Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor
"> Figure 1
<p>Study design of the TIMELINE Level 2 LST validation. Photographs of the SURFRAD in situ measurement sites by [<a href="#B42-remotesensing-13-03473" class="html-bibr">42</a>]. Example of a MODIS LST product by [<a href="#B43-remotesensing-13-03473" class="html-bibr">43</a>].</p> "> Figure 2
<p>Overview map of TIMELINE project area extent as well as the validation sites. The background map shows average LST from MODIS in April 2010.</p> "> Figure 3
<p>Aerial view (Google Earth) of the in situ measurement sites. The red star marks the coordinate of the site, and the square marks the size of an AVHRR pixel.</p> "> Figure 4
<p>TIMELINE LST against in situ LST at all 10 in situ stations.</p> "> Figure 5
<p>Observed matches between TIMELINE and MODIS LST.</p> "> Figure 6
<p>Boxplots of the difference between TIMELINE and MODIS LST and valid pixel count for each overlap from 2003 to 2008 (<b>top</b>) and 2009 to 2014 (<b>bottom</b>).</p> "> Figure 7
<p>(<b>a</b>) MD between TIMELINE and MODIS LST in summer (April–September); (<b>b</b>) MD between TIMELINE and MODIS LST in winter (October–March); (<b>c</b>) MAD between TIMELINE and MODIS LST; (<b>d</b>) MAD between TIMELINE and MODIS emissivity.</p> "> Figure 7 Cont.
<p>(<b>a</b>) MD between TIMELINE and MODIS LST in summer (April–September); (<b>b</b>) MD between TIMELINE and MODIS LST in winter (October–March); (<b>c</b>) MAD between TIMELINE and MODIS LST; (<b>d</b>) MAD between TIMELINE and MODIS emissivity.</p> "> Figure 8
<p>Boxplots of the difference between TIMELINE and in situ LST stratified for the in situ sites and classified for (<b>a</b>) LST (TCWV < 50 kg/m<sup>2</sup>; VA < 50°) (<b>b</b>) TCWV (LST < 315 K; VA < 50°) and (<b>c</b>) VA (LST < 315 K; TCWV < 50 kg/m<sup>2</sup>).</p> "> Figure 9
<p>Boxplots of the difference between TIMELINE and MODIS LST classified for (<b>a</b>) LST (TCWV < 50 kg/m<sup>2</sup>; VA < 50°), (<b>b</b>) TCWV (LST < 315 K; VA < 50°), (<b>c</b>) VA (LST < 315 K; TCWV < 50 kg/m<sup>2</sup>) and (<b>d</b>) the difference between TIMELINE and MODIS emissivity (LST < 315 K; TCWV < 50 kg/m<sup>2</sup>; VA < 50°).</p> "> Figure 9 Cont.
<p>Boxplots of the difference between TIMELINE and MODIS LST classified for (<b>a</b>) LST (TCWV < 50 kg/m<sup>2</sup>; VA < 50°), (<b>b</b>) TCWV (LST < 315 K; VA < 50°), (<b>c</b>) VA (LST < 315 K; TCWV < 50 kg/m<sup>2</sup>) and (<b>d</b>) the difference between TIMELINE and MODIS emissivity (LST < 315 K; TCWV < 50 kg/m<sup>2</sup>; VA < 50°).</p> "> Figure 10
<p>Difference between TIMELINE and MODIS LST stratified by the emissivity classes [<a href="#B57-remotesensing-13-03473" class="html-bibr">57</a>] in summer and winter.</p> "> Figure 11
<p>Monthly model parameters for the DTC models at Algeria3, DN and EV.</p> "> Figure 12
<p>Original LST time series at Algeria3, EV and DN. The red trend line was calculated using a generalized additive model (GAM).</p> "> Figure 13
<p>Time series from <a href="#remotesensing-13-03473-f012" class="html-fig">Figure 12</a> modeled to 14.30 h true solar time with Equation (6) and the parameters <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>m</mi> </msub> </mrow> </semantics></math> from <a href="#remotesensing-13-03473-f011" class="html-fig">Figure 11</a>. The red trend line was calculated using a generalized additive model (GAM).</p> "> Figure 14
<p>LSTs from NOAA-9, 10, 11, 12, 14, 15, 16, 17, 18 and 19 at Algeria3, DN and EV for days with multiple observations normalized to 14:30 solar time.</p> ">
Abstract
:1. Introduction
- (a)
- How accurate is the TIMELINE AVHRR LST product?
