Anisotropy Parameterization Development and Evaluation for Glacier Surface Albedo Retrieval from Satellite Observations
"> Figure 1
<p>Locations of the eight study glaciers with their AWSs. Glacier outlines are taken from the Randolph Glacier Inventory 6.0.</p> "> Figure 2
<p>Broadband albedo from AWSs versus broadband albedo from overlapping L8/OLI pixels with the Knap and Liang methods for six of the study glaciers for which observations overlapped with L8/OLI images (<a href="#remotesensing-13-01714-t001" class="html-table">Table 1</a>) (<b>a</b>–<b>f</b>).</p> "> Figure 3
<p>(<b>a</b>–<b>d</b>) Broadband albedo from AWSs versus broadband albedo from overlapping L5/TM pixels with the Knap and Liang methods for four of the study glaciers for which observations overlapped with L5/TM images (<a href="#remotesensing-13-01714-t001" class="html-table">Table 1</a>).</p> "> Figure 4
<p>(<b>a</b>–<b>g</b>) Broadband albedos from the whole overlapping MODIS/Ren and MCD43A3 pixels versus L8/OLI broadband albedo for six study glaciers for which observations overlapped with L8/OLI images (<a href="#remotesensing-13-01714-t001" class="html-table">Table 1</a>). Results for Parlung No.4 Glacier were split into panels (<b>c</b>) and (<b>d</b>) for clarity given the large number of observations.</p> "> Figure 5
<p>(<b>a</b>–<b>e</b>) Broadband albedos from the whole overlapping MODIS/Ren and MCD43A3 pixels versus L5/TM broadband albedo for the four study glaciers for which observations overlapped with L5/TM images (<a href="#remotesensing-13-01714-t001" class="html-table">Table 1</a>). Results for McCall Glacier were split into panels (<b>a</b>) and (<b>b</b>) for clarity given the large number of observations.</p> "> Figure 6
<p>Comparison of albedo among 30 m L8/OLI (<b>a</b>), 500 m L8/OLI aggregated (<b>b</b>), MODIS/Ren (<b>c</b>) and MCD43A3 (<b>d</b>) albedo products over the Parlung No.4 glacier on 6 December 2014. More gaps were observed in the MCD43A3 product than in the MODIS/Ren product because of the absence of valid observations during 28 November–13 December 2014.</p> "> Figure 7
<p>(<b>a</b>–<b>h</b>) Time series of MODIS/Ren, and the MCD43A3 albedo products and field observations for the eight study glaciers. For clarity, only albedo variability for two years is shown.</p> "> Figure 7 Cont.
<p>(<b>a</b>–<b>h</b>) Time series of MODIS/Ren, and the MCD43A3 albedo products and field observations for the eight study glaciers. For clarity, only albedo variability for two years is shown.</p> "> Figure A1
<p>(<b>a</b>–<b>h</b>) Pictures of the AWSs of our eight study glaciers. The green star in (<b>h</b>) represents the position of the AWS of Zongo Glacier.</p> "> Figure A2
<p>Time series of 16-day moving average MODIS/Ren, MCD43A3 albedo product and field observations for the Parlung No.4 Glacier during 2013–2015.</p> "> Figure A3
<p>Histograms of albedo difference between L8/OLI and AWSs (<b>a</b>,<b>b</b>), L5/TM and AWSs (<b>c</b>,<b>d</b>), MODIS and L8/OLI (<b>e</b>), L5/TM (<b>f</b>).</p> "> Figure A4
