SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality
"> Figure 1
<p>SAMIRA overview work-flow diagram. Activities marked in green made use of satellite data. For more details see <a href="#sec2dot1-remotesensing-13-02219" class="html-sec">Section 2.1</a>, <a href="#sec2dot2-remotesensing-13-02219" class="html-sec">Section 2.2</a>, <a href="#sec2dot3-remotesensing-13-02219" class="html-sec">Section 2.3</a>, <a href="#sec2dot4-remotesensing-13-02219" class="html-sec">Section 2.4</a> and <a href="#sec2dot5-remotesensing-13-02219" class="html-sec">Section 2.5</a>.</p> "> Figure 2
<p>WRF-Chem model domains at 5 km (blue) and 1 km (red) horizontal resolution. Bold marked areas indicate regions for which exemplary results are discussed in this text.</p> "> Figure 3
<p>Methodology used in SAMIRA for AOD to PM<sub>2.5</sub> conversion: data flow of the algorithm.</p> "> Figure 4
<p>Data fusion process used in SAMIRA: regression-interpolation-merging mapping.</p> "> Figure 5
<p>General concept of the SAMIRA downscaling methodology. Green boxes indicate input data, white boxes indicate intermediate datasets, blue boxes represent processing steps, and the orange box indicates the final output.</p> "> Figure 6
<p>SEVIRI NRT AOD (<b>A</b>–<b>D</b>) and AOD uncertainty maps (<b>E</b>,<b>F</b>) over Poland for every fourth retrieval in the morning of 5 June 2019, at 05:00 UTC (<b>A</b>,<b>E</b>), 06:00 UTC (<b>B</b>,<b>F</b>), 07:00 UTC (<b>C</b>,<b>G</b>), and 08:00 UTC (<b>D</b>,<b>H</b>). The pixel resolution is 5.5 × 5.5 km<sup>2</sup> and each map represent 15 min.</p> "> Figure 7
<p>For 5 June 2019, backward trajectories for 12:00 UTC calculated with the HySplit Model (<b>A</b>), the Warsaw PollyXT LIDAR signal (<b>B</b>), and multi-wavelengths AOD for the Warsaw sun-photometer (<b>C</b>).</p> "> Figure 8
<p>AOD (panel <b>A</b>), conversion factor (panel <b>B</b>) and PM<sub>2.5</sub> (panel <b>C</b>) map calculated for Poland, 17 September 2014 07:00 UTC. For comparison, in the lower panel PM<sub>2.5</sub> output from WRF-Chem (panel <b>D</b>), and the difference between the calculated and the modeled PM<sub>2.5</sub> is shown (panel <b>E</b>).</p> "> Figure 9
<p>Hourly NRT air quality maps for the Czech Republic. (<b>A</b>): NO<sub>2</sub> map for 15 August 2019 15:00 UTC; (<b>B</b>): SO<sub>2</sub> map for 15 August 2019 15:00 UTC; (<b>C</b>): PM<sub>2.5</sub> for 23 August 2019 07:00 UTC; (<b>D</b>): PM<sub>10</sub> for 23 August 2019 07:00 UTC. Note that grey areas in the Czech Republic show regions with no satellite data due to cloud coverage.</p> "> Figure 10
<p>Real-world validation of the downscaling method using TROPOMI as a high-resolution reference for the area of the Ostrava/Katowice area for July through September 2018. Panel A shows the original OMI data (gridded at 0.25° × 0.25°). Panel B shows the result of downscaling the OMI data using the QUARK NO<sub>2</sub> dataset (<a href="https://ec.europa.eu/environment/air/pdf/NO2%20exposure%20technical%20manual.pdf" target="_blank">https://ec.europa.eu/environment/air/pdf/NO2%20exposure%20technical%20manual.pdf</a>, accessed on 30 October 2018) as a proxy. For a direct comparison, panel C shows the original TROPOMI data gridded to a spatial resolution of 0.05° × 0.05°. Panel D shows the relative difference between the downscaled OMI data and the TROPOMI data.</p> "> Figure 11
<p>Illustration of land cover and land-use within a 5 km × 5 km square SEVIRI pixel. (<b>A</b>): urban area, (<b>B</b>): coastal site.</p> "> Figure 12
<p>Scatterplots showing a comparison of the original OMI NO<sub>2</sub> product (panel <b>A</b>) and the downscaled OMI NO<sub>2</sub> product (panel <b>B</b>) against the TROPOMI NO<sub>2</sub> product [in 10<sup>15</sup> molecules cm<sup>−2</sup>] for the area of the Czech Republic for July through September 2018. Note that due to its coarse resolution a pixel of the original OMI product represents multiple TROPOMI pixels, thus explaining the striped patterns in panel A.</p> "> Figure 13