- (b)
- How robust is it to variances in TCWV, VA and land cover?
- (c)
- How consistent is the TIMELINE AVHRR LST over different LST ranges and over time?
2. Materials and Methods
2.1. Study Area and Period
2.2. AVHRR LST
2.2.1. LST Derivation Algorithm
2.2.2. AVHRR Data
2.2.3. Auxiliary Data: TCWV, Tatm and Land Cover Data
2.2.4. LST Quality and Uncertainty
2.2.5. Daytime Normalization
2.3. MODIS LST
2.4. In Situ LST
2.5. Validation Approach
3. Results
3.1. Assessment of the TIMELINE LST Accuracy
3.1.1. Comparison to In Situ LST
3.1.2. Comparison to MODIS LST
3.2. Robustness of the LST Derivation Approach
3.2.1. Robustness to Variances in LST, TCWV, and VA
3.2.2. Land Cover and Emissivity
3.3. Assessment of the TIMELINE LST Consistency
4. Discussion
4.1. TIMELINE LST Accuracy
4.1.1. Comparison between TIMELINE LST and In Situ LST
4.1.2. Comparison between TIMELINE LST and MODIS LST
4.2. Robustness of the LST Derivation Approach
4.2.1. Robustness to Variances in LST, TCWV and VA
4.2.2. Land Surface Emissivity
4.3. Time Series Consistency
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Meteorological Organization. Essential Climate Variables. Available online: https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables (accessed on 7 April 2021).
- Kerr, Y.H.; Lagouarde, J.P.; Imbernon, J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sens. Environ. 1992, 41, 197–209. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Frey, C.; Kuenzer, C.; Dech, S. Assessment of Mono- and Split-Window Approaches for Time Series Processing of LST from AVHRR—A TIMELINE Round Robin. Remote Sens. 2017, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Prata, A.; Platt, C. Land surface temperature measurements from the AVHRR. In Proceedings of the 5th AVHRR Data Users’ Meeting, Tromso, Norway, 25–28 June 1991. [Google Scholar]
- Price, J.C. Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. 1984, 89, 7231. [Google Scholar] [CrossRef]
- Ulivieri, C.; Castronuovo, M. A split window algorithm for estimating land surface temperature from satellites. Adv. Space Res. 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Vazquez, D.P.; Reyes, F. A comparative study of algorithms for estimating land surface temperature from AVHRR. Remote Sens. Environ. 1997, 62, 215–222. [Google Scholar] [CrossRef]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol. version 1.1. In Best Practice for Satellite-Derived Land Product Validation; CEOS WGCV Land Product Validation Subgroup: Washington, DC, USA, 2018; p. 60. [Google Scholar]
- Wan, Z.; Dozier, J.A. A generalized split-window algorithm for retrieving-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land surface temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.; Bork-Unkelbach, A.; Martin, M. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.C.; Trigo, I.F.; Bioucas-Dias, J.M.; Gottsche, F.-M. Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat. IEEE Trans. Geosci. Remote Sens. 2010, 48, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhou, J.; Göttsche, F.-M.; Long, Z.; Ma, J.; Luo, R. Investigation and validation of algorithms for estimating land surface temperature from Sentinel-3 SLSTR data. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102136. [Google Scholar] [CrossRef]
- Prata, F. Land Surface Temperature Measurement from space: AATSR algorithm theoretical basis document. In Contract Report to ESA, CSIRO Atmospheric Research; Aspendale: Victoria, Australia, 2002; pp. 1–34. [Google Scholar]
- Ouyang, X.; Chen, D.; Duan, S.-B.; Lei, Y.; Dou, Y.; Hu, G. Validation and Analysis of Long-Term AATSR Land Surface Temperature Product in the Heihe River Basin, China. Remote Sens. 2017, 9, 152. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Li, R.; Qiu, R.; Liu, S.; Tan, C.; Li, Q.; Ge, W.; Han, X.; Tang, X.; Shi, W.; et al. Global Land Surface Temperature Influenced by Vegetation Cover and PM2.5 from 2001 to 2016. Remote Sens. 2018, 10, 2034. [Google Scholar] [CrossRef] [Green Version]
- Sruthi, S.; Aslam, M.M. Agricultural Drought Analysis Using the NDVI and Land Surface Temperature Data; a Case Study of Raichur District. Aquat. Procedia 2015, 4, 1258–1264. [Google Scholar] [CrossRef]