<p>Comparison of surface reflectance in the visible bands (<b>a</b>: blue; <b>b</b>: green; <b>c</b>: red) of the 500 m L8/OLI aggregated (left), Terra/MODIS (middle) and Aqua/MODIS (right) over the Parlung No.4 Glacier on 6 December 2014 (same day as in <a href="#remotesensing-13-01714-f006" class="html-fig">Figure 6</a> in the main text). The white pixels in the Aqua/MODIS data represent cloud pixels.</p> ">
Abstract
:1. Introduction
2. Study Sites and Datasets
2.1. Study Sites
2.2. Datasets
Region | Glacier | Longitude (°) | Latitude (°) | Start Date, End Date | Elevation (m a.s.l.) | Satellite Data (Numbers of Available Scenes) | References |
---|---|---|---|---|---|---|---|
Alaska | McCall | −143.85 | 69.32 | 05/01/2007, 31/12/2014 | 1720 | L5/TM (10), MODIS | Troxler et al. [41] |
Caucasus | * Djankuat | 42.76 | 43.20 | 15/06/2007, 01/09/2017 | 3000 | L5/TM (15), L8/OLI (12), MODIS | P Rets et al. [42] |
Inner Tibetan Plateau and eastern Himalaya | Zhadang | 90.65 | 30.47 | 01/01/2011, 31/12/2014 | 5660 | L5/TM (15), MODIS | Zhang et al. [2,3] |
Parlung No.4 | 96.93 | 29.25 | 05/01/2012, 20/09/2018 | 4600 | L8/OLI (36), MODIS | Yang et al. [43] | |
Yala | 85.62 | 28.23 | 08/05/2016, 19/11/2019 | 5330 | L8/OLI (28), MODIS | ICIMOD | |
Mera | 86.88 | 27.72 | 01/01/2017, 12/11/2019 | 5769 | L8/OLI (11), MODIS | GLACIOCLIM | |
Andes | Artesonraju | −77.64 | −8.96 | 13/03/2004, 13/05/2013 | 4797 | L5/TM (13), MODIS | Winkler et al. [44] |
Zongo | −68.14 | −16.28 | 06/08/2004, 31/08/2019 | 5050 | L5/TM (24), L8/OLI (18), MODIS | GLACIOCLIM |
3. Methods
3.1. Anisotropy Correction of the Glacier Surface
3.2. Narrowband to Broadband Albedo Conversion
3.3. Glacier Surface Classification and Albedo Validation
4. Results
4.1. Evaluation of the Anisotropy Corrections
4.2. Accuracy of L8/OLI and L5/TM Albedo
4.3. Performance of Our MODIS Albedo Product and MCD43A3
5. Discussion
5.1. Limitations of the Updated Albedo Retrieval Method
5.2. Evaluation of the Albedo Products
5.3. Potential and Future Applications of the Updated Albedo Retrieval Method
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Glacier Surface | Airborne BRDF | L5/TM | L8/OLI | MODIS |
---|---|---|---|---|
Snow | 339 (330–350) | |||
382 (370–390) | ||||
480 (450–495) | band 1 (450–515) | band 2 (450–515) | band 3 (459–479) | |
677 (650–720) | band 3 (630–690) | band 4 (630–680) | band 1 (620–672) | |
873 (835–910) | band 4 (750–900) | band 5 (845–885) | band 2 (841–890) | |
1032 (990–1075) | ||||
1222 (1184–1258) | band 5 (1230–1250) | |||
1275 (1236–1319) | ||||
1649 (1600–1709) | band 5 (1550–1750) | band 6 (1560–1660) | ||
2196 (2140–2260) | band 7 (2090–2350) | band 7 (2100–2300) | band 7 (2105–2155) | |
Ice | 471 (462–482) | band 1 (450–515) | band 2 (450–515) | band 3 (459–479) |
675 (665–684) | band 3 (630–690) | band 4 (630–680) | band 1 (620–672) | |
868 (858–877) | band 4 (750–900) | band 5 (845–885) | band 2 (841–890) | |
1037 (1028–1047) | ||||
1219 (1209–1229) | band 5 (1230–1250) | |||
1271 (1260–1281) | ||||
560 (520–600) | band 4 (545–565) |
Band Name | Range | Difference | |||
---|---|---|---|---|---|