<p>SAMIRA Map Viewer showing hourly averaged NRT NO<sub>2</sub> for 23 November 2019 12:00 over the Czech Republic.</p> ">
Abstract
:1. Introduction
2. SAMIRA Methodology
2.1. SEVIRI AOD Retrieval
2.2. PM2.5 Retrieval: AOD to PM2.5 Conversion
2.3. Data Fusion Methodology
2.4. Downscaling Methodology
2.5. In Situ PM10 Assimilation
3. SAMIRA Product Examples
3.1. SEVIRI AOD
3.2. Satellite-Based PM2.5 Retrieval
3.3. Data Fusion Maps
3.4. Downscaling
4. Validation Results
4.1. Validation of SEVIRI AOD
4.2. Validation of Satellite-Based PM2.5
4.3. Validation of Data Fusion Mapping Results
4.4. Validation of Downscaling Algorithm
5. SAMIRA Air Quality Data Mapping Portals
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EEA. Air Quality in Europe-2020 Report; EEA Report No 09/2020; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Schmid, J. The SEVIRI Instrument. In Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, 29 May–2 June 2000; pp. 23–32. Available online: https://www-cdn.eumetsat.int/files/2020-04/pdf_ten_msg_seviri_instrument.pdf (accessed on 31 July 2020).
- Levelt, P.F.; van den Oord, G.H.J.; Dobber, M.R.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.; Saari, H. The Ozone Monitoring Instrument. IEEE T. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Veefkind, J.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.; de Haan, J.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Hoff, R.M.; Sundar, S.C. Remote Sensing of Particulate Pollution from Space: Have we reached the promised land? J. Air Waste Manage. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Shin, M.; Kang, Y.; Park, S.; Im, J.; Yoo, C.; Quackenbush, L.J. Estimating ground-level particulate matter concentrations using satellite-based data: A review. GIsci. Remote Sens. 2020, 57, 174–189. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Patra, A.; Gorai, A.K. A review on estimation of particulate matter from satellite-based aerosol optical depth: Data, methods, and challenges. Asia-Pacific J. Atmos. Sci. 2020. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Wagner, S.; Lattanzio, A.; Watts, P. Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory. J. Geophys. Res. 2010, 115, D02203. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; de Leeuw, G.; Holzer-Popp, T.; Guang, J.; Li, Y.; Yang, L.; Xu, H.; Xu, X.; Li, C.; et al. Retrieval of aerosol optical depth over land based on a time series technique using MSG/SEVIRI data. Atmos. Chem. Phys. 2012, 12, 9167–9185. [Google Scholar] [CrossRef] [Green Version]
- Carrer, D.; Ceamanos, X.; Six, B.; Roujean, J.-L. AERUS-GEO: A newly available satellite-derived aerosol optical depth product over Europe and Africa. Geophys. Res. Lett. 2014, 41, 7731–7738. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2003, 108, 4661. [Google Scholar] [CrossRef]
- Liu, Y.; Sarnat, J.A.; Kilaru, V.; Jacob, D.J.; Koutrakis, P. Estimating ground level PM2.5 in the eastern United States using satellite remote sensing. Environ. Sci. Technol. 2005, 39, 3269–3278. [Google Scholar] [CrossRef] [Green Version]
- van Donkelaar, A.; Martin, R.V.; Spurr, R.J.D.; Drury, E.; Remer, L.A.; Levy, R.C.; Wang, J. Optimal estimation for global ground-level fine particulate matter concentrations. J. Geophys. Res. Atmos. 2013, 118, 5621–5636. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Xi, A.X.; Wang, J.; Zhang, X.; Li, X.; Liu, J. Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing. Sci. Rep. 2018, 8, 10174. [Google Scholar] [CrossRef] [Green Version]
- Kokhanovsky, A.A.; von Hoyningen-Huene, W.; Burrows, J.P. Atmospheric aerosol load as derived from space. Atmos. Res. 2006, 81, 176–185. [Google Scholar] [CrossRef]