- Delogu, E.; Boulet, G.; Olioso, A.; Garrigues, S.; Brut, A.; Tallec, T.; Demarty, J.; Soudani, K.; Lagouarde, J.-P. Evaluation of the SPARSE Dual-Source Model for Predicting Water Stress and Evapotranspiration from Thermal Infrared Data over Multiple Crops and Climates. Remote Sens. 2018, 10, 1806. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Neteler, M. Time series processing of MODIS satellite data for landscape epidemiological applications. Int. J. Geoinf. 2005, 1, 133–138. [Google Scholar]
- Weiss, D.J.; Mappin, B.; Dalrymple, U.; Bhatt, S.; Cameron, E.; Hay, S.I.; Gething, P.W. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: A data-intensive variable selection approach. Malar. J. 2015, 14, 68. [Google Scholar] [CrossRef] [Green Version]
- Walz, Y.; Wegmann, M.; Dech, S.; Vounatsou, P.; Poda, J.-N.; N’Goran, E.K.; Utzinger, J.; Raso, G. Modeling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing. PLoS Negl. Trop. Dis. 2015, 9, e0004217. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.C.A.; Lwambo, N.J.S.; Blair, L.; Nyandindi, U.; Kaatano, G.; Kinung’hi, S.; Webster, J.P.; Fenwick, A.; Brooker, S. Bayesian spatial analysis and disease mapping: Tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop. Med. Int. Health 2006, 11, 490–503. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Pareeth, S.; Salmaso, N.; Adrian, R.; Neteler, M. Homogenised daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake. Sci. Rep. 2016, 6, 31251. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Wan, W.; Xie, H.; Li, H.; Zhu, S.; Zhang, G.; Wen, L.; Hong, Y. A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981-2015. Sci. Data 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Heidinger, A.; Ackerman, S.; McIntyre, P. A Long-Term Fine-Resolution Record of AVHRR Surface Temperatures for the Laurentian Great Lakes. Remote Sens. 2018, 10, 1210. [Google Scholar] [CrossRef] [Green Version]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- Krehbiel, C.; Henebry, G. A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest. Remote Sens. 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, J.; Chapman, L.; Muller, C. Quantifying the Daytime and Night-Time Urban Heat Island in Birmingham, UK: A Comparison of Satellite Derived Land Surface Temperature and High Resolution Air Temperature Observations. Remote Sens. 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.; Wu, Y.; Xiong, D.; Wen, F.; Li, A. An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sens. 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Comiso, J.C.; DiGirolamo, N.E.; Shuman, C.A.; Key, J.R.; Koenig, L.S. A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet. J. Clim. 2012, 25, 4785–4798. [Google Scholar] [CrossRef]
- Zheng, W.; Wei, H.; Wang, Z.; Zeng, X.; Meng, J.; Ek, M.; Mitchell, K.; Derber, J. Improvement of daytime land surface skin temperature over arid regions in the NCEP GFS model and its impact on satellite data assimilation. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Augustine, J.A.; DeLuisi, J.J.; Long, C.N. SURFRAD—A National Surface Radiation Budget Network for Atmospheric Research. Bull. Amer. Meteor. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef] [2.3.CO;2" target='_blank'>Green Version]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Dietz, A.; Frey, C.; Ruppert, T.; Bachmann, M.; Kuenzer, C.; Dech, S. Automated Improvement of Geolocation Accuracy in AVHRR Data Using a Two-Step Chip Matching Approach—A Part of the TIMELINE Preprocessor. Remote Sens. 2017, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, M.; Tungalagsaikhan, P.; Ruppert, T.; Dech, S. Calibration and Pre-processing of a Multi-decadal AVHRR Time Series. In Remote Sensing Time Series: Revealing Land Surface Dynamics; Kuenzer, C., Dech, S., Wagner, W., Eds.; Springer: Cham, Switzerland, 2015; pp. 43–74. ISBN 978-3-319-15967-6. [Google Scholar]
- Dietz, A.; Klein, I.; Gessner, U.; Frey, C.; Kuenzer, C.; Dech, S. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor. Remote Sens. 2017, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Klüser, L.; Killius, N.; Gesell, G. APOLLO_NG–A probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels. Atmos. Meas. Tech. 2015, 8, 4155–4170. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Skokovic, D.; Sobrino, J.A.; Jimenez-Munoz, J.C. Vicarious Calibration of the Landsat 7 Thermal Infrared Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profiles. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1804–1811. [Google Scholar] [CrossRef]