L8/OLI | Terra/MODIS | Aqua/MODIS | Terra/MODIS-L8/OLI | Aqua/MODIS-L8/OLI | |
Blue | 0.16–0.89 | 0.17–0.72 | 0.14–0.70 | −0.09 | −0.08 |
Green | 0.19–0.90 | 0.18–0.77 | 0.16–0.73 | −0.08 | −0.08 |
Red | 0.21–0.90 | 0.17–0.75 | 0.13–0.72 | −0.1 | −0.09 |
References
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Academic Press: Cambridge, MA, USA, 2010; ISBN 9780123694614. [Google Scholar]
- Zhang, G.S.; Kang, S.C.; Fujita, K.; Huintjes, E.; Xu, J.Q.; Yamazaki, T.; Haginoya, S.; Wei, Y.; Scherer, D.; Schneider, C.; et al. Energy and Mass Balance of Zhadang Glacier Surface, Central Tibetan Plateau. J. Glaciol. 2013, 59, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.S.; Kang, S.C.; Cuo, L.; Qu, B. Modeling Hydrological Process in a Glacier Basin on the Central Tibetan Plateau with a Distributed Hydrology Soil Vegetation Model. J. Geophys. Res. 2016, 121, 9521–9539. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.; Rupper, S.; Shean, D.E. Terrain Induced Biases in Clear-Sky Shortwave Radiation Due to Digital Elevation Model Resolution for Glaciers in Complex Terrain. Front. Earth Sci. 2019, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, L.I.; Prinz, R.; Mölg, T.; Kaser, G. Micrometeorological Conditions and Surface Mass and Energy Fluxes on Lewis Glacier, Mt Kenya, in Relation to Other Tropical Glaciers. Cryosphere 2013, 7, 1205–1225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Qin, X.; Li, X.; Zhao, J.; Liu, Y. Estimation of Shortwave Solar Radiation on Clear-Sky Days for a Valley Glacier with Sentinel-2 Time Series. Remote Sens. 2020, 12, 927. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Cuo, L.; Liu, Q. The Energy and Mass Balance of a Continental Glacier: Dongkemadi Glacier in Central Tibetan Plateau. Sci. Rep. 2018, 8, 1–8. [Google Scholar]
- Zhang, Z.; Jiang, L.; Liu, L.; Sun, Y.; Wang, H. Annual Glacier-Wide Mass Balance (2000–2016) of the Interior Tibetan Plateau Reconstructed from MODIS Albedo Products. Remote Sens. 2018, 10, 1031. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Dumont, M.; Wagnon, P.; Berthier, E.; Azam, M.F.; Shea, J.M.; Sirguey, P.; Rabatel, A.; Ramanathan, A. Seasonal Changes in Surface Albedo of Himalayan Glaciers from MODIS Data and Links with the Annual Mass Balance. Cryosphere 2015, 9, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y. Linking Glacier Annual Mass Balance and Glacier Albedo Retrieved from MODIS Data. Cryosphere 2012, 6, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Fugazza, D.; Senese, A.; Azzoni, R.S.; Maugeri, M.; Maragno, D.; Diolaiuti, G.A. New Evidence of Glacier Darkening in the Ortles-Cevedale Group from Landsat Observations. Glob. Planet. Chang. 2019, 178, 35–45. [Google Scholar] [CrossRef]