- Holzer-Popp, T.; Schroedter-Homscheidt, M.; Breitkreuz, H.; Martynenko, D.; Klüser, L. Improvements of synergetic aerosol retrieval for ENVISAT. Atmos. Chem. Phys. 2008, 8, 7651–7672. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zeng, Q.; Tao, J.; Sun, L.; Zhang, L.; Gu, T.; Wang, Z.; Chen, L. Estimating PM2.5 concentrations based on MODIS AOD and NAQPMS data over Beijing–Tianjin–Hebei. Sensors 2019, 19, 1207. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Li, T.; Yuan, Q.; Zhang, L. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflectance using deep belief networks. J. Geophys. Res. Atmos. 2018, 123, 875–886. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Shin, M.; Im, J.; Song, C.-K.; Choi, M.; Kim, J.; Lee, S.; Park, R.; Kim, J.; Lee, D.-W.; et al. Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea. Atmos. Chem. Phys. 2019, 19, 1097–1113. [Google Scholar] [CrossRef] [Green Version]
- Li, L. A Robust Deep Learning Approach for Spatiotemporal Estimation of Satellite AOD and PM2.5. Remote Sens. 2020, 12, 264. [Google Scholar] [CrossRef] [Green Version]
- Koelemeijer, R.B.A.; Homan, C.D.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Richter, A.; De Smedt, I.; Lorente, A.; Beirle, S.; van Geffen, J.H.G.M.; Zara, M.; Peters, E.; Van Roozendael, M.; et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: Results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 2018, 11, 6651–6678. [Google Scholar] [CrossRef] [Green Version]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef] [Green Version]
- Beirle, S.; Borger, C.; Dörner, S.; Li, A.; Hu, Z.; Liu, F.; Wang, Y.; Wagner, T. Pinpointing nitrogen oxide emissions from space. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Lorente, A.; Boersma, K.F.; Eskes, H.J.; Veefkind, J.P.; van Geffen, J.H.G.M.; de Zeeuw, M.B.; Denier van der Gon, H.A.C.; Beirle, S.; Krol, M.C. Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Sci Rep 9 2019, 20033. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Khorsandi, E.; Liu, S.; Baier, F.; Valks, P. Estimation of surface NO2 concentrations over Germany from TROPOMI satellite observations using a machine learning method. Remote Sens. 2021, 13, 969. [Google Scholar] [CrossRef]
- Fioletov, V.; McLinden, C.A.; Griffin, D.; Theys, N.; Loyola, D.G.; Hedelt, P.; Krotkov, N.A.; and Li, C. Anthropogenic and volcanic point source SO2 emissions derived from TROPOMI on board Sentinel-5 Precursor: First results. Atmos. Chem. Phys. 2020, 20, 5591–5607. [Google Scholar] [CrossRef]
- EEA. The application of models under the European Union’s Air Quality Directive: A technical reference guide. In EEA Technical Report; No 10/2011; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar] [CrossRef]
- Lahoz, W.A.; Schneider, P. Data assimilation: Making sense of Earth Observation. Front. Environ. Sci. 2014, 2, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Tate, N.J. Spatial scale problems and geostatistical solutions: A review. Prof. Geogr. 2000, 52, 607–623. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Appl. Geostatistics Series; Oxford University Press: Oxford, UK, 1997; p. 483. ISBN 0-19-511538-4. [Google Scholar]
- Kyriakidis, P.C. A geostatistical framework for area-to-point spatial interpolation. Geogr. Anal. 2004, 36, 259–289. [Google Scholar] [CrossRef]
- Park, N.-W. Spatial downscaling of TRMM precipitation using geostatistics and fine scale environmental variables. Adv. Meteorol. 2013, 237126. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled `online’ chemistry in the WRF model. Atmos. Environ. 2005, 39, 6957–6976. [Google Scholar] [CrossRef]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A. Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. J. Geophys. Res. 2006, 111, D21305. [Google Scholar] [CrossRef]
- Peckham, S.; Grell, G.A.; McKeen, S.A.; Barth, M.; Pfister, G.; Wiedinmyer, C.; Fast, J.D.; Gustafson, W.I.; Zaveri, R.; Easter, R.C.; et al. WRF-Chem Version 3.3 User’s Guide. NOAA Tech. Memo. 2011, 98. Available online: https://repository.library.noaa.gov/view/noaa/11119 (accessed on 30 October 2018).
