities, and ultimately due to rapid development in this area, man-made land-use
changes have also increased because of economic activities, rapid developments, and domestic and
international investments over the recent years, as supported in the study by Hakimian (2009) [42].
Findings of our research showed patterns and processes of LUCC associated with economic growth
and human activities similar to other studies conducted in many other coastal areas [8,17].

Recent economic developments followed by the increase in the population are among crucial
driving forces of the LUCC in Qeshm Island. Pressure of population increase in Qeshm Island,
beyond the indigenous population living in the region is due to high level of positive net migration to
the island as a result of the economic activities. According to the National Census, the population in the
study area has increased from 73,000 in 1996 to 149,000 in 2016, meaning that the Qeshm population has
been more than doubled over 20 years ago [43]. Moreover, a large number of visitors travel to Qeshm
Island daily due to tourism and economic attractions [44]. Significant population growth led to major
land conversion to built-up and agriculture areas in order to provide food needs of local inhabitants.

Also, natural factors have adverse effects on LUCC in the study area. Climate situation is a
primary influential factor in relation to LUCC in Qeshm Island. Increasing annual average temperature
and decreasing annual precipitation have directly influenced the mangrove ecosystems in the study
area. In the last century, the SPI value and annual rainfall have decreased and led to frequent droughts
in Qeshm Island as reported in the study by Mafi-Gholami et al. (2017) [36]. They investigated the
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relationship between drought events and mangrove in the study area and found that mangrove areas
are significantly related to the reduction in the annual rainfall and occurrence of more drought events.
Khoorani et al. (2015) confirmed that the areas of mangrove forests experienced fluctuations in a
25-year period from 1985 to 2009. They found that meteorological parameters have a significant
relationship with changes in the areas. Other causes such as changes of seawater salinity, sea levels,
and human activities incorporated with climate change may have intensified climatic effects [39].

It is essential to preserve and manage the sustainable plans of coastal zones in order to decrease
destruction of mangrove habitats and create a balance between environmental conservation (mangrove)
and economic development (urbanization) in Qeshm Island. Environmental management plans
should create a good balance between conservation plans and land utilization and be achievable
in both short- and long-term programs. Achievable and useful programs may be realized through
assessment of environmental effects related to implementation of the projects, participation of local
inhabitants in protection projects, estimation of country and region necessities, and consideration of
land-use related planning in development plans. In addition, it is possible to present approaches
for planning and ecological design of mangrove habitats in Qeshm Island based on the human
awareness. Maintaining moisture balance in warm and humid areas is an essential principle regarding
specific climate protection in deserts [45,46]. Mangrove forests are of aesthetic value for the region
and country. Therefore, it is necessary to consider sustainable tourism principles compatible with
ecosystem sensitivity in developing tourism plans in this island based on the principles of sustainable
development of tourism.

5. Conclusions

In this study, remote sensing, GIS, and intensity analysis were used together within an integrated
framework to analyze the changes and dynamics of LUCC in Qeshm Island as the largest island in
the Persian Gulf. The intensity analysis and changes were evaluated for six classes of land-use and at
three levels: time, category, and transition. This study showed that the intensity analysis method can
facilitate and provide informative signals of land changes as were practiced in the biggest island in the
Persian Gulf.

Three time intervals in this study showed significant differences. Total land-use changes were
found to be accelerated in the first and third periods (1996–2002 and 2008–2014), while there was a
slowdown in the interim period, from 2008 to 2014. Economic and investment factors in the region
were the most important human factors, and drought was as the most important natural factor with a
decisive role in the LUCC changes. Generally, changes in the studied periods were due to demand for
built-up and agriculture classes in order to take the advantage of the local opportunities, and most of
the land areas have been separated from the bare-land class, given the legal ease, and converted into
two mentioned classes and other classes. Also, the dense-vegetation class has been mostly changed
among all classes due to high effect of rainfall instability on this class. Transition level that measures
intensity variation showed that the bare-land class was intensively losing more space to built-up
than other classes, while dense-vegetation tends to be main target of mangrove loss. Transition from
agriculture and built-up to other classes were zero or near the zero due to their high economic value
over three periods. Also, the mangrove class did not have any role in provision of land for the built-up
class because of being in the protected area.

Land use/cover patterns in the study area can be considered as the outcomes of human and nature
interactions, that can reflect the underlying human activities (e.g., urbanization and environmental
conservation) on local natural conditions (e.g., climate and topography). In this case, the arid climate
in Qeshm Island determines the unique characteristics of vegetation dynamics; the coastal location and
local policy has driven land change over 18 years. It will be interesting to perform comparative studies
with other areas with different climatic zones and in different regions.
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