- Naegeli, K.; Huss, M.; Hoelzle, M. Change Detection of Bare-Ice Albedo in the Swiss Alps. Cryosphere 2019, 13, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Shaw, T.E.; Ulloa, G.; Farías-Barahona, D.; Fernandez, R.; Lattus, J.M.; McPhee, J. Glacier Albedo Reduction and Drought Effects in the Extratropical Andes, 1986–2020. J. Glaciol. 2021, 67, 158–169. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.; et al. First Operational BRDF, Albedo Nadir Reflectance Products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Knap, W.H.; Reijmer, C.H.; Oerlemans, J. Narrowband to Broadband Conversion of Landsat tm Glacier Albedos. Int. J. Remote Sens. 1999, 20, 2091–2110. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to Broadband Conversions of Land Surface Albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy Assessment of the MODIS 16-day Albedo Product for Snow: Comparisons with Greenland in Situ Measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Reijmer, C.H.; Bintanja, R.; Greuell, W. Surface Albedo Measurements over Snow and Blue Ice in Thematic Mapper Bands 2 and 4 in Dronning Maud Land, Antarctica. J. Geophys. Res. 2001, 106, 9661–9672. [Google Scholar] [CrossRef] [Green Version]
- Greuell, W.; De Ruyter De Wildt, M. Anisotropic Reflection by Melting Glacier Ice: Measurements and Parametrizations in Landsat TM bands 2 and 4. Remote Sens. Environ. 1999, 70, 265–277. [Google Scholar] [CrossRef]
- Wang, J.; Ye, B.S.; Cui, Y.H.; He, X.B.; Yang, G.J. Spatial and Temporal Variations of Albedo on Nine Glaciers in Western China from 2000 to 2011. Hydrol. Process. 2014, 28, 3454–3465. [Google Scholar] [CrossRef]
- Pope, A.; Rees, W.G. Impact of Spatial, Spectral, and Radiometric Properties of Multispectral Imagers on Glacier Surface Classification. Remote Sens. Environ. 2014, 141, 1–13. [Google Scholar] [CrossRef]
- Pope, E.L.; Willis, I.C.; Pope, A.; Miles, E.S.; Arnold, N.S.; Rees, W.G. Contrasting Snow and Ice Albedos Derived from MODIS, Landsat ETM+ and Airborne Data from Langjökull, Iceland. Remote Sens. Environ. 2016, 175, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Klok, E.J.; Greuell, W.; Oerlemans, J. Temporal and Spatial Variation of the Surface Albedo of Morteratschgletscher, Switzerland, as Derived from 12 Landsat Images. J. Glaciol. 2004, 49, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Naegeli, K.; Damm, A.; Huss, M.; Wulf, H.; Schaepman, M.; Hoelzle, M. Cross-Comparison of Albedo Products for Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data. Remote Sens. 2017, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Kaspari, S.; Painter, T.H.; Gysel, M.; Skiles, S.M.; Schwikowski, M. Seasonal and Elevational Variations of Black Carbon and Dust in Snow and Ice in the Solu-Khumbu, Nepal and Estimated Radiative Forcings. Atmos. Chem. Phys. 2014, 14, 8089–8103. [Google Scholar] [CrossRef]
- Williamson, S.N.; Copland, L.; Thomson, L.; Burgess, D. Comparing Simple Albedo Scaling Methods for Estimating Arctic Glacier Mass Balance. Remote Sens. Environ. 2020, 246, 111858. [Google Scholar] [CrossRef]
- Gatebe, C.K.; King, M.D. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications. Remote Sens. Environ. 2016, 179, 131–148. [Google Scholar] [CrossRef]
- Naegeli, K.; Damm, A.; Huss, M.; Schaepman, M.; Hoelzle, M. Imaging Spectroscopy to Assess the Composition of Ice Surface Materials and their Impact on Glacier Mass Balance. Remote Sens. Environ. 2015, 168, 388–402. [Google Scholar] [CrossRef]