- Zawadzka, O.; Markowicz, K.M. Retrieval of aerosol optical depth from optimal interpolation approach applied to SEVIRI data. Remote Sens. 2014, 6, 7182–7211. [Google Scholar] [CrossRef] [Green Version]
- Stachlewska, I.S.; Zawadzka, O.; Engelmann, R. Effect of Heat Wave Conditions on Aerosol Optical Properties Derived from Satellite and Ground-Based Remote Sensing over Poland. Remote Sens. 2017, 9, 1199. [Google Scholar] [CrossRef] [Green Version]
- Stachlewska, I.S.; Samson, M.; Zawadzka, O.; Harenda, K.M.; Janicka, L.; Poczta, P.; Szczepanik, D.; Heese, B.; Wang, D.; Borek, K.; et al. Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol. Remote Sens. 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka, O.; Stachlewska, I.S.; Markowicz, K.M.; Nemuc, A.; Stebel, K. Validation of new satellite aerosol optical depth retrieval algorithm using Raman LIDAR observations at radiative transfer laboratory in Warsaw. EPJ Web Conf. 2018, 176, 04008. [Google Scholar] [CrossRef] [Green Version]
- Zawadzka-Manko, O.; Stachlewska, I.S.; Markowicz, K.M. Near-Real-Time Application of SEVIRI Aerosol Optical Depth Algorithm. Remote Sens. 2020, 12, 1481. [Google Scholar] [CrossRef]
- Brent, N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Boldeanu, M.; Nemuc, A.; Nicolae, D.; Nicolae, V.; Ajtai, N.; Stefanie, H.; Diamandi, A.; Dumitrache, R.; Stachlewska, I.; Zawadzka, O.; et al. Estimation of particulate matter concentration using SEVIRI and model data. Geophysical Research Abstracts Volume 21, EGU2019-14068. 2019. Poster presentation, EGU General Assembly 2019. Available online: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-14068.pdf (accessed on 31 July 2020).
- Nicolae, D.; Vasilescu, J.; Talianu, C.; Binietoglou, I.; Nicolae, V.; Andrei, S.; Antonescu, B. A neural network aerosol-typing algorithm based on LIDAR data. Atmos. Chem. Phys. 2018, 18, 14511–14537. [Google Scholar] [CrossRef] [Green Version]
- Koepke, P.; Hess, M.; Schult, I.; Shettle, E.P. Global Aerosol Data Set. In Report No. 243 of the Max-Planck-Institut für Meteorologie; Max-Planck-Institut für Meteorologie: Hamburg, Germany, 1997; ISSN 0937-1060. Available online: https://mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_243.pdf (accessed on 30 October 2018).
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 2000, 39, 1026–1031. Available online: https://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html (accessed on 30 October 2018). [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Horálek, J.; Denby, B.; de Smet, P.; de Leeuw, F.; Kurfürst, P.; Swart, R.; van Noije, T. Spatial mapping of air quality for European scale assessment. ETC/ACC Technical Paper 2006/6. 2007. Available online: http://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etcacc_technpaper_2006_6_spat_aq (accessed on 31 July 2020).
- Horálek, J.; de Smet, P.; de Leeuw, F.; Kurfürst, P.; Benešová, N. European air quality maps for 2014. ETC/ACM Technical Paper 2016/6. 2016. Available online: http://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etcacm_tp_2016_6_aqmaps2014 (accessed on 31 July 2020).
- Denby, B.; Schaap, M.; Segers, A.; Builtjes, P.; Horálek, J. Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale. Atmos. Environ. 2008, 42, 7122–7134. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; Wiley Series: New York, NY, USA, 1993. [Google Scholar]
- Agencija za zaštitu okoliša. ISZO-Informacijski sustav zaštite okoliša [Croatian Environment Agency-Air Quality Information System, in Croatian]. Available online: http://iszo.azo.hr/ (accessed on 6 December 2020).
- Air Quality e-Reporting (AQ e-Reporting). Available online: https://www.eea.europa.eu/data-and-maps/data/aqereporting-8 (accessed on 6 December 2020).
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model–technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef] [Green Version]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); U.S. Geological Survey Open-File Report 2011–1073, US Department of the Interior: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Eurostat. GEOSTAT 2011 Grid Dataset. Population Distribution Dataset. 2014. Available online: http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography (accessed on 31 July 2020).