- EUMETSAT. AVHRR Level 1b Product Guide; EUMETSAT: Darmstadt, Germany, 2011. [Google Scholar]
- Cho, A.-R.; Choi, Y.-Y.; Suh, M.-S. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect. Remote Sens. 2015, 7, 1777–1797. [Google Scholar] [CrossRef] [Green Version]
- Berrisford, P.; Dee, D.; Fielding, K.; Fuentes, M.; Kallberg, P.; Shinya, K.; Uppala, S. The ERA-Interim Archive, Version 1.0; European Centre for Medium Range Weather Forecasts: Reading, UK, 2009. [Google Scholar]
- Borbas, E.; Wetzel Seemann, S.; Huang, H.-L.; Li, J.; Menzel, W.P. Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. In Proceedings of the XIV International ATOVS Study Conference, Beijing, China, 25–31 May 2005. [Google Scholar]
- Sobrino, J.A.; Coll, C.; Caselles, V. Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote Sens. Environ. 1991, 38, 19–34. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q.J.R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Caselles, E.; Valor, E.; Abad, F.; Caselles, V. Automatic classification-based generation of thermal infrared land surface emissivity maps using AATSR data over Europe. Remote Sens. Environ. 2012, 124, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; van Bogaert, E.; Arino, O.; Kalogirou, V.; Perez, J.R. GLOBCOVER 2009: Products Description and Validation Report; European Space Agency: Paris, France, 2011. [Google Scholar]
- Bicheron, P.; Defourny, P.; Brockmann, C.; Schouten, L.; Vancutsem, C.; Huc, M.; Bontemps, S.; Leroy, M.; Achard, F.; Herold, M.; et al. GLOBCOVER: Products Description and Validation Report; MEDIAS-France: Toulouse, France, 2008. [Google Scholar]
- Santoro, M.; Kirches, G.; Wevers, J.; Boettcher, M.; Brockmann, C.; Lamarche, C.; Bontemps, S.; Moreau, I.; Defourny, P. Land Cover CCI. In Product User Guide: Version 2.0; Université Catholique de Louvain: Louvain-la-Neuve, Belgium, 2017. [Google Scholar]
- Trishchenko, A.P. Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- Göttsche, F.M.; Olesen, F.-S. Modeling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens. Environ. 2001, 337–348. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.-H.; Yan, G.; Li, Z.-L.; Liang, S. Retrieval of Global Orbit Drift Corrected Land Surface Temperature from Long-term AVHRR Data. Remote Sens. 2019, 11, 2843. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Hook, S.; Hulley, G. MYD11_L2 MODIS/Aqua Land Surface Temperature/Emissivity 5-Min L2 Swath 1km V006; USGS: Reston, VA, USA, 2015. [Google Scholar]
- Lu, L.; Zhang, T.; Wang, T.; Zhou, X. Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote Sens. 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Wan, Z. Collection-6 MODIS Land Surface Temperature Products Users’ Guide; University of California: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Göttsche, F.M.; Olesen, F.S.; Hulley, G. Validation of remotely sensed surface temperature over an oak woodland landscape—The problem of viewing and illumination geometries. Remote Sens. Environ. 2014, 148, 16–27. [Google Scholar] [CrossRef]
- Wang, K. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11C3 MODIS/Terra Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006. Available online: https://lpdaac.usgs.gov/products/mod11c3v006/ (accessed on 23 November 2020).
- Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Agric. For. Meteorol. 1995, 77, 153–166. [Google Scholar] [CrossRef]
- Ermida, S.L.; DaCamara, C.C.; Trigo, I.F.; Pires, A.C.; Ghent, D.; Remedios, J. Modelling directional effects on remotely sensed land surface temperature. Remote Sens. Environ. 2017, 190, 56–69. [Google Scholar] [CrossRef] [Green Version]
- Bacour, C.; Briottet, X.; Bréon, F.-M.; Viallefont-Robinet, F.; Bouvet, M. Revisiting Pseudo Invariant Calibration Sites (PICS) Over Sand Deserts for Vicarious Calibration of Optical Imagers at 20 km and 100 km Scales. Remote Sens. 2019, 11, 1166. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Treadon, R.E. Correcting the orbit drift effect on AVHRR land surface skin temperature measurements. Int. J. Remote Sens. 2003, 24, 4543–4558. [Google Scholar] [CrossRef]
- Numpy.random.choice—NumPy v1.21 Manual. Available online: https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html (accessed on 24 June 2021).