- Dumont, M.; Brissaud, O.; Picard, G.; Schmitt, B.; Gallet, J.C.; Arnaud, Y. High-Accuracy Measurements of Snow Bidirectional Reflectance Distribution Function at Visible and NIR Wavelengths-Comparison with Modelling Results. Atmos. Chem. Phys. 2010, 10, 2507–2520. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Gatebe, C.K.; Kahn, R.; Brandt, R.; Redemann, J.; Russell, P.; King, M.D.; Pedersen, C.A.; Gerland, S.; Poudyal, R.; et al. Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign. Atmos. Chem. Phys. 2010, 10, 4359–4375. [Google Scholar] [CrossRef] [Green Version]
- Perovich, D.K. Complex yet Translucent: The Optical Properties of Sea Ice. Phys. B Condens. Matter 2003, 338, 107–114. [Google Scholar] [CrossRef]
- Warren, S.G. Optical Properties of Ice and Snow. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180161. [Google Scholar] [CrossRef]
- Yue, X.; Li, Z.; Zhao, J.; Fan, J.; Takeuchi, N.; Wang, L. Variation in Albedo and Its Relationship With Surface Dust at Urumqi Glacier No. 1 in Tien Shan, China. Front. Earth Sci. 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Zender, C.S. Arctic and Antarctic Diurnal and Seasonal Variations of Snow Albedo from Multiyear Baseline Surface Radiation Network Measurements. J. Geophys. Res. Earth Surf. 2011, 116, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, C.A.; Sharp, M. Spatiotemporal Variability of Canadian High Arctic Glacier Surface Albedo from MODIS Data, 2001–2016. Cryosphere 2018, 12, 701–720. [Google Scholar] [CrossRef] [Green Version]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Troxler, P.; Ayala, Á.; Shaw, T.E.; Nolan, M.; Brock, B.W.; Pellicciotti, F. Modelling Spatial Patterns of Near-Surface Air Temperature over a Decade of Melt Seasons on McCall Glacier, Alaska. J. Glaciol. 2020, 66, 386–400. [Google Scholar] [CrossRef] [Green Version]
- Rets, E.P.; Popovnin, V.V.; Toropov, P.A.; Smirnov, A.M.; Tokarev, I.V.; Chizhova, J.N.; Budantseva, N.A.; Vasil’Chuk, Y.K.; Kireeva, M.B.; Ekaykin, A.A.; et al. Djankuat Glacier Station in the North Caucasus, Russia: A Database of Glaciological, Hydrological, and Meteorological Observations and Stable Isotope Sampling Results During 2007–2017. Earth Syst. Sci. Data 2019, 11, 1463–1481. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Guo, X.; Yao, T.; Yang, K.; Zhao, L.; Li, S.; Zhu, M. Summertime Surface Energy Budget and Ablation Modeling in the Ablation Zone of a Maritime Tibetan Glacier. J. Geophys. Res. Atmos. 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Winkler, M.; Juen, I.; Mölg, T.; Wagnon, P.; Gómez, J.; Kaser, G. Measured and Modelled Sublimation on the Tropical Glaciar Artesonraju, Perú. Cryosphere 2009, 3, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G.; Brandt, R.E.; Hinton, P.O.R. Effect of Surface Roughness on Bidirectional Reflectance of Antarctic Snow. J. Geophys. Res. E Planets 1998, 103, 25789–25807. [Google Scholar] [CrossRef]