- Diamandi, A. SiAiR-Satellite & in-situ Information for Advanced Air Quality Forecast Services project, ESRIN/Contract No. 44000110941/LG/I-LG. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiUxJqHg4DxAhW9xosBHafjDyQQFnoECAQQAA&url=http%3A%2F%2Fseom.esa.int%2Fatmos2015%2Ffiles%2Fpresentation215.pdf&usg=AOvVaw3r2U8kpXHY5PqgvdYx-mAw (accessed on 31 July 2020).
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- CHMI. Air Pollution in the Czech Republic in 2018, Graphical Yearbook (Czech/English); Czech Hydrometeorological Institute: Prague, Czech Republic, 2019. [Google Scholar]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 km resolution aerosol optical depth product: Global evaluation and uncertainty analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Ajtai, N.; Mereuta, A.; Stefanie, H.; Radovici, A.; Botezan, C.; Zawadzka-Manko, O.; Stachlewska, I.S.; Stebel, K.; Zehner, C. SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe. Remote Sens. 2021, 13, 844. [Google Scholar] [CrossRef]
- Ingmann, P.; Veihelmann, B.; Langen, J.; Lamarre, D.; Stark, H.; Courrèges-Lacoste, G.B. Requirements for the GMES Atmosphere Service and ESA’s implementation concept: Sentinels-4/-5 and -5p. Remote Sens. Environ. 2012, 120, 58–69. [Google Scholar] [CrossRef]
- Popp, T.; De Leeuw, G.; Bingen, C.; Brühl, C.; Capelle, V.; Chedin, A.; Clarisse, L.; Dubovik, O.; Grainger, R.; Griesfeller, J.; et al. Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sens. 2016, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Horálek, J.; de Smet, P.; Schneider, P.; Maiheu, B.; de Leeuw, F.; Janssen, S.; Benešová, N.; Lefebvre, W. Satellite Data Inclusion and Kernel Based Potential Improvements in NO2 Mapping. ETC/ACM Technical Paper 14/2017. 2018. Available online: http://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etcacm_tp_2017_14_improved_aq_no2mapping (accessed on 31 July 2020).
SAMIRA Products | Datasets Used for Product Development | Datasets Suitable for Validation |
---|---|---|
(Methodology) | ||
SEVIRI AOD | all days: reflectance from SEVIRI | AOD from AERONET, the Poland |
reference day: AOD from AERONET, | AOD network and MODIS | |
Poland AOD network, and CAMS | (statistical scores) | |
PM2.5 from AOD | SEVIRI AOD from SAMIRA | PM2.5 from ground–based national |
WRF-Chem model output | air quality networks (correlation) | |
Data fusion | AQIS database data for Czech Republic | Subsets not used in the analysis |
NO2, SO2, PM2.5 | CAMx output, auxiliary data | (cross-validation) |
AOD, PM2.5 from SAMIRA | ||
NO2, SO2 from OMI, GOME-2, TROPOMI | ||
Downscaling | AOD, PM2.5 from SAMIRA | Synthetic data, satellite data |
NO2, SO2 | NO2, SO2 from OMI, TROPOMI | with higher spatial resolution |
AOD, PM2.5 | Model output (WRF-Chem, WRF-EMEP) | (statistical scores) |
QUARK NO2 |
Data | Domain | N | R | Bias | RMSE |
---|---|---|---|---|---|
AERONET | Romania | 982 | 0.62 | 0.12 | 0.14 |
AERONET | Poland | 289 | 0.61 | 0.10 | 0.12 |
POLAND-AOD | Poland | 544 | 0.61 | 0.09 | 0.12 |
MODIS | Romania | 90,740 | 0.32 | 0.11 | 0.15 |
MODIS | Poland | 48,912 | 0.39 | 0.09 | 0.14 |
MODIS | Czech Republic | 16,154 | 0.35 | 0.07 | 0.15 |
Country | Temporal | WRF-Chem, all | All Stations | Representative Stations |