- Martin, M.; Ghent, D.; Pires, A.; Göttsche, F.-M.; Cermak, J.; Remedios, J. Comprehensive In Situ Validation of Five Satellite Land Surface Temperature Data Sets over Multiple Stations and Years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Frey, C.M.; Kuenzer, C.; Dech, S. Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. Int. J. Remote Sens. 2012, 33, 7165–7183. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, J.; Göttsche, F.-M.; Liang, S.; Wang, S.; Li, M. A global long-term (1981–2000) land surface temperature product for NOAA AVHRR. Earth Syst. Sci. Data 2020, 12, 3247–3268. [Google Scholar] [CrossRef]
- Yu, W.; Ma, M.; Wang, X.; Geng, L.; Tan, J.; Shi, J. Evaluation of MODIS LST Products Using Longwave Radiation Ground Measurements in the Northern Arid Region of China. Remote Sens. 2014, 6, 11494–11517. [Google Scholar] [CrossRef] [Green Version]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M.; Wald, A. Measurements of thermal infrared spectral reflectance of frost, snow, and ice. J. Geophys. Res. 1994, 99, 24235–24240. [Google Scholar] [CrossRef]
- Jin, M. Analysis of Land Skin Temperature Using AVHRR Observations. Bull. Amer. Meteor. Soc. 2004, 85, 587–600. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Atitar, M.; Nerry, F. NOAA-AVHRR Orbital Drift Correction From Solar Zenithal Angle Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4014–4019. [Google Scholar] [CrossRef]
- Gutman, G.G. On the monitoring of land surface temperatures with the NOAA/AVHRR: Removing the effect of satellite orbit drift. Int. J. Remote Sens. 1999, 20, 3407–3413. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Correcting AVHRR Long Term Data Record V3 estimated LST from orbital drift effects. Remote Sens. Environ. 2012, 123, 207–219. [Google Scholar] [CrossRef]
Station Name | Lat | Long | Land Cover at the Station | Land Cover Around the Station | Emissivity Classes | Validation Period |
---|---|---|---|---|---|---|
BND | 40 | −88.3 | Grassland | Cropland | 3 | 2010–2013 |
BO | 40.1 | −105.2 | Sparse grassland | Grassland/cropland | 3 | 2010–2013 |
DR | 36.6 | −116 | Arid shrubland | Arid shrubland | 4 | 2010–2013 |
FP | 48.3 | −105.1 | Grassland | Grassland | 3 | 2010–2013 |
GC | 34.2 | −89.9 | Grassland | Grassland | 3 | 2010–2013 |
PEN | 40.7 | −77.9 | Cropland | Cropland/forest | 3 | 2010–2013 |
SF | 43.7 | −96.6 | Grassland | Grassland | 3 | 2010–2013 |
HE | −22.9 | 18 | Arid grassland | Arid grassland | 3 | 2010,2013 |
EV | 37 | −6.4 | Open savannah | Savannah, 33% Tree Crown cover | 3 | 2010 |
DN | 38.5 | −8 | Grassland | Grassland | 3 | 2011–2013 |
Station Name | Mean MODIS LST—In Situ LST (K) | Mean TIMELINE LST—In Situ LST (K) | MD Difference (K) |
---|---|---|---|
BND | 1.12 | 2.81 | 1.69 |
BO | −0.17 | −0.77 | −0.6 |
FP | 0.23 | 2.35 | 2.12 |
GC | −2.51 | −0.72 | 1.79 |
PEN | −1.55 | 0.39 | 1.94 |
SF | −1.37 | 1.31 | 2.68 |
EV | −1.6 | 0.61 | 2.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiners, P.; Asam, S.; Frey, C.; Holzwarth, S.; Bachmann, M.; Sobrino, J.; Göttsche, F.-M.; Bendix, J.; Kuenzer, C. Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor. Remote Sens. 2021, 13, 3473. https://doi.org/10.3390/rs13173473
Reiners P, Asam S, Frey C, Holzwarth S, Bachmann M, Sobrino J, Göttsche F-M, Bendix J, Kuenzer C. Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor. Remote Sensing. 2021; 13(17):3473. https://doi.org/10.3390/rs13173473
Chicago/Turabian StyleReiners, Philipp, Sarah Asam, Corinne Frey, Stefanie Holzwarth, Martin Bachmann, Jose Sobrino, Frank-M. Göttsche, Jörg Bendix, and Claudia Kuenzer. 2021. "Validation of AVHRR Land Surface Temperature with MODIS and In Situ LST—A TIMELINE Thematic Processor" Remote Sensing 13, no. 17: 3473. https://doi.org/10.3390/rs13173473