- Knap, W.H.; Reijmer, C.H. Anisotropy of the Reflected Radiation Field over Melting Glacier Ice: Measurements in Landsat TM Bands 2 and 4. Remote Sens. Environ. 1998, 65, 93–104. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Liu, Q.; Xiao, Q.; Li, X. Parametrized BRDF for Atmospheric and Topographic Correction and Albedo Estimation in Jiangxi Rugged Terrain, China. Int. J. Remote Sens. 2009, 30, 2875–2896. [Google Scholar] [CrossRef]
- Yue, X.Y.; Zhao, J.; Li, Z.Q.; Zhang, M.J.; Fan, J.; Wang, L.; Wang, P.Y. Spatial and Temporal Variations of the Surface Albedo and Other Factors Influencing Urumqi Glacier No. 1 in Tien Shan, China. J. Glaciol. 2017, 63, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.G.; Liu, Q.H.; Xiao, Q.; Liu, Q.; Li, X.W. Modeling the Land Surface Reflectance for Optical Remote Sensing Data in Rugged Terrain. Sci. China Ser. D Earth Sci. 2008, 51, 1169–1178. [Google Scholar] [CrossRef]
- Gardner, A.S.; Sharp, M.J. A Review of Snow and Ice Albedo and the Development of a New Physically Based Broadband Albedo Parameterization. J. Geophys. Res. Earth Surf. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Girona-Mata, M.; Miles, E.S.; Ragettli, S.; Pellicciotti, F. High-Resolution Snowline Delineation From Landsat Imagery to Infer Snow Cover Controls in a Himalayan Catchment. Water Resour. Res. 2019, 55, 6754–6772. [Google Scholar] [CrossRef] [Green Version]
- Härer, S.; Bernhardt, M.; Siebers, M.; Schulz, K. On the Need for a Time- and Location-Dependent Estimation of the NDSI Threshold Value for Reducing Existing Uncertainties in Snow Cover Maps at Different Scales. Cryosphere 2018, 12, 1629–1642. [Google Scholar] [CrossRef]
- Roupioz, L.; Nerry, F.; Jia, L.; Menenti, M. Improved Surface Reflectance from Remote Sensing Data with Sub-Pixel Topographic Information. Remote Sens. 2014, 6, 10356–10374. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, S.E.; Rennermalm, A.K.; Román, M.O.; Wang, Z.; Schaaf, C.B.; Smith, L.C.; Koenig, L.S.; Erb, A. Evaluation of Satellite Remote Sensing Albedo Retrievals over the Ablation Area of the Southwestern Greenland Ice Sheet. Remote Sens. Environ. 2017, 198, 115–125. [Google Scholar] [CrossRef]
- Manninen, T.; Anttila, K.; Jääskeläinen, E.; Riihelä, A.; Peltoniemi, J.; Räisänen, P.; Lahtinen, P.; Siljamo, N.; Thölix, L.; Meinander, O.; et al. Effect of Small-Scale Snow Surface Roughness on Snow Albedo and Reflectance. Cryosph. Discuss. 2020, 1–56. [Google Scholar]
- Arnold, N.S.; Rees, W.G.; Hodson, A.J.; Kohler, J. Topographic Controls on the Surface Energy Balance of a High Arctic Valley Glacier. J. Geophys. Res. Earth Surf. 2006, 111, 1–15. [Google Scholar] [CrossRef]
- Lhermitte, S.; Abermann, J.; Kinnard, C. Albedo Over Rough Snow and Ice Surfaces. Cryosphere 2014, 8, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
Experiment | BRDF Parameterization | |||
---|---|---|---|---|
P1 | ||||
* P2 | ||||
P3 | ||||
P4 |
Glacier Surface | Parameterization Scheme | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R | MD | Std | R | MD | Std | ||
Snow | P1 | 0.935 | 0.0034 | 0.0736 | 0.939 | 0.0031 | 0.0726 |
P2 | 0.935 | 0.0040 | 0.0742 | 0.938 | 0.0036 | 0.0732 | |