---|---|---|---|---|
Average | /Representative Stations | (Number of Stations) | (Number of Stations) | |
Poland | hourly | 0.32/0.30 | 0.40 (36) | 0.56 (16) |
Czech Republic | hourly | 0.25/0.27 | 0.41 (35) | 0.49 (13) |
Romania | daily | 0.44 | 0.53 (09) |
Rural Areas | Urban Background Areas | |||
---|---|---|---|---|
RMSE | Bias | RMSE | Bias | |
NO2 daily | 3.37| 3.24 | −0.06| | 5.18|5.14 | −0.01| 0.02 |
NO2 hourly | 5.46| 5.22 | −0.01| 0.00 | 8.96 |9.04 | 0.10| 0.12 |
SO2 daily | 3.68| 3.61 | 0.04| 0.04 | 5.56|5.53 | −0.11|−0.07 |
SO2 hourly | 5.75| 5.59 | 0.09| 0.03 | 5.93|5.91 | −0.10|−0.04 |
PM10AOD daily | 4.76| 4.57 | −0.14| 0.00 | 5.06 |5.17 | −0.18|−0.12 |
PM10AOD hourly | 14.00|12.50 | 1.24| 0.01 | 13.28|8.26 | 0.77|−0.13 |
PM2.5AOD,PM2.5 daily | 4.17|3.39|3.65 | 0.02|0.00|−0.01 | 4.35|4.60|4.19 | 0.07|−0.15|−0.10 |
PM2.5AOD,PM2.5 hourly | 7.26|7.07|6.98 | −0.07|0.00| 0.01 | 9.29|8.26|8.67 | 0.13|−0.13|−0.16 |
Rural Areas | Urban Background Areas | |||||
---|---|---|---|---|---|---|
RMSE | Bias | R2 | RMSE | Bias | R2 | |
NO2 | 2.83|2.11 | 0.03|0.00 | 0.33|0.63 | 3.52|3.48 | 0.24| 0.15 | 0.42| 0.43 |
SO2 | 3.11|2.98 | −0.13|−0.13 | 0.25|0.31 | 2.97|2.75 | 0.01| −0.30 | 0.21|0.33 |
Method | Covariate | Mean Bias | SD | MAE | RMSE | Intercept | Slope | R |
---|---|---|---|---|---|---|---|---|
Bilinear interpolation | no | 0.04 | 1.42 | 1.13 | 1.42 | −0.73 | 1.04 | 0.91 |
Area-to-point kriging | no | −0.01 | 1.32 | 1.05 | 1.32 | −0.54 | 1.03 | 0.93 |
Simple linear regression | yes | −0.02 | 1.46 | 1.15 | 1.46 | 0.96 | 0.95 | 0.91 |
Robust linear regression | yes | 0.11 | 1.59 | 1.26 | 1.59 | .11 | 1.17 | 0.91 |
Area-to-point kriging | yes | 0.00 | 0.69 | 0.54 | 0.69 | 0.95 | 0.95 | 0.98 |
Dataset | Mean Bias | SD | MAE | RMSE | Intercept | Slope | R2 |
---|---|---|---|---|---|---|---|
OMI Original | 0.22 | 0.43 | 0.40 | 0.48 | 1.25 | 0.61 | 0.53 |
OMI Downscaled | 0.23 | 0.34 | 0.34 | 0.40 | 0.77 | 0.79 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stebel, K.; Stachlewska, I.S.; Nemuc, A.; Horálek, J.; Schneider, P.; Ajtai, N.; Diamandi, A.; Benešová, N.; Boldeanu, M.; Botezan, C.; et al. SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sens. 2021, 13, 2219. https://doi.org/10.3390/rs13112219
Stebel K, Stachlewska IS, Nemuc A, Horálek J, Schneider P, Ajtai N, Diamandi A, Benešová N, Boldeanu M, Botezan C, et al. SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sensing. 2021; 13(11):2219. https://doi.org/10.3390/rs13112219
Chicago/Turabian StyleStebel, Kerstin, Iwona S. Stachlewska, Anca Nemuc, Jan Horálek, Philipp Schneider, Nicolae Ajtai, Andrei Diamandi, Nina Benešová, Mihai Boldeanu, Camelia Botezan, and et al. 2021. "SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality" Remote Sensing 13, no. 11: 2219. https://doi.org/10.3390/rs13112219
APA StyleStebel, K., Stachlewska, I. S., Nemuc, A., Horálek, J., Schneider, P., Ajtai, N., Diamandi, A., Benešová, N., Boldeanu, M., Botezan, C., Marková, J., Dumitrache, R., Iriza-Burcă, A., Juras, R., Nicolae, D., Nicolae, V., Novotný, P., Ștefănie, H., Vaněk, L., ... Zehner, C. (2021). SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sensing, 13(11), 2219. https://doi.org/10.3390/rs13112219