P3 | 0.931 | 0.0047 | 0.0768 | 0.935 | 0.0044 | 0.0757 | |
P4 | 0.883 | 0.0091 | 0.1076 | 0.887 | 0.0087 | 0.1064 | |
Ice | P1 | 0.796 | −0.0008 | 0.0807 | 0.815 | 0.0011 | 0.0796 |
P2 | 0.798 | −0.0009 | 0.0805 | 0.817 | 0.0012 | 0.0792 | |
P3 | 0.799 | −0.0008 | 0.0803 | 0.817 | 0.0013 | 0.0791 | |
P4 | 0.794 | −0.0003 | 0.0821 | 0.811 | 0.0022 | 0.0809 |
Glacier Surface | Airborne BRDF Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Central (Range) Wavelength (nm) | Weighting Coefficients | Calibration | Validation | ||||||||
c1 | c2 | c3 | R | MD | Std | R | MD | Std | |||
Snow | 339 (330–350) | 0.00514 | 0.00494 | 0.01585 | 1.57080 | 0.91 | 0.0001 | 0.014 | 0.93 | 0.0000 | 0.012 |
382 (370–390) | 0.00189 | 0.01029 | 0.02096 | 1.01490 | 0.91 | 0.0005 | 0.019 | 0.92 | 0.0005 | 0.018 | |
480 (450–495) | 0.00000 | 0.00001 | 0.00002 | 0.12131 | 0.76 | 0.0078 | 0.188 | 0.77 | 0.0057 | 0.187 | |
677 (650–720) | 0.00083 | 0.00384 | 0.00452 | 0.34527 | 0.95 | 0.0013 | 0.034 | 0.95 | 0.0010 | 0.033 | |
873 (835–910) | 0.00123 | 0.00459 | 0.00521 | 0.34834 | 0.96 | 0.0015 | 0.038 | 0.96 | 0.0013 | 0.037 | |
1032 (990–1075) | 0.00417 | 0.00709 | 0.00736 | 0.39306 | 0.97 | 0.0014 | 0.042 | 0.97 | 0.0010 | 0.041 | |
1222 (1184–1258) | 0.00663 | 0.01081 | 0.01076 | 0.46132 | 0.98 | 0.0021 | 0.051 | 0.98 | 0.0017 | 0.050 | |
1275 (1236–1319) | 0.00413 | 0.00954 | 0.01018 | 0.46048 | 0.97 | 0.0022 | 0.061 | 0.97 | 0.0019 | 0.059 | |
1649 (1600–1709) | 0.00798 | 0.01744 | 0.01680 | 0.63119 | 0.96 | 0.0083 | 0.156 | 0.96 | 0.0091 | 0.163 | |
2196 (2140–2260) | 0.00622 | 0.01410 | 0.01314 | 0.55261 | 0.97 | 0.0093 | 0.133 | 0.98 | 0.0087 | 0.125 | |
Ice | 471 (462–482) | −0.00369 | 0.00000 | 0.00007 | 0.27632 | 0.70 | 0.0119 | 0.045 | 0.72 | 0.0133 | 0.043 |
675 (665–684) | −0.00054 | 0.00002 | 0.00001 | 0.17600 | 0.71 | 0.0075 | 0.053 | 0.74 | 0.0099 | 0.051 | |
868 (858–877) | −0.00924 | 0.00033 | −0.00005 | 0.31750 | 0.82 | 0.0051 | 0.060 | 0.85 | 0.0073 | 0.057 | |
1037 (1028–1047) | −0.03533 | 0.00297 | −0.00032 | 0.54050 | 0.87 | 0.0003 | 0.080 | 0.89 | 0.0024 | 0.077 | |
1219 (1209–1229) | −0.02388 | 0.00656 | 0.00227 | 0.58473 | 0.84 | −0.0127 | 0.117 | 0.85 | −0.0091 | 0.117 | |
1271 (1260–1281) | −0.02081 | 0.00683 | 0.00390 | 0.57552 | 0.84 | −0.0176 | 0.128 | 0.84 | −0.0168 | 0.131 | |
* 560 (520–600) | −0.02920 | −0.00810 | 0.00462 | 0.52360 | / | / | 0.043 | / | / | / |
Satellite | Glacier | n | Field Observation | Knap Method | Liang Method | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Bias | MAE | RMSE | Mean | Bias | MAE | RMSE | |||
L8/OLI | Djankuat | 12 | 0.32 | 0.28 | −0.04 | 0.07 | 0.09 | 0.31 | −0.01 | 0.05 | 0.06 |
Zhadang | 15 | 0.75 | 0.73 | −0.02 | 0.04 | 0.06 | 0.72 | −0.03 | 0.04 | 0.06 | |
Parlung No.4 | 36 | 0.54 | 0.61 | 0.07 | 0.07 | 0.08 | 0.64 | 0.10 | 0.10 | 0.11 | |
Yala | 28 | 0.67 | 0.69 | 0.01 | 0.06 | 0.07 | 0.69 | 0.01 | 0.05 | 0.06 | |
Mera | 11 | 0.61 | 0.53 | −0.08 | 0.08 | 0.08 | 0.61 | 0.00 | 0.03 | 0.03 | |
Zongo | 18 | 0.42 | 0.48 | 0.06 | 0.10 | 0.13 | 0.49 | 0.06 | 0.10 | 0.11 | |
Average | / | 0.55 | 0.55 | 0.00 | 0.07 | 0.09 | 0.58 | 0.02 | 0.06 | 0.07 | |
L5/TM | McCall | 10 | 0.46 | 0.42 | −0.04 | 0.05 | 0.06 | 0.52 | 0.06 | 0.06 | 0.07 |
Djankuat | 15 | 0.20 | 0.28 | 0.09 | 0.11 | 0.14 | 0.33 | 0.13 | 0.14 | 0.20 | |
Artesonraju | 13 | 0.29 | 0.39 | 0.11 | 0.11 | 0.17 | 0.47 | 0.19 | 0.19 | 0.25 | |
Zongo | 24 | 0.36 | 0.45 | 0.09 | 0.09 | 0.10 | 0.50 | 0.14 | 0.14 | 0.17 | |
Average | / | 0.33 | 0.39 | 0.06 | 0.09 | 0.12 | 0.46 | 0.13 | 0.13 | 0.17 |
Satellite | Glacier | n | MODIS/Ren | n | MCD43A3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MLandsat | MMODIS | Bias | MAE | RMSE | MLandsat | MMODIS | Bias | MAE | RMSE | ||||
L8/OLI | Djankuat | 34 | 0.36 | 0.29 | −0.07 | 0.08 | 0.09 | 34 | 0.36 | 0.29 | −0.07 | 0.07 | 0.08 |
Zhadang | 132 | 0.71 | 0.57 | −0.14 | 0.14 | 0.18 | 87 | 0.69 | 0.58 | −0.11 | 0.11 | 0.13 | |
Parlung No.4 | 1313 | 0.66 | 0.55 | −0.11 | 0.13 | 0.16 | 671 | 0.60 | 0.39 | −0.21 | 0.22 | 0.24 | |
Yala | 69 | 0.58 | 0.56 | −0.02 | 0.09 | 0.11 | 105 | 0.55 | 0.49 | −0.07 | 0.10 | 0.12 | |
Mera | 112 | 0.56 | 0.47 | −0.09 | 0.10 | 0.12 | 189 | 0.58 | 0.38 | −0.20 | 0.20 | 0.22 | |
Zongo | 37 | 0.58 | 0.41 | −0.17 | 0.17 | 0.18 | 36 | 0.58 | 0.29 | −0.29 | 0.29 | 0.30 | |
Average | / | 0.57 | 0.47 | −0.10 | 0.12 | 0.14 | / | 0.56 | 0.40 | −0.16 | 0.16 | 0.18 | |
L5/TM | McCall | 589 | 0.50 | 0.40 | −0.10 | 0.13 | 0.16 | 769 | 0.49 | 0.38 | −0.12 | 0.15 | 0.19 |
Djankuat | 57 | 0.41 | 0.35 | −0.06 | 0.07 | 0.09 | 48 | 0.38 | 0.32 | −0.06 | 0.08 | 0.09 | |
Artesonraju | 47 | 0.42 | 0.55 | 0.13 | 0.14 | 0.17 | 83 | 0.38 | 0.35 | −0.02 | 0.07 | 0.09 | |
Zongo | 45 | 0.50 | 0.38 | −0.12 | 0.13 | 0.15 | 41 | 0.51 | 0.29 | −0.22 | 0.22 | 0.26 | |
Average | / | 0.46 | 0.42 | −0.04 | 0.12 | 0.14 | / | 0.44 | 0.33 | −0.11 | 0.13 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Miles, E.S.; Jia, L.; Menenti, M.; Kneib, M.; Buri, P.; McCarthy, M.J.; Shaw, T.E.; Yang, W.; Pellicciotti, F. Anisotropy Parameterization Development and Evaluation for Glacier Surface Albedo Retrieval from Satellite Observations. Remote Sens. 2021, 13, 1714. https://doi.org/10.3390/rs13091714
Ren S, Miles ES, Jia L, Menenti M, Kneib M, Buri P, McCarthy MJ, Shaw TE, Yang W, Pellicciotti F. Anisotropy Parameterization Development and Evaluation for Glacier Surface Albedo Retrieval from Satellite Observations. Remote Sensing. 2021; 13(9):1714. https://doi.org/10.3390/rs13091714
Chicago/Turabian StyleRen, Shaoting, Evan S. Miles, Li Jia, Massimo Menenti, Marin Kneib, Pascal Buri, Michael J. McCarthy, Thomas E. Shaw, Wei Yang, and Francesca Pellicciotti. 2021. "Anisotropy Parameterization Development and Evaluation for Glacier Surface Albedo Retrieval from Satellite Observations" Remote Sensing 13, no. 9: 1714. https://doi.org/10.3390/rs13091714
APA StyleRen, S., Miles, E. S., Jia, L., Menenti, M., Kneib, M., Buri, P., McCarthy, M. J., Shaw, T. E., Yang, W., & Pellicciotti, F. (2021). Anisotropy Parameterization Development and Evaluation for Glacier Surface Albedo Retrieval from Satellite Observations. Remote Sensing, 13(9), 1714. https://doi.org/10.3390/rs13091714